
Paper ID #30880

Fostering Entrepreneurship in Project-Based Software Engineering Courses

Dr. Kevin Buffardi, California State University, Chico

Dr. Buffardi is an Associate Professor of Computer Science at California State University, Chico. After
gaining industry experience as a usability and human factors engineering specialist, he earned a Ph.D.
in Computer Science from Virginia Tech. His research concentrates on software engineering education,
software testing, and eLearning tools.

David Rahn, California State University, Chico

Mr. Rahn is a Lecturer for Strategy and Entrepreneurship and is the Director of the e-Incubator within the
Center for entrepreneurship at California State University, Chico. Mr. Rahn has extensive industry back-
ground with software and consulting startups and specialized in new product and market development.
Following his successful industry career Mr. Rahn transitioned to teaching strategy and entrepreneurship
at Chico State. Over the past 16 years Mr. Rahn has developed the e-Incubator at Chico State, as well
as created a course called Web-based entrepreneurship which focuses on helping students launch the on-
line portion of their businesses using the Lean Startup approach. In 2016 he published ”e-Business for
Entrepreneurs,” an online course for entrepreneurs building e-businesses.

c©American Society for Engineering Education, 2020

Fostering Entrepreneurship in Project-Based Software Engineering Courses

Introduction.

The 2013 ASEE report on Transforming Undergraduate Engineering Education identified

entrepreneurship and intrapreneurship as in-demand skills that require additional attention in

engineering curricula for “expanding on business and economics acumen and enabling students

to learn more than economic capitalization, but also the process of starting a business from an

idea” [1]. Meanwhile, the technology sector is growing, led largely by software companies like

Apple, Microsoft, Alphabet (parent of Google), and Facebook. Accordingly, many of the leading

software companies emerged from a “tech startup” culture and through innovations from

entrepreneurial software developers.

Software Engineering courses often follow Problem-Based Learning (PBL) pedagogy by

involving students in semester-long software development projects. However, previous research

has identified flaws in students developing “toy” projects of their own imagination. In particular,

toy projects usually lack real customers and consequently cannot benefit from their feedback.

Consequently, toy projects are ineffective at holding students accountable for adapting to

changing requirements – a common characteristic to real life software development, and a

primary inspiration for popular Agile Software Development methods.

Meanwhile, Entrepreneurship courses are adapting to evolving processes and techniques

practiced by modern enterprises. The traditional business plan approach bears similarities to the

rigid planning and design of the Waterfall model and it consequently suffers from analogous

inflexibility. Research has found that adopting a formal business plan is not associated with

increased odds of success [2]. Instead, contemporary Lean Startup methods [3] emphasize

continuous innovation through experimentation and adaptation to evolving knowledge of the

market.

Accordingly, entrepreneurship curricula are evolving to provide experiential learning in adopting

Lean methods. There is a movement to apply more hands-on learning in entrepreneurship

education [4], including a shift toward PBL pedagogy for business venture projects [5]. While

entrepreneurship students often identify software as possible solutions to market segment pain

points, the entrepreneurs usually lack the development skills to see their ideas to fruition.

Accordingly, there is also emerging demand for entrepreneurship PBL to embrace

interdisciplinary teams that leverage specializations in different domains, including computer

science [6].

In 2016, we adopted the Tech Startup model [7] of coordinating Entrepreneurship and Software

Engineering classes by collaborating on novel software ideas. Unlike toy projects, Tech Startup

projects leverage Entrepreneurship students to provide feedback and changing requirements as

they adopt Lean Startup methods. At the beginning of each semester, students from both classes

participate in ideation activities and then pitch ideas to form interdisciplinary teams and initiate

software startups.

However, in the initial semesters of the Tech Startup collaborations, nearly every project idea

came from the Entrepreneurs. While those teams still benefitted from collaboration and a

combination of Agile and Lean methods, we wanted to encourage Software Engineering students

to also actively engage in the entrepreneurial ideation.

In this study, we analyze seven semesters of a Software Engineering course (n=290)—an upper

division required course within an undergraduate Computer Science program—to investigate

Software Engineering students’ motivations and attitudes for creating entrepreneurial ideas. We

study pre-semester surveys that gather students’ preferences for projects as well as their

motivations for ranking their preferences.

We also examine the effects of encouraging Software Engineering students to pitch

entrepreneurial ideas by prompting ideation with an introduction to emerging technology

platforms: virtual and augmented reality (VR/AR) and internet of things (IoT). In this paper, we

evaluate motivations for software engineers to engage in generating innovative, entrepreneurial

ideas and what factors are most appealing to them when choosing from projects to work on.

Background.

With the increasing demand for software developers, many students in computing disciplines

seek careers in software engineering. Accordingly, software engineering instructors seek to

prepare students with professional skills and experiences with team projects that emulate those in

industry. Martin acknowledged a trend in computing education where most software that

students write for programming assignments “never see the light of day.” Consequently, Martin

argued that “toy projects” that have no real customers or use outside of the classroom are

harmful [8].

Likewise, Nurkkala and Brandle assessed common gaps between common software engineering

“toy projects” and real software practice, explaining:

A student project is just that—a project. It is not a product in any meaningful,

commercial sense. Such a nonproduct escapes the scrutiny of sales, marketing, and

customer relations. It also is isolated from external forces like press reviews, competing

product offerings, market share, and most importantly, user scrutiny [..] The most

significant gap is that student projects seldom involve a real customer.

They acknowledge the "vanishingly small” availability of real customers willing to assume the

risks inherent to a team of students working within the confines of the classroom. They also

argue the inadequacy of instructors standing in as mock customers because their investment in

any project is strictly pedagogical [9]. On the other hand, a real customer has needs to be met by

the software and a real entrepreneurial team depends on their product’s success for their

professional livelihood. Those external pressures drive evolving requirements and accountability

for delivering valuable, working software.

Agile Software Development (Agile) is a popular approach in industry and is consequentially

taught in most software engineering courses. Among its key principles, Agile advocates

customer collaboration, responding to change, and frequent interaction between businesspeople

and developers [10]. Consequently, to practice Agile in software engineering courses, students

need projects that involve interaction with customers and businesspeople, who help guide the

evolution of product requirements.

Problem-Based Learning (PBL) is an active learning approach—inspired by constructivist

pedagogy—that fosters learning through experiencing the process of solving a problem. Studies

suggest PBL is especially conducive to long-term retention and skill development [11].

Accordingly, PBL is a popular pedagogy for software engineering courses so that students gain

experience to more realistic Agile software development.

Tech Startup model and project ideation.

We introduced the Tech Startup model in 2016 to heed ASEE’s call to improve entrepreneurship

[1] within engineering education as well as to provide opportunities for computing students to

experience more realistic software engineering projects. The model involves interdisciplinary

collaboration between a Software Engineering and an Entrepreneurship course, where students

form small teams to create software products that meet real customers’ needs.

The software engineering students practice Scrum [12]—an Agile framework that builds and

reviews working software on short intervals called sprints—and entrepreneurship students adopt

Lean Startup [3] methods. Each team also creates a Slicing Pie dynamic equity agreement [13] to

explicitly plan for sharing the fruits of their product’s financial successes as well as accounting

for potential turnover.

In previous papers, we outlined the coordinated weekly schedules [14], assignments and

activities [15][16], and positive outcomes for businesses that have emerged from the courses

[14]. We also found that the model lead to software engineering students’ more closely adhering

to Agile principles than when working on other types of PBL projects [17].

Nevertheless, in preliminary semesters, we observed a need to improve software engineering

student engagement in entrepreneurial aspects of the projects. At the beginning of each academic

term, we introduced students to the semester-long assignment of working on interdisciplinary

Tech Startup projects. We then asked students to conceptualize project ideas and pitch their

proposals to their fellow students. After completing all project pitches, we surveyed students to

identify the projects they were most interested in and formed teams that included at least four

software engineers and at least one entrepreneur.

While all software engineering students consequently worked on tech startup projects with

entrepreneurship collaborators, we noted that many software engineers were reluctant to pitch an

idea. Although the software engineering course often had enrollment two to three times the size

of the entrepreneurship course, nearly all pitched ideas originated from the entrepreneurship

students. Anecdotally, we also observed that software engineering students sometimes perceived

entrepreneurs as their bosses or superiors and that they were working for the entrepreneurs rather

than collaborating with them. Consequently, in this study, we explored how to engage software

engineering students more in entrepreneurial ideation.

Method.

The purpose of this study is to understand motivations behind the projects that software

engineering students prefer and to investigate how to empower them to propose innovative ideas

for collaborations with business students. We studied students’ feedback (n=290) from seven

semesters (Fall 2016 through Fall 2020) of Tech Startup collaborations between Software

Engineering and Web-Based Entrepreneurship courses. The latter is an upper-division course

within California State University, Chico (CSU Chico) College of Business’ Entrepreneurship

option. Software Engineering is also an upper-division course and is required class for a major or

minor in Computer Science at CSU Chico.

Each term began with an introduction to the semester-long project structure and requirements

during the first week. During the introduction, all students were encouraged to brainstorm project

ideas. In a subsequent meeting with entrepreneurship and software engineering students in the

same room, students gave brief pitches to explain their ideas and attract potential collaborators.

After all pitches were complete, the professors gathered students’ interest in the different ideas

and formed teams based predominantly on students’ preferred projects. However, the professors

required each team to have an appropriate number of collaborators (as based on the professors’

discretion) comprised of enough interested entrepreneurs and software engineers. Professors

assured students that they would stake no claim in ownership of the projects and reassured

students that if they pitched an idea that becomes a team project, they were guaranteed a spot on

the team.

To gather students’ preferences from the Software Engineering class, we collected surveys where

students shared their motivations as well as rating and ranking the proposed projects. The survey

listed each project idea (along with a brief summary, when provided by the student who pitched

it) for students to rate how much they were interested in working on a project.

The rating used five-point, Likert-type scale items, where one represents “Strongly Disagree”

and five represents “Strongly Agree.” After rating each project idea, the students also ranked

their top three choices to help account for ties. Students also provided insights into what

motivated their choices by indicating (with the same Likert-type scale for agreement) their

(dis)agreement with the following statements:

• My project preferences are motivated by programming languages and technologies I am

already familiar with

• My project preferences are motivated by new programming languages and technologies I

want to learn

• My project preferences are motivated by the potential of the product making money,

• My project preferences are motivated by the opportunities for professional/career

networking,

• My project preferences are motivated by the potential of the product becoming well-

known and used by many people,

• My project preferences are motivated by the problem the product addresses

To account for other potential motivations, the survey asked, "Other than the reasons already

given, what makes a project appealing to you?" with free-form response.

Preliminary analysis and intervention design.

After anecdotally observing software engineering students’ reluctance to propose ideas, we were

alarmed by the missed opportunity to engage in entrepreneurship and take agency in their

education. To verify our observations, we reviewed the projects pitched in the first three

semesters of adopting the Tech Startup model. Table 1 illustrates software engineers’ initial

reluctance to pitch project ideas, with only about 3% of software engineering students proposing

a project.

Table 1. In the first three semesters of the Tech Startup model, only 3.03% of Software

Engineering students proposed a project idea.

Academic

Term

Software Engineering

Students

Pitched ideas from Software

Engineering Students

Pitches per

Software Engineer

Fall 2016 60 0 0.0000

Spring 2017 32 2 0.0625

Fall 2017 40 2 0.0500

Total 132 4 0.0303

We reviewed literature and found suggestions that, in comparison to their entrepreneurship

students, creativity from engineering students tends to focus more on the technology (the

medium used to solve a problem) and making practical and incremental progress; meanwhile,

their entrepreneurship counterparts are usually driven by a clearer vision of the market [18].

With the aim to motivate more software engineers to engage in creative ideation, we secured a

small grant to fund equipment and resources to appeal to their inclination toward innovative

technology.

A $5000 USD grant was awarded by CSU Chico. With those funds we purchased equipment to

supply students with the opportunity to work on Virtual Reality (VR), Augmented Reality (AR),

and Internet of Things (IoT) projects. Specifically, we purchased the following items for a total

of approximately $2000:

• HTC Vive virtual reality headset and accessories
• X Glass Enterprise (development-ready wearable smart glasses, formerly marketed as

“Google Glass”)
• Amazon Echo Dot smart speaker
• Google Home Mini smart speaker
• Raspberry Pi 3 Model B+ microcontroller with accessories and extra sensors

With the remaining $3000, two research assistants were hired to assemble learning materials and

produce a “getting started guide” with simple example applications to help students begin

development for each device. Research assistants also prepared an overview of VR, AR, IoT,

their unique capabilities, broad areas of problems they can address (e.g. immersive training,

home automation, smart cities, etc.), as well as a list of the devices available for students’ use.

Emergent technology intervention.

After purchasing the equipment and preparing materials for selective emergent technologies

(VR, AR, and IoT), we supplemented our classes’ introductions to the Tech Startup projects with

a brief (under 10 minute) presentation of the technologies. Our primary hypothesis was that (H1)

after priming students with a presentation on emergent technologies, software engineers

would be more likely to propose entrepreneurial project ideas.

In each of the following four semesters, we followed the same process as described in the

preliminary analysis: project introduction, ideation, and project pitches, followed by surveying

student preferences/motivations and subsequently, team formation. In contrast to the three

preliminary control semesters (described above), during four subsequent intervention semesters,

the project introduction included the presentation on emergent technology and availability of the

devices.

Nevertheless, for logistical reasons outside the professors’ control, the course schedules were

changed in the final two semesters of this study, so they no longer met at coinciding times. In

response, the professors adjusted the format of the pitches so that instead of students sharing

their ideas in-person, students posted their ideas on a shared message board. Although this

change in delivery was not planned as part of our intervention, we considered the possibility that

it also influenced students’ decisions to pitch their ideas.

Software engineers typically have less experience in public speaking and presenting elevator

pitches, but they also may be more comfortable with online interactions. Consequently, we

hypothesized that (H2) software engineers would be more likely to propose entrepreneurial

project ideas online than in front of a class.

To test both hypotheses (H1 and H2), we performed an analysis of variance (ANOVA) to

investigate how the likelihood of software engineers to pitch project ideas—as represented by

pitches per software engineer (number of pitches by software engineers divided by enrolled

software engineers) for each semester—can be explained by presence or absence of the emergent

technology presentation (IV-Intervention) or by whether the pitches were delivered online or in

person (IV-Delivery). However, there were not any control semesters (without the intervention)

where pitches were delivered online.

In the four IV-Intervention semesters, nearly a quarter of software engineering students pitched

ideas (M=0.23, sd=0.15) while in the control semesters without an intervention, fewer than one-

in-twenty software engineers pitched (M=0.04, sd=0.03) per semester. In the final two semesters

with IV-Delivery online pitches, nearly a third of the software engineers pitched (M=0.32,

sd=0.17). In the preceding five semesters (including three control and two IV-Intervention

semesters), only seven percent of software engineers pitched per semester (M=0.07, sd=0.05).

The ANOVA revealed that the IV-Intervention was associated with a significant increase in

likelihood of software engineers pitching their own project ideas (F=7.59, p<0.05); however,

online delivery of pitches did not meet the critical value (α=0.05) threshold for

statisticalsignificance (F=5.07, p=0.087). The statistical significance found that the null

hypothesis for H1 is rejected. This result supports our hypothesis that priming software

engineering students with emergent technologies would increase the likelihood that they

will pitch a project idea.

Although there were more pitches per software engineering student in semesters with online

pitch delivery than those with in-person delivery, when IV-Delivery was analyzed in conjunction

with IV-Intervention, its effect only approached statistical significance (p=0.085). There is

insufficient evidence to support our hypothesis (H2) that software engineers would be more

likely to pitch online instead of in-person.

Exploring motivation and project preference.

To better understand software engineers’ motivations and preferences for the projects they select,

we performed post-hoc analysis of their survey responses. First, we investigated whether

software engineers were more likely to be interested in projects pitched by their fellow software

engineers than those pitched by entrepreneurship students. We averaged students' ratings of each

project (from 1 to 5, strongly disagree to strongly agree) and compared ratings between pitches

from software engineers and entrepreneurs.

We hypothesized (H3) that software engineering students would exhibit stronger interest in

pitches from software engineers than those from entrepreneurs. However, we tested the

hypothesis using the Wilcoxon-Mann-Whitney test and found no significant difference (p=0.97)

between interest in software engineer pitches (M=2.6, sd=0.52) and interest in entrepreneur

pitches (M=2.57, sd=0.46). Consequently, H3 is not supported because there is no observable

difference between interest in software engineering and entrepreneur pitches.

As exploratory analysis, we examined what motivated software engineering students’

preferences for projects. We found the average Likert-type scale ratings for how strongly they

agreed with the following statements (with coding abbreviation emphasized in parentheses):

• My project preferences are motivated by programming languages and technologies I am

already familiar with (Familiarity);
• My project preferences are motivated by new programming languages and technologies I

want to learn (Learning);
• My project preferences are motivated by the potential of the product making money

(Money-making);
• My project preferences are motivated by the opportunities for professional/career

networking (Networking);
• My project preferences are motivated by the potential of the product becoming well-

known and used by many people (Potential);
• My project preferences are motivated by the problem the product addresses (Problem).

From highest (strongest agreement) to least, students rated that their project preferences were

motivated by: Learning (M=4.06, sd=1.01), Problem (M=3.9, sd=1.04), Networking (M=3.81,

sd=1.09), Potential (M=3.5, sd=1.16), Familiarity (M=2.97, sd=1.19), and Money-making

(M=2.62, sd=1.26).

However, we also recognize these potential motivations are not exhaustive, so we also analyzed

students’ free-form responses to the question, “Other than the reasons already given, what makes

a project appealing to you?” Using Grounded Theory to systematically evaluate qualitative

responses, we first read each response and coded them by identifying common concepts and then

used inductive reasoning to categorize concepts and summarize our findings.

Each response was coded (as binary true or false) according to whether it explicitly mentioned

each concept. For any given response, multiple concepts were coded when multiple were

mentioned. Of the 290 students surveyed, 235 (81%) responded to the free-form response

question. Figure 1 summarizes the frequency of common concepts identified and coded from the

235 responses.

Figure 1. Concept frequencies identified in free-response Grounded Theory analysis

We found the following concepts: altruism (e.g. “helping people”), interesting or challenging

problem, the potential to learn, personal interest in using the product, the quality or enthusiasm in

the pitch, the technology platform (e.g. mobile, web, AR, etc.), the product’s potential for

success, the realism of building the product, the person who pitched or other possible teammates,

the specific tools involved in building the software (e.g. Python, React, etc.), and the perceived

usefulness of the product. A desire to learn was the most frequently mentioned motivator.

After analyzing the concepts, we categorized motivations for project preferences according to

broader themes: infrastructure (tools, platform), personnel (team, pitch), egocentrism (personal,

learning, interesting), empathy (altruistic, useful), and outcomes (realistic, potential). The most

frequent motivations addressed how the project idea related to the survey respondent's personal

(egocentric) goals and interests (55%). However, empathetic motivations (26%) of how students

perceived the product affecting other people were second-most frequent. The anticipated

technology infrastructure (23%) was the third most common motivation, while the project’s

expected outcomes (14%) and personnel (13%) were less frequent.

Discussion.

After software engineering students initially demonstrated little motivation to pitch ideas for

entrepreneurial software projects, we primed ideation in following semesters with an appeal to

their interest in emergent technologies. We also explored whether delivering pitches online

would make software engineers more likely to pitch project ideas. Statistical analysis supported

our hypothesis that priming students with a brief presentation about innovative technologies

resulted in significantly more ideas pitched by software engineers. However, there was

insufficient evidence to conclude whether pitching online or in-person was more conducive to

engaging software engineers in entrepreneurial pitches.

Investigation of the platform for delivering pitches was not initially intended as a factor in this

study. Instead, we investigated comparisons between online and in-person pitching because of

unanticipated university scheduling conflicts. Consequently, the IV-Delivery pitch delivery

treatment was only observed in tandem with the IV-Intervention emergent technology

presentation, and not during control semesters. These circumstances were beyond our control but

affected the pseudo-experimental design and represent a threat to the validity of the study.

In addition, this study only reflects the behaviors and attitudes at CSU Chico. Replication across

multiple institutions would be necessary to generalize the conclusions. CSU Chico is also a

recognized Hispanic Serving Institution (MSI) and enrolls disproportionately high percentage of

first-generation, low-income, and under-represented minorities (URM) in STEM. Our students’

motivations and behaviors may or may not reflect those of the general population of software

engineering students.

Nevertheless, it is encouraging to observe the increased engagement of software engineers

participating in entrepreneurial ideation. According to their self -reported motivations, software

engineers were motivated the most by how each project appealed to their personal interests—

particularly with a desire to learn new programming languages, frameworks, and technologies.

One might expect some students to prefer projects that will require the least effort to achieve

their desired grade. However, none of the students explicitly stated in their free response answers

that their project preferences were influenced by which ones they perceived to be the easiest. On

one hand, that sentiment may be reflected implicitly in responses that claimed preference for

projects that seemed “realistic” or “practical” to implement. On the other hand, those responses

may not indicate preference for easy projects since students also reported preferences for projects

that involved a technology that they would like to learn over those using familiar technology.

Preferring a project that requires learning additional skills is not consistent with the notion that

students may just prefer the least amount of effort.

Moreover, the hypothetical appeal of an easy project may have been mitigated by the project

requirements. All project pitches were vetted by the professors to ensure the subject matter was

appropriate and of reasonable scope. The usefulness of the software product and how well a team

adopted Agile methods to continuously deliver minimal viable products (MVP) and adapt to

changing requirements accounted for 30% of the project’s grade. The adage “Software is never

finished, only abandoned” is reiterated in class to emphasize that their software needs to be

continuously maintained and improved and to discourage students from treating the projects like

traditional academic programming projects that have rigid requirements and can be considered

“finished.”

It is also worth noting that we have observed an increased variety in platforms the software

projects are built upon. Before providing the emergent technology intervention, nearly all ideas

involved web and mobile phone applications. Since introducing students with an overview of

virtual reality (VR), augmented reality (AR), and Internet of Things (IoT) and supplying the

necessary equipment, we have seen an increase in pitches involving those technologies.

As post-hoc analysis, we reviewed the technology platforms for each idea that garnered enough

interest and formed a team. For this analysis, we grouped web and mobile platforms together

because projects often use both—such as mobile applications that accesses a web application

programming interface to maintain persistence and social networking features—and because

cross-platform frameworks (e.g. Apache Cordova, Google Flutter, etc.) blur distinctions between

web and mobile development. In three semesters preceding the intervention, only one project

(4%) used VR while the rest (96%) used web/mobile platforms. Since introducing the

intervention, web/mobile projects are still most popular (81%) but there has been an increase in

VR/AR (5%) and IoT (14%).

However, we also acknowledge that these technologies have simultaneously become more

pervasive in society so we cannot attribute the evolving trends in technology platforms to our

intervention alone. Furthermore, return on investment should be weighed when considering the

impact of priming software engineering ideation with emergent technology. While VR/AR

technology piques many students’ interests, the VR/AR devices we purchased accounted for

most of the $2000 USD budget. Only two projects (in four semesters) have used the HTC Vive

VR equipment and while several pitched projects involved AR, none of those projects used the X

Glass wearable technology.

On the other hand, the remaining devices (two smart home devices and a microcontroller with

addons) each cost less than $100. Several projects have used Raspberry Pi microcontrollers and

while some have used the equipment we purchased, many teams opt to purchase their own

equipment, in part due to its low cost. Although our intervention included both (A) a presentation

to prime students to consider ideas that involve emergent technology and (B) making equipment

available to students, our observations suggest that the presentation (A) probably made the

greater impact on students’ likelihood to pitch their own ideas.

Future Work.

Engaging software engineering students in the process of building a viable product from a novel

idea shows potential for learning Agile methods while engaging in entrepreneurship. This study

explored software engineering students’ motivations and revealed that appealing to their interest

in innovative technologies should encourage them to take agency in proposing interdisciplinary,

entrepreneurial projects. We also anecdotally observed a transition of students increasingly

embracing a perspective of team collaboration rather than a hierarchical client/contractor

relationship.

In part, students’ collaborative attitudes may be due to the required Slicing Pie dynamic equity

agreement assignment [13][15] that defines each team member’s role in contributing to the

project outcome (along with equity earned, accordingly). Nevertheless, there remains room for

improving how well students from either discipline appreciates the skills, methods, and value of

their counterparts. Improving inclusivity and engagement of software engineering students in the

ideation process is important but is likely only one of many factors that is vital to encouraging a

collaborative team structure.

However, there is a lack of research on software engineers’ self-efficacy and agency as it applies

to creating novel software projects. Future research should explore self-efficacy of engineers

when either engaging in interdisciplinary projects with business students or venturing into tech

startups without business partners. The quasi-experimental was not initially designed for

investigating how project ideas would be pitched (online versus in person) but still found

differences approaching statistical significance. Consequently, future studies should include

controlled experiments to understand the potential effects of the medium used for ideation and

team formation.

The research outlined in this paper focuses on student agency and motivation, which should be

extended with longitudinal studies of project quality as well as continuity and success of

entrepreneurial projects. In previous work [14][16] we found that some teams continue to work

on their project after the academic term is complete and a few even legally incorporate and

launch enterprises. However, it may also be worth investigating whether the emergent

technology intervention or other factors in the ideation and team formation process influence

project outcomes.

Instructors should embrace software engineers’ prevailing interest in learning new technologies

as a motivating factor in software engineering courses. However, we should also acknowledge

that the penchant for making decisions based on technology over the usefulness or viability of

the product may have ill effects on project outcomes. Choosing a tool to solve a problem due to

personal motivations rather than its suitability is a bad practice—it resembles the “Silver Bullet”

or “Golden Hammer” software development antipattern [19]. Future work will investigate the

technologies chosen for projects and their impacts on design, maintenance, and entrepreneurial

success.

While the technology sector continues its rapid growth, both new technologies and new business

models emerge. Historically, personal computers and desktop applications gave way to online

retailers, followed by social media and services that often leverage data gathering and advertising

for revenue. Subsequently, novel business models for the technology sector have emerged,

spurring technological and business innovations such as the “Gig Economy” (e.g. Airbnb, Uber,

etc.). Educators should consider the potential for fostering innovations in business and software

in tandem with the collaborative, interdisciplinary Tech Startup model.

Conclusions.

The Tech Startup model provides an opportunity to involve software engineering students in

realistic, problem-based learning while gaining novel and valuable exposure to the

entrepreneurial “process of starting a business from an idea” [1]. However, in preliminary

semesters, we found that only 3% of software engineering students took the initiative to propose

their creative ideas among their peers and business students. Consequently, we provided

equipment and a brief overview of emergent technologies to prime software engineers’

entrepreneurial ideation.

In a mixed methods study (n=290), we compared the likelihood of software engineers pitching

their own entrepreneurship ideas after being introduced to three emergent technologies: virtual

reality, augmented reality, and internet of things. We found the software engineers’ pitches

increased (p<0.05) more than sevenfold in semesters when the emergent technology intervention

(23%) was applied. We also observed project ideation with pitches delivered either in-person or

via an online message board. However, further investigation is necessary to determine whether

the method used to deliver pitches affect software engineer engagement.

The study also employed quantitative and qualitative analysis of students’ project preference

ratings and free-form responses to a survey. When identifying the projects that they prefer,

software engineering students showed no preference between ideas pitched by fellow software

engineers and those pitched by entrepreneurs. Software Engineering students identified that a

desire to learn a new programming language, framework, or technology was the most common

motivation for project selection. Students also reported motivation from how interesting they

find the problem and whether they would personally use it.

References.

[1] American Society for Engineering Education, “Transforming Undergraduate Engineering

Education, Phase I: Synthesizing and Integrating Industry Perspectives,” Workshop Report, May

2013.

[2] A. Bhide, A. How Entrepreneurs Craft Strategies That Work. Harvard Business Review.

[Online] Available: http://hbr.org/1994/03/how-entrepreneurs-craft-strategies-that-work/ar/1.

[Accessed February 19th, 2014].

[3] E. Ries, The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create

Radically Successful Businesses. Crown Business, 2011.

[4] E.A. Rasmussen and R. Sorheim. Action-based entrepreneurship education. Technovation,

26(2), 185-194, 2006.

[5] C. Hixson, M. Paretti, J. Lesko, and L. McNair. Course Development and Sequencing for

Interdisciplinary Entrepreneurship Education. Presentation given at OPEN 2013: NCIIA’s 17th

Annual Conference, March 22-23, 2013, Washington, DC.

[6] P. Lane, J. Hunt, and J. Farris. Innovative teaching to engage and challenge twenty-first

century entrepreneurship students: An interdisciplinary approach. Journal of Entrepreneurship

Education, 14, 105-123, 2011.

[7] C. Robb, D. Rahn, and K. Buffardi. Tech startups: A model for realistic entrepreneurship &

software engineering project collaboration. United States Association for Small Business and

Entrepreneurship. Conference Proceedings; Boca Raton: 1280-1294. Boca Raton: United States

Association for Small Business and Entrepreneurship, 2017.

[8] F. Martin, “Toy projects considered harmful.” Commun. ACM 49(7), July 2006. pp. 113-

116. doi:10.1145/1139922.1139958

[9] T. Nurkkala and S. Brandle, “Software studio: teaching professional software engineering.”

In Proceedings of the 42nd ACM technical symposium on Computer science education (SIGCSE

'11). ACM, New York, NY, USA, 2011. pp. 153-158. doi:10.1145/1953163.1953209

[10] M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Highsmith, A.

Hunt, R. Jeffries, J. Kern, B. Marick, R.C. Martin, K. Schwaber, J. Sutherland, and D. Thomas.

“Manifesto for Agile Software Development.” Agile Manifesto, February 2001. [Online].

Available: Agile Alliance, http://agilemanifesto.org/.

[11] J. Strobel & A. van Barneveld. When is PBL More Effective? A Metasynthesis of Meta-

analyses Comparing PBL to Conventional Classrooms. Interdisciplinary Journal of Problem-

Based Learning, 3(1), 2009. doi:10.7771/1541-5015.1046

[12] J. Sutherland. "Agile Development: Lessons learned from the first Scrum" Scrum Alliance,

2004.

[13] M Moyer. “Slicing Pie: Fund Your Company Without Funds” Lake Forest, IL: Lake Shark

Ventures LLC, 2012.

[14] C. Robb, D. Rahn, and K. Buffardi. Bridging the gap: A model for interdisciplinary

collaboration between entrepreneurship and software engineering students. Journal of Education

for Business, Routledge. August 12, 2019. pp 1-10.

doi:https://doi.org/10.1080/08832323.2019.1644275

[15] K. Buffardi, "Tech Startup Learning Activities: A Formative Evaluation," 2018 IEEE/ACM

International Workshop on Software Engineering Education for Millennials (SEEM),

Gothenburg, 2018, pp. 24-31.

[16] K. Buffardi, W. Zamora, C. Robb, and D. Rahn. Implementing the Tech Startup Model: A

Retrospective on Year One. American Society for Engineering Education (ASEE) Annual

Conference & Exposition, June 23, 2018.

[17] K. Buffardi, C. Robb, and D. Rahn. Learning Agile with Tech Startup Software Engineering

Projects. In Proceedings of the 2017 ACM Conference on Innovation and Technology in

Computer Science Education (ITiCSE ’17). Association for Computing Machinery, New York,

NY, USA, 28–33, 2017. doi:https://doi.org/10.1145/3059009.3059063

[18] H. Berglund, and K. Wennberg. Creativity among entrepreneurship students: Comparing

engineering and business education. International Journal of Continuing Engineering Education

and Life-Long Learning, 16(5), 366–379, 2006. doi:10.1504/IJCEELL.2006.010959

[19] P.A. Laplante and C.J. Neill. Antipatterns: identification, refactoring, and management.

Auerbach Publications, New York, NY, USA, 2005.

