2006-969: FRAMEWORK FOR DYNAMIC PROGRAMMING

Louis Plebani, Lehigh University

Dr. Plebani, P.E., is a faculty member in the Department of Industrial and Systems Engineering at
Lehigh University where he teaches Dynamic Programming.

© American Society for Engineering Education, 2006

T'6%79°'TT abed

Framework for Dynamic Programming

Abstract

Dynamic programming (DP) is a versatile technique for modeling and solving sequential
optimization problems. While the approach is well known to the Operations Research
community, its impact has been limited when compared to other mathematical
programming techniques such as linear programming. Ironically, in part, this has been due
to its flexibility. Because DP can be adapted to a myriad of problems and those models can
be implemented in a variety of ways, many modelers, particulary inexperienced ones, are
overwhelmed by the large number of choices. This is often referred to as the “art” of
dynamic programming. Our goal was to provide a framework and base computer code for
students to achieve an ease of modeling and solution for dynamic programming similar to
what has been achieved for linear programming. In so far as the teaching dynamic
programming, this will allow educators in operations research to focus their teaching on
issues relevant to dynamic programming as opposed to computer programming issues; and
allow students in operations research to focus their learning on the power of dynamic
programming, as opposed to the nuances of computer implementations.

Introduction

Since the formulation of Dynamic programming (DP) by Bellman,! it has been successfully
applied to a variety of problems, including capacity planning, equipment replacement,
production planning, production control, assembly line balancing and capital budgeting
(hundreds of articles referring to the use of dynamic programming are given in Sniedovich
and Cole”). Despite seemingly successful, dynamic programming has not been adapted
nearly as readily, and thus successfully, as its mathematical programming counterparts
such as linear and integer programming. Some of the reasons for this are the lack of
standardization in representing dynamic programs and the lack of available software to aid
implementation. Our work in developing a standardized framework is an attempt to
address these shortcomings.

Dynamic programming can be defined as follows: At each stage in a process, a decision is
made given the state of the system. Based on the state, decision and possibly the stage, a
reward is received or a cost is incurred and the system transforms to another state where
the process is repeated at the next stage. Note that this transformation can be either
deterministic, where the resulting state is known with certainty, or stochastic, where a
number of resulting states can occur with known probability. The idea of transforming or
moving between states in time captures the concept of a sequential decision process as one
evaluates decisions at each state in time and determines the optimal decision. The goal is
to find the optimal policy, which is the best decision for each state of the system, or at
least the optimal decision for the initial state of the system. It is the definition of a system
according to states that makes dynamic programming so appealing, as it can model nearly
any type of system.

Unfortunately, this flexibility generally requires some sophistication on the part of the user
in model development. For example, a simple finite-horizon equipment replacement

2'6%79°'TT abed

Xy X1 Xk Xk+1
> —> - - fy —>

—— [= =

Figure 1: Basic Dynamic Programming Model

A
e

problem could be modeled using the asset age (Bellman?), the time period (Oakford et
al.?), or the cumulative service (Hartman*) as the state of the system. Despite producing
equivalent optimal policies, each model has different computational ramifications and data
requirements. Sniedovich® notes similar issues when modeling knapsack problems.
Sniedovich also notes that when examining a DP formulation, students often remark that it
is “intuitive and obvious” but when asked to construct a formulation to a slightly different
problem, they discover that the exercise is not trivial. This is why the use of dynamic
programming is often referred to as an “art” (Dreyfus and Law?®). An overarching goal of
our framework is to reduce the art required to develop and solve a dynamic program.

Another issue that complications the teaching of DP is the fact that the user must be
reasonably sophisticated with respect to implementation. This is immediately recognized
by any instructor when teaching dynamic programming. Many students become frustrated
when having to spend disproportionate amounts of time in writing and debugging programs
to implement the DP algorithms they develop for assigned exercises. Our concern was not
that the computer programming issues were not important, but that too much time was
being cannibalized from DP modeling issues (such as choosing between the available
equipment replacement models described above) in order to discuss computer science issues.

Specifically, the objectives of our developing the framework was to assist in the instruction
of dynamic programming by:

1. Standardizing the Representation of Dynamic Programs: The versatility of dynamic
programming is highlighted by the various ways in which one can “write a DP
down.” A systematic approach is devised for a user to define a DP in order to
proceed towards a solution.

2. Developing Dynamic Programming Solver Software: Given a standard form of user
input, the framework provides a solver for finite horizon problems which minimize
discounted, expected costs.

Dynamic Programming Formalities

The generic dynamic programming model is shown in Figure 1. where the state x;, is an
element of a space Sy, the control uy is an element of a space Cf, and the random
disturbance wy, is an element of a space Dy. The beauty of dynamic programming is that
there are virtually no restrictions on the structure of the spaces S, Ck, and Dy.

€679 1T abed

One of the major divisions of DP models is whether the number of stages in finite or
infinite. The most broadly applicable model is where a discrete dynamic system is
optimally controlled over a finite horizon. The underlying dynamic system is described by
the state equation

Th+1 :fk(xk,uk,wk),]{IZO,L...,N—I (1)

The random disturbance wy, is characterized by a probability distribution that may depend
explicitly on x and wuy. The control uy = ug(zg) takes on values in a nonempty subset
U(zg) C Ck. A set of functions (control laws) m = {po, ... uny_1} defines a policy. The cost
accumulates at each stage based upon the state, the control applied, and the value of the
random disturbance. For known functions g, the expected cost of 7 starting at xg is

Jr(x0) = E {QN(»’CN) + z_: 9 (k, (k) wk)} ~ (2)

k=0

The optimal cost function J* and optimal policy 7* satisfy

J*(x0) = Jux(mg) = géllr_[l I (20). (3)

In addition to finite horizon models, under assumptions that the system equation, the cost
per stage equation, and the statistics of the random disturbance are stationary, DP has
applicability for infinite horizon cases, i.e., cases where the number of stages is very large
and for analysis purposes can be assumed infinite. In the these models, the optimal cost
function most often takes the form of a discounted accumulated cost

lim wEk {Z_ Oékg(fk,/ik(l’k)awk)} : (4)

N—o0
k=0,1,... k=0

The techniques of dynamic programming are based upon the optimality principle as stated
by Bellman:! “An optimal policy has the property that whatever the initial state and
initial decision, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision”. Direct application of the optimality principle to
the finite problem of equation (3) yields the DP algorithm:

Jr(we) = min - E{ gp(wp, g, w) + Jea (fr(gr, wi, we, wi))} (5)
ur €U (zg) wg
where Jy () is the optimal cost function (often called ”cost-to-go”) over stages
k,k+1,..., N when the system is in state xj at time k. Ideally, one would like to use (5)
to obtain a closed-form solution for J;. However, in most practical cases, an analytical
solution is not feasible and numerical execution of the DP algorithm must be performed.
Thus, the motivation for general software is clear.

The General Framework

We developed an object-oriented programming framework so that students studying
dynamic programming are able to concentrate more on the study and development of DP

v'6%79 1T abed

models and algorithms and spend less time coding and debugging the computer programs
that implement them. This framework consists of a package of C++ template classes
which together capture much of the implementation of the DP recursion (5). In order to
develop a ready to run DP solver, the user: (1) determines the parameterized types
involved in defining the state, control, and disturbance types; (2) implements necessary
functions; and (3) instantiates the template classes. This results in a solver that is ready to
compile and execute. A brief description of the classes in the DP package follows:

Objects of class State represent the state of the system (zy). This class defines the
mathematical and logical methods for state variables as required by the solver. In many
problems this class can be satisfied by a simple type. In others, it may be necessary to
represent a state as a more complex data structure, particulary where some of the
assumptions of equation (1) are violated. One way to handle this is through state
augmentation where the state space is enlarged. The State object is used in constructing
virtually all template classes and functions in the package.

Objects of class Control represent the control (uy) applied to a state k. The Control class
encapsulates the mathematical and logical operations associated with Control objects. In
many problems Control objects are a simple type. In more creative models, they can be
more complex objects. The Control class is used in constructing many template classes
and functions in the package.

Objects of class Disturbance supply the stage k disturbance (wy,) in stochastic problems.
The constructor for this class takes State and Control objects as input values. When
instantiated the Disturbance object provides a container type interface for access to the
disturbance values and associated probabilities that are valid for the input State and
Control.

StateEquation is a functor (function object class) that defines the state transition logic
Tpy1 = fr(zr, ug, wy). Its constructor requires a state equation defined by the user as an
input. Once instantiated, the StateEquation object is used to determine all state
transitions.

The Cost class encapsulates the operations associated with cost-to-go values. Objects of
this class are returned by the stage cost functions. In most cases it is a simple data type. It
is used to specialize the template mathematical and logical operations pertaining to cost.

ControlSet set objects provide the set (Uy(xy)) of Control objects that are valid for a
particular stage and State. The constructor accepts a State object as an input argument.
When instantiated it provides a container type interface for access to the Control objects
that are valid for the current state.

StageCost is a functor that is used to determine the stage cost (g(xg, ug, wy)) for supplied
State, Control, and Disturbance objects. Its constructor takes a stage cost function and
a final stage function defined by the user as an input. Once instantiated, this object is used
to determine all values of stage cost.

G679 TT abed

ConditionalCTG is a functor used to calculate values of the conditional cost-to-go

Ji(xg, uy) for input State and Control. In stochastic models, it is responsible for
performing expectation operations. In this case, it instantiates a Disturbance object and
uses the supplied interface to calculate the required expectation. It has an option to store
values for later retrieval if desired. The primary use for the storage option is to print
reports for educational purposes or debugging.

CostToGo is responsible for storing the optimum cost-to-go values (Ji(xy)) at each stage
for feasible values of State. The associated optimum value of Control is also stored.
When the accessor method is called for a particular stage and State value, it returns the
optimum values if available or an indication that they need to be computed otherwise.

A Solver object directs the overall solution of the DP problem by instantiating and
sending messages to the objects listed above. As implemented in the preliminary work, the
solver directly applies the DP algorithm (5). The following steps provide a loose
description of how the solver manages the objects in order to solve the DP:

1. A request is made to the CostToGo object for the values of the objects J, and wuy
corresponding to the value of the object zy. (To “solve” the problem, a request would
be made for the value of Jy(zo).)

2. If CostToGo has the requested value, i.e., it was previously computed and stored, it is
returned. Otherwise, it is calculated using the following steps.

3. A value of ControlSet is instantiated that corresponds to the value of the z; object.
An appropriate iterator is returned and used to iterate over the control set and to
request values of Jy(zy, ug) from a ConditionalCTG object.

4. For a stochastic problem, the ConditionalCostToGo object instantiates a Disturbance
object and computes the expectation:

Y p(w) (gn(wns ukwi) + T (f (r, g, w)))

wEW(mk,uk)

It is important to note that this will result in a reentrant request to the Solver object
for the value of J* corresponding to xyy1 = f(xk, ug, wg). While there is overhead
associated with the recursive calls, this approach has the advantage of requiring
calculations on results for state variable values that will be reached from earlier stages.
This frees the user from having to determine reachable states in any stages a priori.

5. CostToGo uses the return values from ConditionalCostToGo to calculate

Je(zg) = UEI[I}]}(I}%) J(zp, u).

The resultant value is stored so that subsequent requests for Ji(uy) are served
immediately.

Experience

9'6%79'TT abed

The initial framework was provided for student use in a course which involved fundamental
finite horizon DP problems. The limited results were promising. The instructor was able to
assign approximately twice as many homework problems as had previous be assigned in the
course and the percentage of problems meaningfully completed by students increased by
nearly a third.

The preliminary framework took a very straightforward approach to the implementation of
the generic DP framework, particulary in terms of data storage and optimization.
Standard library associative containers were used for storage and minimization was
performed by iterating over a set and selecting the minimum value. The resulting robust
framework satisfied the immediate goal of requiring minimal configuration and
programming knowledge by the user. While adequate for introductory problems, in order
for the generic framework to become a serious DP modeling framework for more advanced
courses/problems having wide applicability, it must be expanded to provide more flexibility
of data structures, memory allocation and solution algorithms.

In developing the preliminary framework, we relied on the template preprocessing
capabilities of the C++ compiler/preprocessor. However, the framework did stress the
capabilities of the template preprocessor. Some constructs had to be rewritten because
they would return errors on some compilers and some constructs that we would have liked
to have used were not supported at all. This situation is likely to be exacerbated as the
implemented functionality becomes more complex. The effect of this is that while much of
the generic nature of the framework can be supplied by the built-in template processing
capabilities corresponding to the C++ specification (ISO/IEC 14882:2003(E)), manual text
editing is likely to be required for the more complicated constructs. To greatly reduce, if
not eliminate, the requirements of editing by the user, a DP meta or modeling language
and associated preprocessor would likely need be created so that the non programming
expert will be able to access the more advanced features by writing a meta language
program. The output of the meta language program would be a C++ program which could
be compiled with any C++ compiler supporting the current standard.

The Solver object in the preliminary framework executed a straightforward
implementation of the DP algorithm of equation (5). This very general and robust solver is
an adequate default solver, however, for more advanced work, several classes that users
could selectively include in their model to modify or to replace the solver in order to adapt
to the characteristics of the specific problem at hand should be provided. These additional
features cold be grouped into areas that support: classic solver modifications;
approximation techniques; and solving with the availability of a parallel machine or using a
computational grid.

Conclusions

The use of a general framework can improve the teaching dynamic programming by
allowing beginning students to experience the flexibility of dynamic programming in
solving a myriad of problems from equipment replacement, resource allocation, and
production planning to organ donor assignment and hospital bed capacity planning.
Traditionally, the power of this flexibility could only be captured by users trained in both

/'6%79°TT abed

dynamic programming (modeling issues) and computer science (implementation issues).
This helps explain why dynamic programming is not utilized as prominently as it should
be. The framework addresses the interface of modeling and implementation issues in order
to make dynamic programming accessible.

Bibliography

—

. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

2. R.E. Bellman. Equipment replacement policy. Journal of the Society for the Industrial
Applications of Mathematics, 3:133-136, 1955.

3. S.E. Dreyfus and A.M. Law. Art and Theory of Dynamic Programming. Academic Press, New
York, 1977.

4. J.C. Hartman and A. Murphy. Finite horizon equipment replacement analysis. IIE
Transactions, to appear.

5. R.V. Oakford, J.R. Lohmann, and A. Salazar. A dynamic replacement economy decision
model. ITE Transactions, 16:65-72, 1984.

6. M. Sniedovich. Dynamic programming revisited: Challenges and opportunities. Technical
paper, Department of Mathematics and Statistics, University of Melbourne, Melbourne,
Australia, 2005.

7. M. Sniedovich and G. Cole. Dynamic programming journal articles, 2005.

8'6%79'TT abed

