Session 0458

Free Software in Engineering Education

Andrew Sterian
Grand Valley State University

Abstract

Software that supports engineering design and development is an important part of engineering
education as a medium for teaching fundamental concepts. In several fields, an increasing amount
of engineering practice is becoming software based, for example digital system design using
VHDL or mechanical design using finite-element modelling. The cost of incorporating this soft-
ware into engineering instruction may be prohibitive. Software companies are turning to subscrip-
tion models to ensure yearly revenue, and operating system dependencies can create a cycle of
forced upgrades that further increase cost. Also, students are frequently burdened by the software
since licensing and cost restrictions may force them to use software in prescribed locations on
campus rather than obtaining personal copies of the software and using it at home. The increasing
popularity and maturity of free software can often be a strong alternative to this situation. In this
paper we consider the benefits and drawbacks of free software for engineering education. Issues
such as support, reliability, control and customization, portability, and software quality are dis-
cussed. We also provide some specific examples of free software for use in engineering education.

1. Introduction

As more and more software is used for engineering instruction, we are becomingly increasingly
apprehensive about this software’s costs and constraints on the students. For example, consider
the popular scientific computation software, MATLAB. This is very useful software that supports
a wide variety of courses across many disciplines of engineering, and many institutions have pur-
chased this program either for use in a lab or as a site license. Anyone who has done so is aware of
the associated high cost. In addition, if the software is licensed for a specific number of seats, stu-
dents must work at a specific location on campus. Even if the software is site licensed to the entire
institution, it is very cumbersome (if not impossible for some students) to use this software off
campus. Students may purchase a limited version of the program for personal use (at their own
expense) but the limits of the program may conflict with the needs of the course.

If MATLAB were the only program that incurred costs and constraints, it would perhaps not be a
serious problem. As more and more software with similar costs and constraints becomes a part of
an engineer’s education, the problems compound. For non-traditional students especially, the
flexibility they need in their time and location schedules is frustrated by the constraints of
restricted software.

We propose that engineering departments consider replacing some of their commercial educa-
tional software with free alternatives. While this will clearly reduce costs, perhaps even more
important is that it reduces constraints. Students are free to obtain and use the full version of the
software at any time and in any location. There are other benefits of free software, discussed

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

T°20G'9 abed



below, but we propose that the above two issues, no cost and freedom to work anywhere, are the
most significant.

The unfortunate reality, of course, is that the majority of engineering software is not free. Even for
an available free software package, the differences between it and its commercial counterpart in
functionality or ease of use can often be large enough to dispraise it. For some programs, the com-
mercial offerings are the only viable alternatives.

2. Free software licenses

The term “free software” actually refers to a variety of different licensing schemes. They share in
common the fact that the software costs nothing. The licensing schemes differ in whether or not
source code is provided, and along more subtle dimensions regarding how the source code may be
treated.

2.1 Free to use software

Software that is simply “free to use” does not have source code available. This type of software is
usually a trial or limited version of a full-featured program, sometimes only available in this form
for academic use.

2.2 Open Source software

Software that is formally classified as “Open Source” must meet various criteria that allow it to

carry this distinction!. First and foremost, the source code to the software must be available.
Additional components of the license prohibit discrimination against persons, groups, or specific
domains of application, and provide the right to create derivative works or to modify the software.

2.3 GPL software

The oldest license to distinguish free software is the GNU Public License, or GPL?. Software that
is distributed under the GPL not only assures that its source code is available, but it also intro-
duces restrictions that prevent this assurance from being abrogated. The GPL is an actual license,
whereas the Open Source definition is a standard that describes the minimum requirements of any
software license for its associated software to be considered Open Source.

2.4 Other free licenses

Recently a proliferation of GPL-type licenses have been introduced that introduce variations in
the details of how the software may be used, distributed, or modified. For example, the MPL
(Mozilla Public License) which arose from the recent source code release of the Netscape
browser, the QPL (Qt Public License), the IBM Public License, and the Sun Internet Standards
Source License. The Open Source web page provides a listing of a wide variety of licenses that

meet the Open Source definition®.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

2'10G'9 abed



2.5 Public domain software

Software that is available without license may be placed in the public domain by its author
(thereby giving up copyright). There are no restrictions or conditions on using this type of soft-
ware. Authors of significant software programs generally do not place their software in the public
domain as it allows a commercial company to sell a non-free version of this software for profit
with no compensation or recognition to the author.

3. Comparison of free and non-free software

As we discussed above, the two most obvious benefits of free software are no costs and no con-
straints. There are a variety of other issues that must be considered, however. We present these
issues below.

3.1 Control over functionality

With source code available, software lends itself to customization, extensions to functionality, and
the potential to find and fix bugs. Commercial software without source code affords none of these
benefits. This, of course, assumes that someone familiar with the source code and the program-
ming language is available for effecting the necessary changes.

3.2 Ease of use and documentation

Commercial software authors often have significant resources to develop and refine sophisticated
user interfaces. Free software, as a rule, focuses on functionality above user interface. Using free
software, then, may require a greater effort on behalf of faculty for making the software accessible
and easy to use.

The same principles apply to installation and documentation. Single-click installation programs,
common for commercial software, are the exception for free software, and the latter often have
dependencies that must first be located and installed (e.g., external libraries, drivers, etc.) Simi-
larly, the documentation that accompanies free software is frequently terse and written as a refer-
ence rather than a tutorial. Once again, the degree of faculty involvement is higher in order to
overcome these deficiencies.

There are exceptions to the above, of course. On average, however, commercial software is easier
to install, has a more polished user interface, and has ample tutorial and example material avail-
able.

3.3 Support

The support available for free software is surprisingly good, but it does not take the form of a toll-
free number. Free software is generally crafted by authors that take a personal pride in their work,
and they are usually quite interested in offering software that is of very high quality. Often, send-
ing e-mail to the authors of free software detailing a newfound bug or other program problem
elicits a quick response, and may even come with a fix attached. Free software programs often

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

€709 abed



have USENET newsgroups, mailing lists, or web-based discussion forums established which pro-
vide support through other users or the program authors themselves. One-to-one support from the
program authors becomes less likely as a program’s user base grows large, and the number of
“noise” questions increases. In this case, the many-to-many facilities (mailing lists, newsgroups,
web forums) become the main support mechanisms.

Increasingly the trend for commercial software is to sell support at additional cost, often with sev-
eral levels of support metering the number of incidents or time allotted for a given price. News-
groups and mailing lists may exist for the software, as they do for free software. Actual bug fixes
may be a long time in coming, however, as it is an unfortunate truth that customers do not want to
pay for bug fixes, only new features. The infamous “next version” of the software is promised to
address all users’ complaints, but at a price, and with many new and possibly useless (or bug-rid-
den) features added.

Free software programs that are “labors of love” are more likely to be abandoned than commer-
cial programs. This can also happen to commercial programs. More common, however, is that a
particular version of a commercial program is abandoned in favor of a new, major release and the
support for the older version is terminated. Users who have no need for the new version are still
forced to purchase it if they want continuing support or additional copies of the software. This
“forced upgrade” scenario is much less likely for free software with source code provided. Even if
the original author abandons the project, the source code may fall into the hands of others who are
willing to take up the project. A new version of free software that is somehow undesirable does
not force an upgrade since the source code is available (for support) and as many copies can be
obtained as necessary, since it is free.

3.4 Institutional inertia

It may be difficult to replace commercial software with free software when it is used in several
courses and several faculty members are affected. This requires either an extremely high degree
of compatibility between the two alternatives (very unlikely, especially as new versions are
released) or the agreement among all faculty to proceed down the free software path.

3.5 Compatibility with existing software

When free software must exchange data with commercial programs, the issue of data compatibil-
ity arises. For example, the free StarOffice suite of office programs is intended to be compatible
with Microsoft Word, but the level of compatibility is not 100%. If some are using StarOffice
while others are using Word, there will certainly come a time when these incompatibilities will
cause difficulty. Unless an entire, isolated infrastructure of free software is in place, a single free
software program in the midst of commercial programs is a concern (when data must be
exchanged).

3.6 Portability to alternative platforms

Free software is often available for several platforms (hardware and operating system combina-
tions). Commercial vendors must justify development costs for platforms that are not profitable.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

¥°105G'9 abed



If a platform is seen as not profitable, no version for that platform is released. When source code
is available, however, a dedicated group of users working on a particular platform often arises and
provides a port of the software to that platform. For this reason, and also perhaps because the user
interface (often neglected in free software) is a large part of the problem in portability, free soft-
ware tends to be available on more platforms than commercial software. Once again, the con-
straints on students are lessened if they are free to use their hardware and operating system
platform of choice.

3.7 Training for industry

Sometimes, a commercial package is chosen since it is the program most expected by industry for
which the students are being trained. This is a poor reason for choosing a program. Engineering
students must receive an education, a foundation that will last throughout their career and this
cannot be dependent upon the offering of a particular vendor. A free software alternative that con-
veys the same concepts or framework is a perfectly justifiable program. An employer who
demands that students be trained on program X even through program Y teaches the same con-
cepts indicates a lack of investment in employees. Surely the employer would let the student
invest some time in transferring the concepts learned from program Y to the specific keystrokes
and menu options required in program X.

4. Examples

We briefly present several free software programs that are very viable alternatives to commercial
programs. A detailed comparison between the free vs. non-free alternatives is at best a moving
target; please contact the author for empirical observations.

4.1 Scilab

Returning to the example of MATLAB software from the Introduction section, we have chosen

the free program Scilab® to support our senior-level EE/CE course on Digital Signal Processing.
This program is available under a GPL-style license. Source code is available, it is portable to
both Windows and UNIX-type platforms, ample documentation is available (including a text-
book), and a USENET support news group is active (and monitored by the program authors). The
Scilab program is not a direct drop-in replacement for MATLAB, but both programs are based on
the same matrix-oriented computational environment.

Of the two, MATLAB is clearly more mature, diverse, and well-represented in industry. For
industrial applications, the choice of MATLAB vs. Scilab would require a fair amount of compar-
ison. For instructional use, however, Scilab is completely adequate. There are several aspects of
Scilab, in fact, that are superior to MATLAB. For example, Scilab has a built-in polynomial data
type that nicely supports some symbolic manipulation for signal processing (without requiring a
MATLAB-like cumbersome symbolic toolbox extension).

Also, Scilab is not the only free MATLAB-like program available. Other programs such as
Octave and R-Lab are also free and are also most likely quite adequate for instruction.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

G'/05'9 abed



4.2 Eagle

For our EE/CE courses on digital circuit design, we have found the commercial Eagle program5 to
be a good choice. This program is free to use for academic purposes but does not come with
source code. The free version of this program also places restrictions on maximum circuit board
size and number of layers, but we have not found these restrictions to be severe.

Unfortunately, there is no viable program for digital circuit design (encompassing schematic cap-

ture, board layout, and autorouting) that is truly free. The gEDA program9 that is currently under
development shows promise, however, and may be a viable competitor over time.

4.3 StarOffice

As mentioned above, the StarOffice suite of office applications6 is available for free and is a very
robust package. Included applications are a word processor, spreadsheet, presentation graphics,
and database program, among others. StarOffice is licensed under the GPL, hence the source code
is available. As students make heavy use of office programs for report writing, presentations, and
spreadsheet computations, a free office suite can realize great savings in costs.

4.4 SampLin

SampLin10 is a free package for data acquisition, process control, and visualization. This Linux-
only program may be an alternative to the popular National Instruments LabView data acquisi-
tion/control environment (as an example). SampLin includes support for popular device interfaces
such as serial and GPIB, a scripting language, and network-based data acquisition. SampLin is a
nascent program and cannot compete with the mature LabView software, but it may be more than
adequate for basic data acquisition and control.

4.5 LPC

Linux Programmable Controller (LPC)8 is a programmable logic controller (PLC) emulator. Man-
ufacturing Engineering courses that rely on PLC’s for laboratory experience can be expensive due
to equipment and software cost. The free LPC software can minimize the dependency on equip-
ment by providing an alternative experimentation platform, plus LPC can even act as a limited
PLC itself with hardware support for several devices.

4.6 GNU/Linux

The GNU/Linux operating system is now a well-known free alternative to commercial operating
systems. It is not an engineering application, but it should be considered as a viable candidate for
hosting engineering applications rather than the more common Windows operating system. For
example, all of the applications listed above in this section will run on the GNU/Linux operating
system. Other free Unix-based operating systems are also available (e.g., OpenBSD, FreeBSD).

Using GNU/Linux together with Windows-based applications is also a possibility with emulators

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

9'/05'9 abed



such as WINE!? (a free Windows emulator for Unix systems) or Win4Lin!3 (a commercial emu-

lator) and virtual computer software such as VMWare!'#, which allows running multiple operating
systems simultaneously. These programs may be useful in initiating a transition from a Windows
environment to the free GNU/Linux environment.

4.7 Other applications

A review of existing free programs (see, for example, the category of Scientific Applications on

the web directory Freshmeat.net”) reveals free programs for finite element analysis (SLEFFEA,
freefem), discrete event simulation (OMNeT++), languages for statistical computing (R, PSPP),
SPICE simulators (Spice Opus, ngspice), and many others.

Bibliography

. URL: <http://www.opensource.org>, The Open Source web site

. URL: <http://www.fsf.org/copyleft/gpl.html>, The GNU General Public License

URL; <http://www-rocq.inria.fr/scilab>, Scilab, a computational algebra program

URL; <http://www.opensource.org/licenses™>, A listing of software licenses that meet the Open Source standard
URL; <http://www.cadsoft.de>, CadSoft, authors of the Eagle electronics CAD program

URL; <http://www.sun.com/products-n-solutions/software/prodapps>, StarOffice, a free office application suite
. URL: <http://freshmeat.net/browse/97>, The Scientific/Engineering section of Freshmeat.net, a current software
directory

8. URL:<http://claymore.engineer.gvsu.edu/lpcd>, Linux Programmable Controller, a PLC emulator

9. URL:<http://www.geda.seul.org>, gEDA, a suite of free software tools for electronics CAD

10. URL:<http://www.iace.tuwien.ac.at/sensor/samplin>, SampLin, free data acquisition/process control software
11. URL:<http://www.linux.com>, GNU/Linux, a free operating system and kernel

12. URL:<http://www.winehq.com>, WINE, a free Unix-based emulator for Windows applications

13. URL:<http://www.win4lin.com>, Win4Lin, a commercial Windows emulator for Linux

14. URL:<http://www.vmware.com>, VMware, a commercial virtual computer environment for running multiple
operating systems simultaneously

NoukE LN~

ANDREW STERIAN

Andrew Sterian is currently an Assistant Professor in the Padnos School of Engineering at Grand Valley State Univer-
sity. He received his B.A.Sc. in Electrical Engineering from the University of Waterloo, Canada and the M.S.E. and
Ph.D. in Electrical Engineering from the University of Michigan, Ann Arbor. He has taught courses in signal process-
ing, digital systems, and microcontrollers.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

/106’9 abed



