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Generating Automated Problem Sets for Rapid Content Delivery 

and Adaptive Learning Modules 

Abstract 

Problem solving plays a critical role in the education of young engineers. Word problem sets are 

a vehicle that educators use to teach and assess that skill. While textbooks, problem repositories, 

and online learning systems provide a host of interesting problems there will always be a need to 

generate new problems to increase variety, to prevent students from cheating, and to facilitate 

robust student learning environments. While current online learning systems provide educators 

with problems that allow for individual numerical values to be randomized, they do not allow for 

randomized problem structures that challenge comprehension. 

This paper develops a method to create new problem sets through the development of software 

tools that apply a series of automated generation algorithms. Several common undergraduate 

engineering word problems are distilled into archetypes (generalized problem descriptions that 

will facilitate automated authoring). One archetypical problem in each of the following 

disciplines is chosen: in particle dynamics (two-dimensional projectile motion), in 

thermodynamics (ideal-gases in piston-cylinder devices), and in circuits (equivalent resistance). 

For each archetype, algorithms codify problem parameters and generate a compatible list of 

inputs and outputs, problem diagrams, word problem text, and solution sets. Problem text is 

created using natural language programming (with varying levels of human intervention) and 

problem solution sets are constructed using a computer algebra system.  

The problem sets are then presented to undergraduate mechanical engineering students as 

traditional course content such as homework, quizzes, and tests, and as part of adaptive learning 

modules or games in learning management systems. The relative difficulty of each automatically 

created problem is estimated with a heuristic and compared against student performance. 

Background and Introduction 

The following study seeks to organize, codify, and implement a method to adapt several 

undergraduate problem types into algorithms capable of automatically generating problem sets. 

Three fundamental undergraduate courses heavy in need for varied problem sets have been 

chosen as venues for the study: dynamics, thermodynamics, and circuits. As anyone who has 

created courses in one of these core topics knows, writing problems to test students on class 

learning objectives is not a trivial task. Original problems, of which each faculty member has 

their own style, can be time-consuming to write. Problems not only have to be written, but care 

must be taken so that each problem properly addresses the topics desired, problems are often 

desired to be sufficiently unique or exciting, they must be error free and solutions to problems 

must also be calculated. 

There are several sources that faculty members can draw upon to find new problems. Textbooks 

are the first source that come to mind and each publisher painstakingly compiles hosts of 



problem sets in each and new editions with augmented problem sets are published yearly. Many 

publishers also supply online learning systems for their textbooks that offer computer-based 

modules that contain problems. Often, the problems contained within the online learning systems 

can even have their input values generated randomly [1]. Some educational groups have also 

compiled repositories of problem sets that can be used as sources for instructors. These sources 

are not without their flaws. Textbook problem sets will always be incomplete with either too few 

or too many problems of a type or difficulty. Repositories may lack quality or organization even 

when they provide variety [2]. Perhaps one the largest drawbacks of these two methods of 

obtaining problems is the fact that students find and publish solutions to these sets online [2]. For 

the savvy internet searcher, the challenge of these problems then becomes trivial. Online learning 

systems also have a disadvantage when it comes to one of their greatest strengths in their ability 

to generate problems with random inputs. In this case savvy students will find a friend (or often 

examples provided by online system itself) whose solutions are available with different numbers. 

Creating a solution for that random input set now only requires an additional step of blindly 

recalculating a recipe of equations from a solution. 

While many useful problem sets are available to educators, the need for instructors to write their 

own problems or adapt new problems from the existing resources will always be present. If an 

instructor seeks to do anything other than directly pull from the sources, the old problems of 

writing, editing, correcting, and solving problems repeats again. The only true way to eliminate 

the possibility that students can find the solution to a problem online is if each new problem they 

encounter is truly unique and cannot be found online through a simple cut-and-paste search. 

Where this work seeks to push the boundary of what is available is in developing a means to take 

the plethora of problem sets that exist, distill them down into their basic components, and 

organize that data into a useful format so that it may be used in a series of algorithms that can 

automatically generate new problem configurations along with problem diagrams, text, and 

solutions. To do so would be to turn a large repository of problems into a set of all possible 

permutations of the problem. 

In addition, for such a system to be able to rapidly generate new course content, adaptive 

learning and game based learning are two of the major learning strategies that could provide the 

most motivation for this work. Adaptive learning usually refers to computer based systems that, 

in an automated fashion, facilitate learning by customizing the experience for each student. This 

can be accomplished through adaptive testing, tracking student behaviors, errors, and successes, 

and choosing new content for students based on their performance [7]. Adaptive learning 

strategies can also be used for the gamification of course content.  

The bottleneck, however, in many adaptive learning systems is the variety of new content paths 

available to the students based on their decisions. The classic model can be exemplified through 

adaptive testing which is implemented in many computer-based standardized testing. At its most 

basic form, a student is assessed on their failure or success at answering a question and based on 

their performance either problem A or problem B may be chosen for the next assessment. But 

still each path a student takes and each problem along that path must still come from a static or 

minimally dynamic (in the case of problems with random inputs) repository of problems [9]. 



 

To achieve the algorithms required for automated problem generation, two major artificial-

intelligence systems are used: a computer algebra system (CAS) and a natural language 

generation system (NLG). Computer algebra systems allow programmers to solve problems 

using symbolic mathematics, as a human would, rather than more traditional solving techniques 

at which digital computers excel, such as numerical methods or iterative methods [10]. This is 

necessary for several reasons. First, problems generated randomly, not just with random input 

values, but with an input parameter list that is random will all have different solution procedures. 

An algorithm that can generate such a random problem configuration must also be able to solve 

that configuration. It is impractical for a human to solve all possible permutations of the problem 

and therefore the automated system must accomplish that task as well. A computer algebra 

system would allow for automated algorithms to be built that (1) specify each applicable 

equation as part of the problem data set and (2) choose the proper order and variable by which to 

solve that set of equations. It is advantageous to create an algorithm that mimics the logic and 

method that a human would use to solve such problems. This not only allows for the computer to 

solve the problem itself but also allows for the creation of a solution report that could be written 

as a series of steps that a student could follow.  

Secondly, to automatically create problem sets, it is the problem text that poses the most difficult 

challenge. Problem parameter lists and values can all be generated with relatively simple 

algorithms, but creating problem text as if it were written by a human, instructor, or textbook 

author is a daunting task. Natural language generation refers to computer algorithms capable of 

converting digital information or data into prose or a text-based representation that appears as if 

it were written by a human [11]. NLG works best in situations where the underlying data can be 

organized succinctly and the required text can follow suit. As such, NLG finds its most common 

use in business or economics where simple text-based or chart-based reports can be generated 

from sales data or descriptive data [11,12]. For example, advertising descriptions for online 

home-buying adds can be generated from realtor data. The structural, tonal, and grammatical 

requirements for such advertisements are low and are thus lend themselves well for human-free 

generation. NLG is difficult but has been improving in sophistication over the last decade 

[reference]. Structure and tone vary wilds depending on the implementation of the NLG 

software. 

Human guidance is often required in many systems that purport to generate text from data 

automatically. Structure of the raw data and the organization of the human lexicon are the two 

most important factors that affect how much human intervention is necessary to create the 

desired proficiency of the text [12]. This was found to be true in the present study as well. While 

the algorithms used in this study have grown in complexity, the need for human intervention in 

producing final products is ever present and elimination of that weakness continues to be a goal. 

In the following study the researcher attempts to produce automatically generated problem sets 

for adaptive learning systems or game-based systems that can be used in courses in dynamics, 

thermodynamics and circuits. Six problem types, or archetypes, are chosen, two from each 

discipline to adapt for this method. For each archetype, the following procedure is followed: 



1. All problem parameters and value ranges are listed and organized 

2. Problem parameter sets and value ranges are randomized 

3. All unknown values are solved with a computer algebra system 

4. Problem solutions reports are generated 

5. Error checking is performed 

6. Problem difficulty is assessed 

7. Problem schematics and diagrams are generated 

8. Problem text is generated using natural language algorithms 

The final output consists of a problem description in text form, a problem diagram, and a text-

based solution procedure. 

Methodology and Implementation 

To generate automated problem sets that are solvable, robust, unique, and correct is a 

complicated task with numerous steps. The basic procedure that outlines the method for both the 

representation of each problem type and the automated generation algorithm is shown in Figure 

X. The first step in automatically generating problem sets is represented by the left-most third of 

Figure X where the archetypical problem is properly defined. 

 

Figure 1: Flow diagram of each step in the automated generation process. Left-most block: 

codification of all necessary data for a problem archetype. Middle-block flow sub-diagram for 

randomly generating problem features. Right-most block: output of problem statement with 

solution 

To define the problem archetype is to organize and codify all the necessary problem features into 

basic building blocks that lend themselves well to randomization and random customization. 

First, all possible problem parameters, every quantity that may be either given or be asked to find 
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in the problem needs to be given a variable and listed. Next, all possible practical ranges for each 

parameter needs to be specified. Next, it may be desired that distances not exceed some 

maximum limit, or angles not exceed 360°, or some physical constants not be negative. Next, all 

necessary fundamental equations that relate the specified parameters must be listed and 

organized into a format that can be manipulated by the chosen CAS. Next, the necessary 

graphical features must be specified. A library of geometric features must be stored in data 

structures that can be superimposed on default problem diagrams depending on the outcome of 

NLG. As a prerequisite for any NLG system is a foundational lexicon from which to pull simple 

textual elements such as nouns and verbs and more complicated textual elements such as 

technical engineering jargon. The organization of this data is important for the efficient 

implementation of the generation algorithms. Thankfully, the problem spaces used here are 

sufficiently small that even some of the brute-force or “stupid” algorithms created here run so 

fast that data organization was not so critical. All parameters, equations, and data ranges are 

stored in string arrays, equation object arrays, and vectors, respectively. 

Once the underlying data space has been organized and all problem archetypes have been 

properly defined, the next step is the sequential generation of each main element of the problem 

content. First, based on the list of all possible parameters an archetype, the minimum number of 

problem parameters are specified and a set of that number of parameters are chosen at random 

from the list. For each random parameter in the list, data values are then chosen. Parameters in 

the list are chosen based on a uniform probability distribution while the individual parameter 

values are chosen either from uniform probability distributions or gaussian distributions 

depending on how much variety is desired for a particular parameter. Each of these decisions are 

based on elementary algorithms that warrant no elaboration due to their simplicity. 

What is not simple, however, is how solutions are achieved through the implementation of a 

computer algebra system (CAS). All algorithms here are implemented in Python, which was 

chosen partially for the ease with which the SymPy CAS has been developed for that language. 

The algorithm for solving the system of each set of equations involved iterative symbolic 

equation manipulation through SymPy until all required unknowns are found. While SymPy 

handles the actual equation manipulation, the decision still needed to be made as to what 

equation would be used to solve for what variable or to identify when two or more equations had 

to be solved simultaneously. The algorithm logic follows the following priority queue: 

1. Make a list of all unknown variables, iterate the following steps for each variable 

2. Use SymPy to solve each equation in the list the unknown variable 

3. Solve for as many single variables as possible 

4. If not done, iterate through all combinations of two remaining variables from the list 

5. Find two equations that contain only those two variables, solve using SymPy 

6. If not done, iterate through all combinations of three remaining variables from the list 

7. Find two equations that contain only those two variables, solve using SymPy 

This procedure either found the solution of the random problem configuration or completed with 

a set of parameters yet uncalculated. Error checking was next performed to assess the outcome of 

the core given and found data and values. The most common reason why a problem core failed 



the series of error tests that were written was because of a partial or full ill-defined system. But 

this was not always considered a failure. Failure conditions were usually situations where the 

problem parameter and value pairs chosen randomly produced a scenario that either (A) 

produced a series of equations that could not be solved or (B) produced values for the parameters 

to be found that were outside the bounds specified in the problem codification step. Conditions 

that did not pass the error checking step, but were still considered successes and sent on to 

continue generation involved primarily scenarios where one or two independent variables could 

not be calculated. For example, in the projectile motion archetype to be described in the next 

section, only two locations in the trajectory need be defined out of the three, A, B, and C. 

Occasionally a variable for location C, say, would be requested when no other information about 

C was generated in the given parameter list. That single C variable could not be found, but that 

did not inhibit the generation of the remainder of the problem, human intervention could catch 

these cases and success was allowed. 

With the problem checked for correctness all core parameters and values could then immediately 

be used to create a problem. If the algorithm stopped at this step, educators could still find it 

useful as much of the hard work in making sure a problems numbers and configuration are 

authored properly is a large portion of the work.  

The next step in completing the automated problem generation was a determination of difficulty. 

A simple heuristic was implemented to estimate the probable difficulty each problem 

configuration would be for the average undergraduate student that simply counted the number of 

steps generated to produce a solution. If a solution step involved solving systems of two or three 

sets of equations, rather than one, those steps were weighted higher by a factor of two and three, 

respectively. Difficulty ratings were then normalized between one and five, five being the most 

difficult. The simplest way to achieve a gauge of problem difficulty would be to use an ensemble 

of automatically generated problems. Consider the exercise of allowing the algorithm to generate 

a large (say 1000) number of problems of one archetype and then compare them or sort them 

using criteria such as the length of solution, whether certain solution steps are present (such as 

solving a quadratic equation), or whether certain equations are implied based on problem text. 

Sorting the ensemble in this way can then at least order the numerous problem sets based on 

difficulty and clear lines or marks of delineation between different difficulty ratings can by 

chosen the researcher. 

The last tasks were to generate the actual problem statement and diagrams. To tackle the 

diagrams, a 2D Python graphics library, PyGame was used. PyGame is simple to use and fairly 

extensive which allowed for the creation of simple 2D graphical artifacts to build problem 

diagrams. As a start, simplicity was favored over elaboration. The most visually appealing 

graphics output requires large amounts of time and art content that simple geometric primitives 

which were limited to boxes, lines, circles, text, arrows, and others were used. Rudimentary 

diagrams based on simple graphical primitives would suffice initially and lead the way to more 

sophisticated outputs as development continued. A sequence-based procedure was used to create 

each diagram using black primitives on plain, white backgrounds. Lines, rectangles, and 

parabolas of predefined coordinates were drawn in pixel space using PyGame’s drawing tools 



and saved as a single frame as a PNG file. That PNG file can then be added automatically to the 

final output image file. 

Problem diagrams are often, at a glance, the strongest visual indicator of the similarity or 

difference of two comparable problems. Varying the visual styles, such as line width, colors, 

primitive styles, and subtle features can make two problems with similar input values and similar 

solution procedures seem quite very different. 

The final step was the most complicated step and also the one that required the most 

development time for the smallest gains and that was the automated generation of problem text. 

An open source Java API was used for NLG named simplenlg. Simplenlg was sufficiently robust 

to be able to handle all desired functions, with one small disadvantage. Both the native lexicon of 

vocabulary and the most commonly used extended lexicon found difficulty producing some of 

the jargon used in typical thermodynamics problems. For example, the term “polytropic” was not 

found in either lexicon and was deemed to be a fairly important term in the development of the 

ideal gas, piston-cylinder archetype detailed in the next section. Two approaches were proposed 

to remedy this problem: (1) augment the API’s lexicon to handle usage of additional vocabulary 

or (2) find suitable, less technical replacements for common terms. The latter option was by far 

the simplest and was used here.  

Problem Archetypes 

Two-dimensional projectile motion is a classic problem used in most introductory physics 

classes and sees additional coverage in most undergraduate mechanical dynamics courses, 

usually within the first week. The problem is simple enough in its nature, but rather complex 

solution procedures can be required of students that many permutations of the problem are not 

only non-trivial, but prove to be an invaluable tool in teaching problem solving techniques, the 

solution of simultaneous equations, the proper way to set-up and organize engineering problems, 

and visualizing motion and vectors in space. 



 

Figure 2: Projectile motion archetype 

Projectile motion is confined here to two-dimensions for simplicity as not much more 

fundamental complexity is gained from including a third dimension to the particle’s motion. The 

motion of the particle is constrained to have constant velocity and solutions are usually found 

using three classic kinematics equations. The problem description below shows three points of 

interest in the trajectory, A, B, and C. Each point can have specified its position, S, or velocity, 

V. Since acceleration in projectile motion is constant, only two constant values, the x- and y-

components, are necessary to define the acceleration at all points along the trajectory. If 

additional variables for the time of flight between each point, the maximum height, H, and range, 

R of the trajectory are included the problem can be fully defined in terms of 25 total parameters 

and 18 total equations requiring a total of 7 problem values to be defined in the problem 

statement in the most difficult scenario. Automatically generated problems that do not ask for the 

maximum number of unknowns may obviously require a smaller set of equations to achieve 

solution. Simpler problems may also define redundant values or values in the form of contextual 

clues that then require fewer numerical values to be explicitly stated. Stating that a particular 

projectile is launched on the surface of the earth (or even omitting this fact, as it is often implied) 

then implies the acceleration of the particle in the y-direction is that of gravity and is therefore 

assumed. 
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Parameter Lists Description 

SAx, SBx, SCx, SAy, SBy, SCy, x- and y-coordinate positions of three 

points of interest: the initial location, 

A, the final location, B, and a third 

intermediate location, C, that may be 

included in the problem 

VA, VB, VC, θA, θB, θC, VAx, VBx, VCx, 

VAy, VBy, VCy, 

Velocity of each point A, B, and C 

along with the angle each velocity 

makes with the horizontal and the x- 

and y-components of those velocities 

ax, ay The x- and y-components of 

acceleration (these are included as 

variables for problems that might have 

an orientation angled with gravity or if 

the problem takes place on another 

planet) 

tAB, tAC, tBC The time of flight from A to B, A to 

C, and B to C, respectively. 

H, R The maximum height and range of the 

projectiles motion. 

Equations: 

 

𝑆0 = 𝑆𝑓 + 𝑉0𝑡 +
1

2
𝑎𝑡2 (for each interval in each coordinate, 4 eq's) 

𝑉𝑓
2 = 𝑉0

2 + 2𝑎(𝑆𝑓 − 𝑆0) (for each interval in each coordinate, 4 eq's) 

𝑉𝑓 = 𝑉0 + 𝑎𝑡 (for each interval in each coordinate, 4 eq's) 

𝑉𝑥 = 𝑉 cos 𝜃 (for each point) 

𝑉𝑦 = 𝑉 sin 𝜃  (for each point) 

 

Table 1: Parameters and equations that fully define the projectile motion archetype problem. 

There are 25 total parameters and 18 total equations. 

An ideal gas in a piston-cylinder device undergoing a two-step process is a problem encountered 

usually within the first third of an undergraduate course on thermodynamics. Each state can be 

specified by some combination of the thermodynamic properties of pressure, P, volume, V, and 

temperature, T. The device can be drawn and described as either driven by a work-based process 

or a heat-based process. Either way, the governing equations amount to a single ideal-gas 

equation of state, a single expression of the first law of thermodynamics, and definitions for 

density and internal energy. 



 

Figure 3: Ideal gas in a piston-cylinder device archetype 

This problem makes a great candidate for inclusion in the study as its governing equations are 

quite simple and the possible number of permutations available for possible problem 

configurations are vast. Thermodynamic properties of pressure, volume, and temperature as well 

as all of the other parameters listed make great candidates for either input parameters or values to 

be found. The possibility for unique problem configurations is vast as the gas identity as 

specified by the gas constant, R, and the specific heat capacity, cp, can also either be given or be 

a value to be found. The problem can be fully defined with 15 parameters and 10 equations. 

 

Parameter Lists Description 

P1, V1, T1, P2, V2, T2 Pressure, volume, and temperature at 

state 1 and state 2 

m, ρ1, ρ 2, v1, v 2, Constant mass, the density, and 

specific volume at state 1 and state 2 

W12, Q12, ΔU1-2, Δu1-2 Work done, heat transferred, and the 

change in internal energy and specific 

W1-2 

W1-2 

Q1-2 Q1-2 

State 1 

State 2 



internal energy in a process from state 

1 to state 2 

cv, cp, R Constant specific heat capacities and 

ideal gas constant of the substance 

Equation List: 

 

𝑃1𝑉1 = 𝑚𝑅𝑇1 

𝑃2𝑉2 = 𝑚𝑅𝑇2 

𝑉1 = 𝑚𝑣1 

𝑉2 = 𝑚𝑣2 

𝜌1 =
1

𝑣1
 

𝜌2 =
1

𝑣2
 

∆𝑈12 = 𝑚∆𝑢12 

∆𝑢12 = 𝑐𝑣∆𝑇12 

∆𝑇12 = 𝑇2 − 𝑇1 

𝑄12 − 𝑊12 = ∆𝑈12 

 

Table 2: Parameters and equations that fully define the ideal gas problem. There are 15 total 

parameters and 10 total equations. 

 

Equivalent resistance problems are another example of a simple problem occurring in all 

undergraduate circuits classes and often near the beginning of the course. The challenge with 

equivalent resistance problems is not in the generation of textual problem statements as some 

variation of “Find the equivalent resistance of the following circuit segment” is usually a 

sufficient instruction. Rather, the difficulty in automatically creating equivalent circuit problems 

is randomly generating the diagram and the solution procedure.  



 

Figure 4: Equivalent resistance archetype 

The solution procedure, implemented in such a way that a student can most easily follow, 

involves collapsing two or more resisters into either series or parallel equivalent resistors until 

there is only one left. There are multiple ways to do this and each substitution must be clear to 

the student. Beyond this difficulty, generating problem diagrams based on the characteristic set 

of cells in the diagram below is straightforward. The size of the circuit diagram, the total number 

of resisters, N, is the major factor in determining complexity and is itself a parameter in the 

problem. The problem is fully defined by N+2 parameters and N-1 equations. 

Parameter Lists Description 

R1, R2, R3, … Resistance value of each resistor 

present 

R1 

R
2
 

R
3
 

R
4 

R
5
 

+ 

- 



Req, N The equivalent resistance and the total 

number of resistors, respectively 

Equation List: (N-1 equations of the following types, depending on layout) 

 

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 (series) 

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
 (parallel) 

 

Table 1: Parameters and equations that fully define the equivalent resistance problem. There are 

N+2 total parameters and N-1 total equations. 

 

Results and Analysis 

The three archetypical problems detailed in the previous section were implemented in Python 

using the SymPy computer algebra system, the simplenlg Java natural language generation 

system, and the PyGame 2D graphics engine. Only data for the second problem archetype, the 

ideal gas, piston-cylinder problem, is shown for brevity. 



In figure 5 the input file is shown that includes most of the necessary data that defines the 

archetype. The parameter “P-2digpc” in the third line is a parameter that tells the system that the 

type of problem to be generated is of the ideal gas, piston cylinder archetype and to include 

several default values for parameter ranges. 

Figure 5: The input file used for the automatic generation of problems based on the ideal gas, 

piston-cylinder archetype. 

## Input File: 

## 2D ideal gas piston-cylinder archetype 

 

"P-2digpc" 

 

## Parameter List 

 

P1,V1,T1,P2,V2,T2,m,rho1,rho2,W,Q,U1,U2,v1,v2,

w,q,u1,u2,deltaU,deltau,deltaT,deltaP,deltaV,d

eltav,cv,cp,R 

 

## Equation List 

 

[P1*V1=m*R*T1] 

[P2*V2=m*R*T2] 

[V1=m*v1] 

[V2=m*v2] 

[W=m*w] 

[Q=m*q] 

[rho1=1/v1] 

[rho2=1/v2] 

[U1=m*u1] 

[U2=m*u2] 

[deltaU=U2-U1] 

[deltaU=m*deltau] 

[deltaT=T2-T1] 

[deltaP=P2-P1] 

[deltaV=V2-V1] 

[deltaV=m*deltav] 

[deltaU=cp*deltaT] 

[Q-W=deltaU] 

 

## Constraints 

 

"isometric process" 



Each parameter to be included in the possible generation of the problem statement is included 

and each equation relating the parameters is listed. The final item specifies keywords that 

simplify the problem generation process, which can also be randomized. The “isometric process” 

keyword specifies two additional equations to be added to the list, namely that the two volume 

values are the same and that the work done in the process is zero. 

Figure 6: The text-based output file after all automated generation is complete. 

Figure 6 shows one output file the from automated problem generation step. The first two lines 

specify the randomized parameter list that was chosen by the algorithm and the values for each 

parameter chosen based on default parameter ranges. A subset of the available parameter that 

could possibly be found was chosen randomly. The problem shown here as output is a typical 

problem that one might find in an undergraduate thermodynamics textbook. The algorithm was 

run numerous times to produce an output product that was a practical mimic to a typical textbook 

problem.  

The solution procedure, shown also in Figure 6, is detailed in a step-by-step linear fashion. Each 

variable in the list of parameters to find is find in order with the notable exception of Q and 

Given: P1,T1,m,P2,cv,R 

Given: 100, 467, 2.3, 150, 1.0, 0.2870 

 

Find: V1,V2,T2,rho1,W,Q,deltaU 

 

Difficulty: 4 

 

Solution: 

 

1. [P1*V1=m*R*T1] 

2. [V1=m*R*T1/P1] 

3. [V1=V2] 

4. [V2=V1] 

5. [P2*V2=m*R*T2] 

6. [T2=P2*V2/m/R] 

7. [V1=m*v1] 

8. [v1=V1/m] 

9. [rho1=1/v1] 

10. [W=0] 

11. [deltaT=T2-T1] 

12. [deltaU=cv*deltaT] 

13. [Q-W=deltaU] 

14. [Q=deltaU+W] 

 

Consider an ideal gas in the piston-cylinder 

device in the picture. If the gas is air and 

the process is isometric process and P1=100 

and T1=467 and m=2.3 and P2=150 find V1 V2 T2 

rho1 W Q deltau. The process is “isometric 

process”. 



deltaU as the algorithm is smart enough to know that the final value must be found before the 

penultimate. The last paragraph is that text that is output from the current implementation of 

simplenlg. There are several noticeable errors in the problem description, but with a small 

amount of editing, the text is almost immediately viable for inclusion in a course assignment. 

While Figure 6 shows the raw output from the software in text form, Figure 7 shows the final 

formatted version the software is capable of generating, still without human involvement. The 

problem description fits one of several predefined generic sentence structures augmented to 

include all the necessary information the algorithm dictates. The picture included in the problem 

statement is generated using simple drawing tools such as line, rectangle, and textbox primitives 

from PyGame. Note that the process in the example is isometric, or constant volume. The 

diagram reflects this fact in that the position of the piston has not risen or fallen. As the problem 

parameters change, that affects not only the data values shown in the figure but also the position 

of the piston accordingly. 

 

Figure 7: Formatted output of problem description 

As was mentioned previously, rarely does automatically generated text not require some amount 

of human intervention in the form of additional post-processing to correct grammar mistakes, to 

possibly correct formatting, or to add a human flair or poetry to otherwise mechanical prose. 

Conclusions and Recommendations for Future Work 

The method outlined in this study provides a framework for the creation of algorithms capable of 

automatically generating problem sets that can be used to rapidly produce new class content. 

Automatically generated class content lends itself well for use in adaptive learning systems, 

game-based learning systems, or even creating traditional course materials such as homework 

problems, quiz problems, and test problems. For an automated problem generation algorithm to 

be considered successful it must produce a problem that is solvable and unique that includes all 



necessary input parameters, parameter values, a text-based problem description, the necessary 

problem diagrams, and a problem solution that may be easily followed. 

This study has sought to show that such algorithms are possible and that a general procedure for 

applying those algorithms to an ever-expanding list of new problems can be practical. Several 

challenges were encountered in this study that require further investigation and refinement. First, 

using a computer algebra system for the solution of randomly generated problem sets that are 

well-defined by a succinct set of equations is difficult and time consuming to refine. While the 

researcher found that it is relatively trivial to create an algorithm that finds one solution to the 

problem, representing that solution as a logical procedure automatically is often elusive. 

Moreover, solution procedures that employ methods of direct substitution are most easily found 

while more elegant solutions that involve creative manipulations of equations are more difficult. 

Second, generating problem text using NLG is an exceedingly difficult endeavor. Overall text 

structure, logical sentence flow, and the inclusion of all necessary contextual elements are all 

easy to accomplish and can be generated rapidly using available libraries. Generating problem 

text that does not require some level of human involvement, however, is not practical. This 

difficulty is to be understood to be most prescient and therefore should be expected by all who 

seek to accomplish automated problem generation. With that in mind any level of automated 

generation below that of full human-free text creation can still be viewed as a success as most of 

the work and time commitment in writing new problem sets can be completed by computer. 

Typical human-required refinements involve completing sentence structure such as proper noun-

verb agreement, including proper technical jargon, and simply making sentences “sound human.” 

Similarly, generating problem diagrams is a difficulty that extends from that of creating problem 

text. While all necessary graphical elements can be included easily, just as all necessary nouns 

can be included easily in text, different portions of problem diagrams require human intervention 

to be “stitched” together properly. 

Lastly, determining a heuristic for most accurately evaluating problem difficulty is an elusive 

prospect that requires further testing. Rudimentary assessment algorithms were employed here, 

but as problem complexity increases so does the complexity of the nuances that determine how 

difficult the problem appears to students. Simple algorithms that count the number of steps to a 

problem solution or the relative amount of time require to achieve solution are used here but a 

robust determining of problem difficulty will require testing a large set of automatically 

generated problems against actual student performance. Assessments must also be made as to 

how difficult students perceived each problem type or each problem permutation separately from 

the failure or success of the student to solve each problem. The purpose of automated problem 

sets is to provide students with a multitude of problems through which they can practice and 

hone their skills. Student progress and how that effects the assessment of problem difficulty can 

be simultaneously studied. 

Additional future work must be done on an ever-expanding set of new problem archetypes. The 

next candidates for investigation are (1) dynamics: oblique impact of particles, (2) 

thermodynamics: simple forward and reverse heat engine representations, and (3) circuits: 

Kirchoff’s current law. While only one problem archetype from each course has been studied in 



this work and only one more per course has been suggested here, there are obviously multitudes 

more from each course that must be investigated, codified and implemented for a successful set 

of course modules to be complete. 

In addition, it must also be noted that each of the presented archetypes have a maximum 

achievable difficulty. For example, two-dimensional projectile motion problems are only so 

difficult that a relatively small number of problem permutations need be practiced by students for 

sufficient mastery to be achieved. A simple way to increase complexity, then, would be to 

augment the automated generation algorithms to include multiple stacked projectile motion 

problems. A problem may include two projectiles thrown at different times all from a similar 

location, or perhaps two projectiles thrown from the same location at the same time to land at 

different final positions. A further difficulty may be creating a problem where two projectiles are 

launched in such a way that mid-air collision is achieved. The compound nature of these new 

problem sets has the potential for the unlimited increase in problem difficulty with minimal 

augmentation of the presented algorithms. 
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