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Abstract 

 

Language theory is an important part of engineering.  It is usually taught in compiler 

theory, operating systems, and other courses.  Therefore, the use of language theory, 

which is familiar to most engineering students, is a good tool to use to introduce 

bioinformatics.     

 

There are three elements to a language: alphabet, grammar, and semantics.  The alphabet 

comprises the words, the grammar defines the rules, and the semantics give the meaning 

of the language. With respect to genomics, the genomic alphabet has been known for a 

long time: in DNA it’s the set {A, C, T, G} and in RNA the set {A, C, U, G}.  The words 

in genomics are the genes, of which many have been identified.  The semantics, or 

meaning, of the genes may not be known though.  With the rush to patent genes during 

the near-past, shot-gun methods and others were used.  Thus, genes were identified, 

without understanding the genes’ specific functions.  This is akin in language theory as 

identifying the words (genes) of the language but not their meaning (specific functions).   

 

This paper describes grammars, not the semantics, of language theory.  It also discusses 

the representation of genes using grammars.  Furthermore, it gives examples of project 

assignments for engineering students. 

 

By teaching bioinformatics using familiar tools, such as language theory, the engineering 

student gains knowledge of biology, bioinformatics and the relationship of engineering 

principles to other disciplines. 
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Language Theory 101 

 

A language is defined by its alphabet, grammar, and semantics.  Loosely, these three 

elements can be described as its words, rules, and meaning, respectively.   

 

Alphabet 

 

The alphabet is a finite set of tokens that compose words and sentences.  The symbol, Σ, 

represents an alphabet, which is a set of objects.  If the alphabet set is the empty set it is 

designated as Σ = ∅.   

 

STRINGS 

 

A string in the language is a sequence of elements of length one or more and is designated 

by Σ
+
.  For example, given an alphabet: 

 

Σ = {a, c, t, g} 

 

then the set of strings of length one or more is: 

 

Σ
+
 = {a, c, t, g, aa, ac, at, ag, ca, cc, ct, cg, ta, tc, ... }. 

 

The length of a string is the number of elements in it and is designated by parallel lines 

surrounding the string.  For example, 

 

|aga| = 3. 

 

The empty string, not to be confused with the empty set, is written as ε, and the length of 

the empty string is zero: 

 

|ε| = 0. 

 

Strings may be concatenated, an operation which has no special symbol.  In 

concatenation, strings are written next to each other.  Given the alphabet above, let a 

string x and y be defined as: 

 

x = act 

y = gca 

 

Then, some examples of concatenation and length are: 

 

xy = actgca 

yx = gcaact 

|xy| = |yx| = |x| + |y| = 6 
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xε = εx = x 

acεtεgcεa = actgca = x. 

 

The set Σ* is the set Σ
+
 and the empty string, ε.  Note that the alphabet is a set, not a 

string, and requires set operations.  Combining  Σ
+
 and the empty string, ε, requires the 

union operator, ∪: 

 

Σ* = Σ
+
 ∪ {ε}. 

 

Note that: 

{ε} ≠ ∅. 

 

This is because a set containing the empty string, i.e., {ε}, is not empty; the set contains 

one element.  The empty set, ∅, on the other hand, contains no members. 

 

LANGUAGE 

 

A language then is a some subset of Σ*.  This is too general though to be of any use.  A 

language must have some type of structure for legal strings; this is called a grammar. 

 

For a grammar to include structure, terminals and nonterminals must be defined.  A 

terminal is any member of the alphabet, Σ.  A nonterminal, on the other hand, is not an 

element of the alphabet, Σ, but is instead a set of strings in Σ*; the set of nonterminals is 

defined at a capital N. 

 

Grammar 

 

The grammar is a set of structural rules that define the legal contexts of tokens in the 

language’s sentences.  A grammar type is defined by its production rules, or productions.  

In general, a production is of the form: 

 

x → y 

 

where x and y are strings of tokens.  There are four classes of grammars: Type 0, 

unrestricted; Type 1, context-sensitive; Type 2, context-free; and Type 3, right linear, left 

linear, or regular.  The types are defined by restrictions placed upon the productions; note 

that Type 0 does not follow any conceivable set of rules, including production rules. 

 

A Type 1, Type 2, and Type 3 grammar is defined as: 

 

G = (N, ∑, P, S) 
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where N is the set of nonterminals, ∑ is the alphabet, P is the set of productions, and S is 

the designated start string, S is an element of N.  The types differ in their production 

rules, which are given in Table 1. 

 

Table 1. Grammar Types and Production Forms and Restrictions 

Grammar Production Form Restrictions 

Type 0, Unrestricted No Restrictions 

Type 1, Context 

Sensitive 
x → y x and y are members of (N ∪ Σ)*, x 

contains at least one member of N, and the 

length of x is less than or equal to the 

length of y, |x| ≤ |y|.  Note y ≠ ε. 

Type 2, Context 

Free 
x → y x is a member of N, y is any string in (N ∪ 

Σ)*.  Note y = ε is allowed. 

Type 3, Right 

Linear, Left Linear, 

Regular 

Right Linear: 

A → xB or A → x 

- or - 

Left Linear: 

A → Bx or A → x 

- or - 

Regular: 

A → aB or A → a 

or S → ε 

Right and Left Linear: 

A and B are in N, x is in Σ*.   

Regular: 

A is in N, a is in Σ, S is the start symbol.  If 

S → ε is in the grammar, then S does not 

appear on the right side of any other 

production. 

 

In computing, the three higher grammar types are associated with automaton as seen in 

Table 2. 

 

Table 2. Structured Grammars and Automaton 

Grammar Automaton 

Context sensitive, Type 1 Turing machine (two-way, linear bounded automaton) 

where the tape is not allowed to be larger than the input 

string 

Context free, Type 2 Push down stack 

Right linear, Type 3 Finite state automaton 

 

Semantics 

 

The semantics, or meaning, is the set of rules that define the operational effect of any 

program written in the language when translated and executed on a system.  These 

elements can be defined with respect to a genome.  The genomic semantics is not 

addressed in this paper. 
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Genomic Language  

 

A genome can be defined as a language.  It has an alphabet, valid strings, and a specific 

grammar, including production rules.  Therefore, an engineer can relate terms used in 

courses involving language theory, including compilers, algorithm analysis, and other 

subjects, to the genome. 

 

Nucleotide Alphabet 

 

A genome can be defined as a string of nucleotides, which are tokens in language theory.  

There are four distinct nucleotides, {a, c, g, t} in DNA and {a, c, g, u} in RNA, 

ribonucleic acid.  (Think of DNA as a big reference book in a library.  Only a few pages 

of this big book are needed and copied.  In this example, RNA is the copied pages [6].)  

In this respect, the genomic alphabet can be defined as: 

 

Σ = {a, c, g, u} 

 

with |Σ| = 4. 

 

NUCLEIC STRINGS 

 

A word in the genomic language can be thought of as an amino acid, which is represented 

by three nucleotides; the list of amino acids is given in Table 3.  Since there are four 

possible elements, there are 4
3
, or 64, possible codons.  There is redundancy in the 

mapping, with only twenty amino acids and three stop codons designated by nature, for a 

23:64 ratio.  This mapping is seen in Table 4. 
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Table 3.  Amino Acids [7] 

 One-Letter Code Three-Letter Code Name 

1 A Ala Alanine 

2 C Cys Cysteine 

3 D Asp Aspartic Acid 

4 E Glu Gluetamic Acid 

5 F Phe Phenylalanine 

6 G Gly Glycine 

7 H His Histidine 

8 E Ile Isoleucine 

9 K Lys Lysine 

10 L Leu Leucine 

11 M Met Methionine 

12 N Asn Asparagine 

13 P Pro Proline 

14 Q Gln Glutamine 

15 R Arg Arginine 

16 S Ser Serine 

17 T Thr Threonine 

18 V Val Valine 

19 W Trp Tryptophan 

20 Y Tyr Tyrosine 

 

Table 4. Amino Acids and Stop Codons with Corresponding Codons [7] 

First 

Position 

Second Position Third 

Position 

 G A C U  

G Gly 

Gly 

Gly 

Gly 

Glu 

Glu 

Asp 

Asp 

Ala 

Ala 

Ala 

Ala 

Val 

Val 

Val 

Val 

G 

A 

C 

U 

A Arg 

Arg 

Ser 

Ser 

Lys 

Lys 

Asn 

Asn 

Thr 

Thr 

Thr 

Thr 

Met 

Ile 

Ile 

Ile 

G 

A 

C 

U 

C Arg 

Arg 

Arg 

Arg 

Gln 

Gln 

His 

His 

Pro 

Pro 

Pro 

Pro 

Leu 

Leu 

Leu 

Leu 

G 

A 

C 

U 

U Trp 

STOP 

Cys 

Cys 

STOP 

STOP 

Tyr 

Tyr 

Ser 

Ser 

Ser 

Ser 

Leu 

Leu 

Phe 

Phe 

G 

A 

C 

U 
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Strings in the grammar only make sense if they are of length 3.  Let Σ
3
 be the set of 

strings of length 3.  Therefore, the number of elements in the set Σ
3
 is 64. 

 

Amino Acid Alphabet 

 

On the other hand, the genomic alphabet can be defined as the amino acid alphabet.  A 

genome can be defined as a string of amino acids, instead of nucleotides.  There are 20 

amino acids, represented by one letter as in Table 3; the amino acid alphabet can be 

defined as: 

 

Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. 

 

Stop codons can be included in this alphabet, for a total of 21 elements, given that all stop 

codons are represented by Z: 

 

Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, Z}. 

 

AMINO ACID STRINGS 

 

Amino acids can be combined to form proteins, which would be the words in this 

language representation. 

 

Genomic Grammars 

 

In [6], a valid sentence in the genomic language was given: 

 

AUG{{{A,C,G}{A,C,G,U}+U{C,U}}{A,C,G,U}+U{G{C,G,U}+A{C,U}}}* 

U{GA+A{G,A}} 

 

The operators of the language are: 

* means zero or more times, 

+ means “or,” and 

{} means choose one of the set. 

  

So, some valid strings in this language are: 

 AUGUGA 

 AUGAUAUAG 

 AUGUCUCGCUGA 

 

Note that the property of concatenation, discussed above, can be applied to the genomic 

language.  A valid string starts with “AUG” and ends with a stop codon.  Any number of 

codons can be concatenated to the middle of the start and stop. 
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To represent the genomic language, a grammar is constructed for this sentence: 

 

G = (N, ∑, P, S) 

N = {S, H, I, J, K, L} 

∑ = {a, c, g, u} 

S = S 

P: 

S → a u g H u I 

H → J K H | u L H | ε 

J → a K | c K | g K | u c | u u 

K → a | c | g | u 

L → g c | g g | g u | a c | a u 

I → g a | a g | a a 

 

Note that the productions are written using “|” for an “or.”  In other words, K can be 

replaced by a, c, g, or u.  Because there is a production of the form H → ε, this is not a 

Type 1 grammar.  Also, since at least one production has more than two symbols on the 

right-hand side, it is not a Type 3 grammar.  In fact, this is a Type 2, or context free 

grammar. 

 

The grammar can be rewritten as a Type 1, or context sensitive grammar by changing the 

productions so that the right-hand sides do not contain the empty string.  A context 

sensitive grammar for this language is: 

 

G = (N, ∑, P, S) 

N = {S, H, I, J, K, L} 

∑ = {a, c, g, u} 

S = S 

P: 

S → a u g H u I | a u g u I 

H → J K H | u L H | J K | u L 

J → a K | c K | g K | u c | u u 

K → a | c | g | u 

L → g c | g g | g u | a c | a u 

I → g a | a g | a a 

 

 

In [6] a finite state automata was given for the language above.  Therefore, a right linear 

grammar could be constructed, as indicated in Table 2.  This would be a good task for 

students! 

 

P
age 10.662.8



“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 

Copyright  2005, American Society for Engineering Education” 

Other Assignments 

 

As the engineering student learns to integrate language theory and genomic concepts, he 

or she will be able to understand the importance of applying this engineering knowledge 

to different fields.  An example using the nucleotide alphabet was given, but the student 

could easily apply language theory concepts to the amino acid alphabet, given above.  If a 

student can create a state diagram for any genomic concept, then he or she should be able 

to obtain a grammar for it as well, as indicated by Table 2.  Also, a type of genomic 

grammar could be given to the engineering students and they should be able to create an 

automaton, either a push-down stack for a context free grammar, a Turing machine for a 

context sensitive grammar, or a finite state automaton for a right linear grammar.  These 

would be good programming assignments for undergraduates.  

 

Conclusion 

 

Language theory is usually taught in compiler theory, operating systems, and other 

courses, that are in an engineering student’s curriculum.  Using these familiar concepts is 

a good way to introduce bioinformatics without spending a great deal of time on 

reviewing genomic concepts at the onset of a bioinformatics course. 

 

This paper included a brief review of language theory, including alphabets and grammars.  

It also included ways to represent a genomic language by two of the four types of 

grammars.  Also discussed were other possible assignments for the engineering student 

taking a bioinformatics course. 

 

The authors have been teaching Computational Biology and Bioinformatics to both 

undergraduate and graduate students for a few years.  Through their trials they have come 

to the conclusion that the best way to integrate genomic constructs to engineers is to have 

the students work genomic problems using engineering techniques.  A long introduction 

to the genome is not necessary at the outset of the course; the material can be integrated at 

every level by using appropriate engineering concepts.  This way, the students relate what 

they have learned in their engineering courses to real world genomic problems, albeit 

simple ones.  The students seem to enjoy these assignments and an early introduction in 

this manner tends to keep their attention for the duration of the course. 

 

By introducing bioinformatics using language theory, a familiar tool of the engineering 

student, the student gains knowledge of the concepts by the best possible method: doing! 
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