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Geometric Programming - a Tool for Design and Cost Optimization 

 

Introduction 

 

 Geometric programming is a  mathematical optimization technique which was developed 

in 1961 and has unique features which make it a excellent tool for design and cost optimization.   

Geometric programming can be used not only to provide a specific solution to a problem, but in 

many instances it can give a general solution with specific design relationships.  These design 

relationships, based upon the design parameters and constraints, can then be used for the optimal 

solution without having to resolve the original problem.  A second concept is that the dual 

solution gives a constant cost ratio between the terms of the primal objective function which 

appears to be unique to geometric programming.   

  

 Geometric programming is a mathematical optimization technique credited to Clarence 

Zener in 1961 when he was Director of Science at Westinghouse Electric in Pittsburgh, who is 

also credited with the invention of the Zener Diode.  He wrote the paper "A Mathematical Aid in 

Optimizing Engineering Designs
1"

.  He later collaborated with Richard J. Duffin and Elmor L. 

Peterson of the Carnegie Institute of Technology to write the book Geometric Programming
2
 in 

1967and in 1971 he wrote the book Engineering Design by Geometric Programming
3
.  Other 

early pioneers in the development of geometric programming were Professor Doug Wilde at 

Stanford University and Professor Charles Beightler at the University of Texas.   

 

 Although geometric programming has been known for over 50 years, it has primarily 

been used as a solution technique for a specific solution to complex non-linear problems.  It is 

rarely used to develop specific design relationships and cost ratios in the literature and these are 

significant advantages of this technique.  The purpose of this paper is to help educators bring 

geometric programming into the classroom as most of the literature on geometric programming  

does not focus on the development of design relationships and cost ratios.  Other problems, 

which are more complex,  have been developed for riser design in casting, inventory models, 

furnace design, Cobb-Douglas Profit function, metal cutting economics, liquid propane gas 

cylinder design, journal bearing design, and gas transmission pipe line design.    

    

 This technique has many similarities to linear programming  such as primal and dual 

solutions, but has the advantages over linear programming in that: 

(1) A non-linear objective function is used; 

(2) The constraints  are non-linear: 

(3) The objective function can be solved using the dual formulation, which is much easier to 

solve than the primal formulation;  and most importantly 

(4)  Generalized design relationships can often be obtained for the primal variables in terms of 

the constants.   
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  It is called geometric programming because it is based upon the arithmetic-geometric 

inequality where the arithmetic mean is always greater than or equal to the geometric mean.  

That is:   

  (X1 + X2 + … Xn) / n  ≥   (X1 x X2x    x Xn) 
(1/n)  

    (1) 

 

and this can be illustrated by the example 

  (1+3+5)/3 = 3   ≥  (1x3x5)
(1/3)

 = 2.46 

 

Theoretical Considerations and Problem Formulation 

 

 Geometric programming requires that the expressions used are  posynomials
4
.  A. 

posynomial is a combination of “positive” and “polynomial” and implies a “positive 

polynomial”.  Four examples of posynomials are: 

 

 5 + xy,  (x + 2yz)
2
, x+2y +3z + t  x/y + 35zx

1.5
 + 72y

3
 

 

Three examples of expressions which are not posynomials are: 

 x – 2y + 3z  (negative sign) 

 (2 + 2yz)
3.2

  (fractional power of multiple term which cannot be expanded) 

 x + sin(x)  (sine expression can be negative) 
  

The coefficients of the constant terms must be positive, but the coefficients of the exponents can 

be negative. 

 

 The mathematics of geometric programming are rather complex, however the basic 

equations are presented and followed by an illustrative example.  The theory of geometric 

programming is presented in more detail in  the references
2,3,4,5

.   The primal problem is 

complex, but the dual version is much simpler to solve.  The dual is the version typically solved, 

but the relationships between the primal and dual are needed to determine the specific values of 

the primal variables.   

 

The primal problem is formulated as: 

 

                 Tm                 N     amtn 

Ym(X) =    ∑   σmt Cmt   ∏   Xn       ; m = 0,1,2,..M and t = 1,2,...Tm   (2) 

                t=1               n=1 

 

With            

  Cmt  > 0 (positive constant coefficients)   

           Ym(X)  ≤ σm   for m=1,…   M for the constraints 
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      Cmt  = positive constant coefficients in the cost and constraint equations   

     Y0(X)  = primal objective function and often expressed as Y 

      σmt  = signum function used to indicate sign of term in the equation(either +1 or -1) 

   (If a term is to be negative, then the signum function would be negative) 

 

 The dual is the problem formulation that is typically solved to determine the dual 

variables and value of the objective function.      The dual objective function is expressed as: 

 

                         M      Tm          σmt ωmt 

Y = d(ω)  = σ [  ∏      ∏   (Cmt ωm0 /ωmt)           ]
σ
 m=0,1,….M and t=1,2,…..Tm   (3)  

             m=0   t=1 

where 

 σ  = signum function to indicate minimization(+1) or maximization(-1) 

 Cmt  = constant coefficient          

 ωm0  = dual variables from the linear inequality constraints 

 ωmt  = dual variables of dual constraints, and   

 σmt  = signum function for dual constraints  

 ω00  = 1(the sum of the cost ratios is unity)      

 d(ω)     = dual objective function which is also the same as Y 

 M = number of constraints 

 Tm = number of terms in constraint m 

      

 The dual is formulated from four conditions: 

(I) a normality condition   

   Tm 

   ∑σ0t ω0t = σ where σ = ±1      (4)  

   t=1 

where  

      σ0t = signum of objective function terms 

     ω0t = dual variables for objective function terms  

  ω00 = 1 

 

(II) N orthogonal conditions 

  M Tm 

  ∑ ∑ σmt  amtn ωmt = 0 m=0,1…M and t=1,2……Tm  (5) 

  m=0 t=1 

where 

   σmt  = signum of constraint term  

   amtn = exponent of design variable term 

    ωmt  =dual variable of dual constraint    
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(III) T non-negativity conditions (dual variables must be positive) 

   ωmt ≥ 0   m=0,1…M and t=1,2……Tm    (6) 

 

(IV) M linear inequality constraints 

        Tm 

   ωmo = σm  ∑   σmt  ωmt  ≥  0 m=1,….M and t=1,2,…..Tm  (7) 

        t=1   

 The dual variables, ωmt, are restricted to being positive, which is similar to the linear 

programming concept of all variables being positive.  If the number of independent equations 

and variables in the dual are equal, the degrees of difficulty are zero.  The degrees of difficulty is 

the difference between the number of dual variables and the number of independent linear 

equations; and the greater this degrees of difficulty, the more difficult the solution.  The degrees 

of difficulty(D) can be expressed as: 

 

 D = T – (N + 1)         (8) 

where 

 D = degrees of difficulty 

 T = total number of terms (of the primal) 

 N = number of orthogonality conditions plus normality condition (which is equivalent  

       to the number of primal variables) 

 

 Once the dual variables are found, the primal variables can be determined from the 

relationships between the primal and dual by: 

 

         N      amtn 

 Cot    ∏   Xn           = ωotσYo  t= 1,…..To     (9) 

              n=1 

and 

          N      amtn 

 Cmt    ∏   Xn          = ωmt/ωmo  t= 1,…..To and m = 1,….M   (10)  

              n=1 

 

 The theory may appear to be overwhelming with all the various terms, but two examples 

are presented  to illustrate the application of the various equations.  Two examples with zero 

degrees of difficulty are considered as  problems with zero degrees of difficulty have a linear 

dual formulation with an equal number of equations and dual variables and can be easily solved.  

When there are more than zero degrees of difficulty, the solution is much more difficult and this 

type of problem will not be considered in this paper.   
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The Cardboard Box Shipping Package 

 

 A box manufacturer wants to determine the optimal dimensions for making boxes to sell 

to customers.  This problem is a version of the problem in Geometric Programming for Design 

and Cost Optimization
6 

.  The cost for production of the sides of the box is C1(0.20 $/ft
2
) and for 

the top and bottom of the box is C2(0.30 $/ft
2
) as more cardboard is consumed in the manufacture 

of the top and bottom of the box.   The volume of the box is to be set at a minimum limit of 

"V"(4 ft
3
) and it can be varied for different customer requirements.  What should be the 

dimensions of the box, that is the height(H), width(W), and length(L) to minimize the box cost 

and meet the volume(V) requirement?  The primal problem formulation would be: 

 Minimize  Cost     Y = 2C1H(W+L) + 2C2W L      (11)  

 (six sides total, two sides, two ends, and top and bottom)  

 Subject to:  WLH  ≥  V        (12) 

  

 However, in geometric programming the inequalities must be written in the form of ≤ and 

the right hand side must be ±1.  Thus the primal constraint becomes: 

 Minimize  Cost Y = 2C1HW +2C1HL  +2C2WL     (13)  

 Subject to        -LWH/V ≤ -1       (14) 

         

 From the coefficients and signs, the values for the dual are: 

 σ01 =1,  σ02 = 1,    σ03=1 and   σ11 = -1 and σ1  =-1. 

 

 There are  4 terms(3 in the objective function & 1 for constraint) and 3 variables(H,W,L) 

and thus from Equation 8 the degrees of difficulty is: 

  D = 4 - (3 + 1) = 0         (15) 

 

 The dual formulation is: 

 Objective Function  ω01  +  ω02  +  ω03        = 1   (16) 

 L terms                ω02  +  ω03  -  ω11   = 0    (17) 

 H terms   ω01  +  ω02                -  ω11   = 0   (18) 

 W terms    ω01                +  ω03  -  ω11   = 0    (19) 

 

 The dual formulation has four dual variables and four dual equations.   The degrees of 

difficulty can also be expressed as the number of dual variables minus the number of dual 

equations, which is : 

  

D = number of dual variables - number of dual equations = 4 - 4 = 0   (20) 

 

 Solving for the dual variables in Equations 16 to 19, one obtains the values for the dual 

variables which are: 

 ω01 = ω02 = ω03 = 1/3  and   ω11 = 2/3 
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 Using the linearity inequality equation, Equation 7, for the constraint, one obtains   

ω10  = σm  ∑   σmt  ωmt  =σ1 *[σ11 *ω11] =(-1) * [-1 *2/3] = 2/3  >0  where m=1 and t =1 

 

 The dual variables must be greater than zero for a feasible solution or tight constraint.  If 

a negative dual variable is obtained for the constraint, it is loose and the problem can be resolved 

deleting that constraint. 

 

 Since the dual variables are all 1/3, this means that each of the terms of the primal 

objective function will contribute 1/3 (equally) to the primal objective function. The dual 

objective function can be found with: 

 

 

    M      Tm       σmt ωmt  

 d(ω) =Y= σ [    ∏      ∏   (Cmt ωmo /ωmt)          ]
σ
     (3) 

             m=0   t=1 

 

 d(ω) =Y=1[{(2C2*1)/(1/3)}
(1)*(1/3)

 *{(2C1*1)/(1/3)}
(1)*(1/3)

 *{(2C1*1)/(1/3)}
(1)*(1/3)

  

   *{((1/V)*1)/2/3)}
(-1)*(2/3)

 ]
1 

               = 1[{ (6C2)
1/3

  }           * { (6C1)
1/3

  }         *  { (6C1)
1/3

          *[{ (1/V)
-2/3

  } 

 Y(dual)   = 6 C2
1/3

 C1
2/3

 V
2/3

        (21)  

 

 For the problem presented where C2 =0.30$/ft
2
, C1 = 0.20$/ft

2
 and V = 4 ft

3
 and thus 

 Y = 6 C2
1/3

 C1
2/3

 V
2/3

 = 6 (0.30)
1/3

 (0.20)
2/3

 (4)
2/3

 =$  3.461    (22) 

  

 Note the solution has been determined without finding the values for the primal variables 

of L,W, or H.  To find the values of L, W, and H.   The primal-dual relationships  are used as 

follows:  

 2C2 WL = ω01 Y = Y/3,           (23) 

 2C1WH = ω02Y = Y/3  and         (24) 

 2C1 HL = ω03Y = Y/3          (25) 

 LWH/V  = ω11 / ω10         (26) 

  

 Combining Equations 23 and 24  one obtains: 

 H = (C2/C1) L          (27) 

 Combining Equations 24 and 25 one obtains: 

 W = L           (28) 

 Since V = HWL = (C2/C1)L L L =(C2/C1)L
3 

Thus 

 L = [V(C1/C2)]
1/3

         (29)  

 W = L = [V(C1/C2)]
1/3

         (30) 

 H = (C2/C1)L = (C2/C1) [V(C1/C2)]
1/3

  = [V(C2
2
/C1

2
)]

1/3
    (31) 

 

For this particular problem      

 L = [V(C1/C2)]
1/3

 = [4(0.20/0.30)]
1/3

  = 1.387 ft    (32)  

 W = L = [V(C1/C2)]
1/3

 = [4(0.20/0.30)]
1/3

  = 1.387 ft    (33)  

 H  = [V(C2
2
/C1

2
)]

1/3
 =[4(0.30)

2
/(0.20)

2
]
1/3

  = 2.081 ft    (34) 
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 To verify the results, the parameters are used in the primal problem to make certain the 

solution obtained is the same.  It also is noted that: 

 

 L x W x H = (1.387) x (1.387) x (2.081) = 4.00(the desired package volume) 

 and 

 Y(Primal) = 2C1HW+2C1HL  + 2C2WL       (13) 

 Y = 2C1 [V(C2
2
/C1

2
)]

1/3
 [V(C1/C2)]

1/3
  +2C1 [V(C2

2
/C1

2
)]

1/3
[V(C1/C2)]

1/3
  

  +2C2 [V(C1/C2)]
1/3

[V(C1/C2)]
1/3

 

 Y =2 C1
2/3

(V
2/3

)C2
1/3

      +  2 C1
2/3

(V
2/3

)C2
1/3

      +2 C1
2/3

(V
2/3

)C2
1/3

 

 Y = 6 C1
2/3

(V
2/3

)C2
1/3

         (35)  

  

For the primal solution using the values of the example problem, one has: 

  

 Y(Primal) = 2C1HW+2C1HL  + 2C2WL  

        = 2(0.20)(1.387)(2.081) + 2(0.20)(1.387)(2.081)  +2(0.30)(1.387)(1.387) 

             = 1.154                            + 1.154           + 1.154 

             = 3.462         (36) 

  

 The expressions for the primal and  from the dual are equivalent as indicated by the 

results of  Equations 21 and 35 and the specific values illustrated by Equations 22 and 36.    The 

geometric programming solution is in general terms, and thus can be used for any values of C1, 

C2, and V.  Note that the dual variables were equal to 1/3 which implied that all the terms of the 

primal  represented  1/3 of the total cost.  This indicates that for whatever values of C1, C2 and V 

that each of the primal terms will have identical values.  The design equations for H, W, and L 

are also the same regardless of  the values of  C1, C2 and V.  The ability for determining design 

relationships and the cost ratios represented by the dual variables appear to be unique to 

geometric programming.  

 

 This ability to obtain general relationships makes the use of Geometric Programming a 

very valuable tool for cost engineers.  If we select another set of variables whereC1 = 5$/m
2
, 

C2=3$/m
2
, and V = 20m

3
, then 

From the dual 

 Y = 6(5)
2/3

20
2/3

 3
1/3

 = $186.4 (without finding L,W, or H)    (37)  

 

From the equations obtained from the primal-dual relationships;  

 L=W= [20(5/3)]
1/3

 = 3.22 m        (38) 

 H =[20 3
2
/5

2
]
1/3

 = 1.93 m        (39) 

 V = L x W x H = 20 m
3        

(40)
  

 

From the primal 

 Y = C1 H W   + C1 H L + C2 W L    

     = 2 x 5 x 1.93 x 3.22 + 2 x 5 x 1.93 x3.22  +2x 3 x 3.22 x 3.22 

      = $ 62.1                + $ 62.1                +$  62.2 

      = $ 186.4          (41) 
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 All three terms contribute equally to the objective function as indicated by the equal 

values of the dual variables.  In summary, note that: 

 1) Cost are in proportion to the dual variables for the total cost.   

 2) Shapes can change drastically as coefficients change, but cost proportions remains 

constant.  For this problem, each primal term represented 1/3 of the total cost.   

 3) The Primal and Dual objective functions give same values. 

 4) When the constants change, the problem does not need to be resolved as the dual 

variables were independent of the design constants and the design equations can be used to 

determine the values of Y, H, W, and L using the new values of C1, C2, and V. 

 5) Since the terms are non-linear, linear programming could not be utilized to solve the 

problem. 

 

 The Open Cargo Shipping Box Problem 

 

 The Open Cargo Shipping Box Problem is the classic geometric programming problem as 

it was the first illustrative problem presented in the first geometric programming book.  This 

problem presented here is slightly expanded as not only is the minimum total cost required, but 

also the dimensions of the box.  The problem is:  Suppose that 400 cubic yards (V) of gravel 

must be ferried across a river.  The gravel is to be shipped in an open cargo box of length L, 

width W and height H.  The sides and bottom of the box cost $ 10 per square yard (A1) and the 

ends of the box cost $ 20 per square yard (A2).  The cargo box will have no salvage value and 

each round trip of the box on the ferry will cost 10 cents (A3).   The questions are: 

 a)  What is the minimum total cost of transporting the 400 cubic yards of gravel?  

 b)  What are the dimensions of the cargo box? 

 c) What is the number of ferry trips to transport the 400 cubic yards of gravel? 

Figure 1 illustrates the parameters of the open cargo shipping box.  

   
L = Length of the Box  W = Width of the Box  H = Height of the Box 

 

Figure 1.  Open Cargo Shipping Box with Parameters L,W, and H. 

   

End 

Bottom 
Side 

W 

L 

H 
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 The first issue is to determine the various cost components to make the objective 

function, that is the ferry transportation cost, the cost of the two box ends, the cost of the two box 

sides,  and the cost of the box bottom.  The ferry transportation cost can be determined by: 

 T1 = V x A3 /(L x W x H) = 400 x 0.10 / (L x W x H) = 40 /(L x W x H)  (42) 

 The cost for the two ends of the box  is determined by: 

 T2 = 2 x (W x H) x A2 = 2 x (W x H) x 20 = 40 x (W x H)      (43) 

 The cost for the two sides of the box is determined by: 

 T3 = (L x H) x A1 = 2 x (L x H) x 10 = 20 x (L x H)     (44) 

 The cost for the bottom of the box is determined by: 

 T4 = (L x W) xA1 = (L x W) x 10 = 10 x(L x W)       (45) 

  

 The objective function (Y) is the sum of the four components and is: 

 Y = T1 + T2 + T3 + T4        (46) 

 Y = 40 / (L x W x H)   +   40 x (W x H)    +   20 x (L x H) +   10 x (L x W)        (47) 

 

 The primal objective function can be written in terms of generic constants for the cost 

variables to obtain a generalized solution.  There are no constraints for this problem.   

 Y = C1 / (L x W x H)   +   C2 x (W x H)    +   C3 x (L x H) +   C4 x (L x W) (48) 

 Where C1 = 40, C2=40, C3=20 and C4=10 

  

 From the coefficients and signs, the signum values for the dual are: 

 σ01  = 1  σ02 =  1  σ03 = 1  σ04 = 1 

 

 The degrees of difficulty for this problem from the primal information is: 

 D = T – (N + 1) =  4 - (3+1) = 0      (49) 

 

 The dual formulation is: 

 Objective Function ω01   +   ω02 + ω03 + ω04 = 1 (50) 

 L terms  -ω01 +   ω03 + ω04 = 0 (51) 

 W terms  -ω01 + ω02   + ω04 = 0 (52) 

 H terms  -ω01  + ω02 +  ω03   = 0   (53) 

 

 Using theses equations, the values of the dual variables are found to be: 

 ω01 = 2/5 

 ω02 = 1/5 

 ω03 = 1/5 

 ω04 = 1/5 

 and by definition  ω00 = 1 
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 Thus the dual variables indicate that the first term of the primal expression is twice as 

important as the other three terms.     The dual objective function can be found using the dual 

expression: 

                           M      Tm            σmt ωmt   

 Y = d(ω) =  σ [  ∏      ∏   (Cmt ωmo /ωmt)             ]
σ
     (3) 

             m=0   t=1 

 

 Y(dual) =1[[{(C1x1/(2/5))}
(1x2/5)

] [{C2x1/(1/5))} 
(1x1/5)

 ][{C3x1/(1/5)}
(1x1/5)

][{C4x1/(1/5)}
(1x1/5)

] ]
1
  

        =          100
2/5

        x     200
1/5  

    x
 

100
1/5

  x 50
1/5

   

        =          100
2/5   

     x
 

1000000
1/5

  

              =       $ 100 

  

 Thus the minimum cost for transporting the 400 cubic yards of gravel across the river is $ 

100.  Note that the dimensions of the box have not been determined and these will be determined 

from the primal-dual relationships.  The values for the primal variables can be determined from 

the relationships between the primal and dual as: 

  Primal Term  = Dual Term 

 C1/(L x W x H) = ω01 Y = (2/5) Y       (54) 

 C2 x W x H   = ω02 Y = (1/5) Y       (55) 

 C3 x L x H   = ω03 Y = (1/5) Y       (56) 

 C4 x L x W    = ω04 Y = (1/5) Y       (57) 

 If one combines Equations 55 and 56 one can obtain the relationship:  

 W = L x (C3 /  C2)               (58) 

 

 If one combines Equations 55, 56 and 57, one can obtain the relationship:  

 H = W x (C4 /  C3) = L x (C3 /  C2) x (C4 / C3)   =  L x (C4 / C2)    (59) 

 

 If one combines Equations 54 and 55 one can obtain the relationship:  

 L x W
2
 x H

2
  = (1/2) x (C1 / C2)               (60) 

  

 Using the values for W and H from Equations 58 and 59 in Equation 60, one can obtain: 

 L = [(1/2)x(C1 C2
3
/( C3

2
 C4

2
)) ]

1/5
       (61) 

  

 Similarly, one can solve for W and H and the equations obtained are: 

 W = [(1/2)x(C1 C3
3
/ (C2

2
 C4

2
)) ]

1/5
       (62) 

 and 

 H = [(1/2)x(C1 C4
3
/ (C2

2
 C3

2
)) ]

1/5
        (63) 

  

 Now using the values of C1 = 40, C2=40, C3=20 and C4=10, the values of L, W, and H 

can be determined using Equations 61, 62, and 63 as: 
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 L = [(1/2) x (40 x 40
3
 /(20

2
 10

2
)) ]

1/5
 = [ 32]

1/5 
 = 2 yards    (64)  

 W = [(1/2) x (40 x 20
3
 /(40

2
 10

2
)) ]

1/5
 = [  1]

1/5 
 =  1 yard    (65) 

 H = [(1/2) x (40 x 10
3
 /(40

2
 20

2
)) ]

1/5
 = [ 0.03125]

1/5 
 = 0.5 yard   (66) 

  

 Thus the box is 2 yards in length, 1 yard in width, and 0.5 yard in height.  The total box 

volume is the product of the three dimensions, which is 1 cubic yard.  The number of trips the 

ferry must make is 400 cubic yards/1 cubic yard/trip = 400 trips, which at 10 cents per trip is $ 

40.    If one uses the primal variables in the primal equation, the values are: 

  

 Y = 40 / (L x W  x H )   +   40 x(W x H)    +   20 x(L x H) +   10 x(L x W)        (67) 

 Y = 40 / ( 2 x 1 x 1/2)   +   40 x(1 x1/2)    +   20 x(2 x1/2) +   10 x(2 x1)                  

 Y =  40                   +    20       +   20                  + 20 

 Y =  $ 100 

 

 Note that the primal and dual give the same result for the objective function.  Note that 

the components of the primal solution (40, 20, 20, 20) are in the same ratio as the dual 

variables(2/5, 1/5, 1/5, 1/5).  This ratio will remain constant even as the values of the constants 

change and this is important in the ability to determine which of the terms are dominant in the 

total cost.    Thus the transportation cost is twice the cost of the box bottom and the box bottom is 

the same as the cost of the box sides and the same as the cost of the box ends.  This indicates the 

optimal design relationships between the costs of the various box components and the 

transportation cost associated with the design.  If the constants  are changed, the design equations 

for the box dimensions in Equations 64-66 do not change, only the value of the constants 

selected change and the dimensions change according to the changes in the constants.  This is the 

great advantage of geometric programming over the other optimization techniques is that design 

relationships can be formulated in many instances.  Geometric programming does not solve 

traditional linear programming problems and is not a replacement for linear programming. It has 

similarities with linear programming, but solves non-linear problems. 

   

Conclusions 

  

 The primal and dual problem formulations for geometric programming have been 

presented and two example problems have been presented and solved for general design 

equations.  Geometric programming is similar to linear programming in that both primal and 

dual formulations can be utilized.  The variables of the dual objective function give the cost 

ratios  for the terms in the primary objective function which is important information for cost 

analysis.  Geometric programming is able to not only solve a problem but is able in many 

instances to produce design equations that can be utilized and thus avoid resolving problems 

when the input parameters change.    
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 The design equations for the two problems presented are summarized as: 

 Cardboard Box Design Equations  

 L(box length)  = [V x (C1/C2 ]
1/3

  W(box width) = [V x (C1/C2) ]
1/3

 

 H(box height)=  [V x (C2
 
/C1)

2
) ]

1/3
  Y(Total Cost)=   [6 x C1

2/3
 C2

1/3
V

2/3  
] 

 

 Open Cargo Shipping Box Design Equations 

 L(box length) = [1/2 x (C1C3
3
/(C2

2
C4

2
)) ]

1/5
 W(box width) =[1/2 x (C1C3

3
/(C2

2
C4

2
)) ]

1/5
 

 H(box height) =[1/2 x (C1C4
3
/(C2

2
C3

2
)) ]

1/5
 

 Y(Total Cost) = [(5C1/2)
2/5

 x (5C2)
1/5 

x (5C3)
1/5 

x (5C4)
1/5  

 ] 

 

 All of the equations summarized are in terms of the input constants. None of the other 

solution procedures such as linear programming allow design equations to be developed in a 

manner similar to that of geometric programming and this is a significant advantage for 

geometric programming.   For cost estimating, the dual variables are important in evaluating the 

importance of the individual terms in the primal objective function and this is another important 

result of geometric programming.   
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