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Abstract

Gibbs phenomenon arises in many applications.  In this article, the author first discusses a brief
history of this phenomenon and several of its applications in science and engineering. Then,
using the Fourier series of a square-wave function and computer software in a classroom
exercise, he illustrates how Gibbs phenomenon can be used to illustrate to undergraduate
students the concept of nonuniform convergence of successive partial sums over the interval
from 0 to B.

1. Introduction 
  
 Gibbs Phenomenon is intimately related to the study of Fourier series.  When a periodic function
f(x) with a jump discontinuity is represented using a Fourier series, for example, it is observed
that calculating values of that function using a truncated series leads to results that oscillate near
the discontinuity [12].  As one includes more and more terms into the series, the oscillations
persist but they move closer and closer to the discontinuity itself.  Indeed, it is found that the
series representation yields an overshoot at the jump, a value that is consistently larger in
magnitude than that of the actual function at the jump.  No matter how many terms one adds to the
series, that overshoot does not disappear.  Thus, partial sums that approximate f(x) do not
approach f(x) uniformly over an interval that contains a point where the function is discontinuous
[23].  This behavior, which appears in many practical applications, is known as Gibbs
Phenomenon; it is a common example that is used to illustrate how nonuniform convergence can
arise [3].  Detailed proofs and demonstrations of Gibbs phenomenon using square waves are
found in the literature [2, 3, 22] and on web sites [1, 24, 25, 26].  

2.  History and applications 
  
This phenomenon is not new.  Indeed, an important body of knowledge already exists that relates
the history and theory of Gibbs phenomenon to various applications in science and engineering. 
Such work can be used to enhance the education of engineering students.  Gibbs phenomenon was
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first observed by Wilbraham in 1848 but his analysis of it was limited [14].  It was rediscovered in
a different series by Gibbs, the American mathematical physicist, who gave this unusual behavior
a more precise mathematical analysis [13].  But it was Bôcher who demonstrated that this
phenomenon was a general property of the behavior of partial sums of Fourier series in the
vicinity of jump discontinuities [15].  This behavior was named after Wilbraham and Gibbs. 
However, in most references, it is commonly referred to as Gibbs phenomenon, although in their
review of this phenomenon, Hewitt and Hewitt [1] referred to it as the Gibbs-Wilbraham
phenomenon. 

The exact details of the  history of Gibbs phenomenon are very controversial, however. 
Lanczos[2] reports one version.  Gottlieb and Shu [1] report that they were unable to find
evidence to support the account given by Lanczos.  Despite this controversy, however, Gibbs
phenomenon is not simply a historical observation; its practical importance has been consistent in
applied science and engineering.  During the development of radar in Great Britain, for example,
engineers used the sawtooth function to give x-coordinates on their oscilloscopes regularly.  In
doing so, they encountered Gibbs phenomenon [12].  Today, this phenomenon routinely appears
in the processing of digital signals [5]; particularly, in the design of digital filters by electrical
engineers.  A digital filter that is well designed must account for this phenomenon [17].  Other
applications include techniques for numerical analysis and computation [1,4], vibration and
stability of complex beams[16], pseudo-spectral time-domain analysis [18], and cubic-spline
interpolation of discontinuous functions [19].  In physical optics, for example, when beam
irradiance of a top-hat beam in an aperture is represented as a plot of the beam irradiance cross-
sectional surface past an aperture, it displays Gibbs phenomenon.  Another example is the zip-
zero filling in magnetic resonance (MR) imaging.  In MR imaging,  when one expects pixels that
are smaller than the actual resolution of the image, it is common to perform the so-called zip-zero
filling interpolation.  In this technique, zeroes are substituted for unmeasured data points that are
expected to be very small, in order to increase the size of the sample matrix prior to the
application of Fourier transforms.  Thus, a signal intensity profile across the skull of a patient will
show Gibbs phenomenon; this happens because  the measurement process is designed to
decompose  recorded intensity profiles into their Fourier harmonics and the intensity of the signal
that is used in the measurement changes from finite to infinitesimal values at the boundary
between the brain and the skull.  This yields high-frequency oscillations at the edges.  In general,
this phenomenon is observed in MR imaging whenever there are instantaneous transitions, tissue
boundaries, or tissue discontinuities.  In practice, these oscillations are suppressed by filtering the
images.  A final example is that, from a computational point of view, Gibbs phenomenon can be
viewed as an issue of recovering local information from global information, or, specifically, as
one of recovering point values of a function from its expansion coefficients [1].  

 The rest of the paper is organized in the following manner: first, we discuss Fourier series, relate
them to Gibbs Phenomenon, and introduce the square-wave function; then, we contrast ordinary
convergence to uniform convergence; next, we discuss the nonuniform convergence of the square-
wave function; finally, we discuss two different ways to demonstrate Gibbs Phenomenon
graphically: by using the plots of successive partial sums themselves and by using plots of the
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magnitudes of their local peaks.

3. Fourier series
   
Trigonometric series of the form

f x
a
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are important in many problems in physics, engineering and biology.  Here, , area a bn n0 , ,
coefficients to be determined.  Such series and periodic functions that can be represented by them
arise naturally in many practical applications.  Yamashiro and Grudins [20] used Fourier series to
model the flow of air in the lungs; many electric sources of energy generate waveforms that are
periodic; sweep generators used to control electron beams in cathode-ray oscilloscopes produce
triangular waves; nonlinearities that arise in circuits that are supposed to be linear create periodic
functions; and when a nonfiltered electronic rectifier is driven by a sinusoidal source, it produces
sine waves that are rectified [21].  Fourier series are used in a wide variety of other fields
including electromagnetic wave theory [6], heat transfer [9], acoustics [23], mechanical and
structural vibrations [11], and frequency analysis of signals [5]. 

 In contrast to Taylor series, which can only be used to represent functions that have many
derivatives, trigonometric series can be used to represent functions that are continuous as well as
those that are discontinuous.  In general, the partial sum of the series approximates the function at
each point.  For each point where the function itself is continuous, the closeness of the
approximation generated by the series improves as one adds more and more terms to the partial
sum.  However, when a periodic function f(x) with a discontinuity is represented using a Fourier
series, it is observed that calculating values of that function using a truncated series leads to
results that oscillate near the discontinuity [23].  As one includes more and more terms into the
series, the oscillations persist but they move closer and closer to the discontinuity itself.  Indeed, it
is observed that the series representation yields an overshoot at the jump, a value that is
consistently larger in magnitude than that of the actual function at the jump [12].   No matter how
many terms one adds to the series, that overshoot does not disappear.  Thus, partial sums that
approximate f(x) do not approach f(x) uniformly over an interval that contains a point where the
function is discontinuous. 

Gibbs phenomenon arises naturally in the study of Fourier series.  A square wave function is
shown in equation (1).  It is a simple example that has been used historically in books of applied
mathematics to illustrate Gibbs phenomenon analytically [2, 3, 7, 22]. 
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 Nowadays, however, the availability of software that can evaluate and plot functions easily makes

P
age 10.666.3



“Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2005, American Society for Engineering Education”

it very convenient to show Gibbs Phenomenon in a way that makes it accessible to all students.
The results can even be animated.  Indeed, Gottlieb and Shu [1], who have studied Gibbs
phenomenon extensively, display an effective animation of this phenomenon on their web site. 
However, in that animation, students observe the results of a completed  process and it is difficult
for the novices among them to learn from the details that led to the final results they see on the
animation.  Our experience indicates that, after students have plotted  partial sums on their own,
such an animation becomes a teaching tool that displays a dynamic synthesis of Gibbs
Phenomenon.  The procedures discussed in this article can be used to fill this gap by showing how
software can be utilized interactively to demonstrate the nonuniform convergence of partial sums
that give rise to Gibbs phenomenon.  The methods shown here can be used in undergraduate
courses in mathematics, physics, and engineering. 

4. Ordinary convergence vs. uniform convergence 
  
If the partial sums Sn of an infinite series of numbers satisfy

n
nS S n

→ ∞
= =lim , , , ,...1 2 3

then, the series is said to converge to the sum S.  If the limit of Sn does not exist, then the series is
said to diverge.  Thus, for any preassigned positive number ,, no matter how small, one can find a
number N such that

S S n Nn− < >ε ,
This defines ordinary convergence [6].

On the other hand, a sequence {Sn(x)} converges uniformly to S(x) in a given interval [a, b], if for
each positive ,, there is a number N that is independent of x, such that, for all  n > N, one has

 ,   a # x # b  S x S xn ( ) ( )− < ε

This concept of uniform convergence, defined for sequences,  is extended to series because an
infinite series is defined to be the limit of the sequence of its partial sums.  Accordingly, we let 
Eun(x) denote a series of functions that are defined in a given interval [a, b], with partial sums 
Sn(x) given by  

S x u x u x u x u xn n( ) ( ) ( ) ( ) ... ( ).............( )= + + + +1 2 3 2

Then, if the sequence of partial sums converges uniformly to a function S(x), the series Eun(x) is
said to converge uniformly.  Otherwise, the series is not uniformly convergent [6].  For teaching
purposes, it is helpful to illustrate these concepts and their usefulness by using specific examples.
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5. Nonuniform convergence of the square-wave function

Consider the Fourier series of f(x) as shown below.
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We use the square wave function given in equation (1) to illustrate convergence that is not
uniform.  

If we extend S(x) so that it becomes periodic with period 2B, then, this function exhibits a jump
discontinuity of +2 at x = -B , a second one of -2 at x = 0, and a third one of -2 again at x =  B, and
so on.

 S(x) being an odd function, its Fourier series consists solely of sine terms given by
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In order to visualize the behavior of S(x) clearly and compare it to the original function, it is
helpful to plot the Fourier series given in (3c) together with the original function given in (1).  But
the Fourier series has an infinite number of terms and one cannot plot them all.  In practice, one
needs to decide how many terms to keep in the sum.  Consequently, it is necessary to replace the
infinite sum of Equation (3c) with SN(x), a partial sum of N terms, given by
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Since we know that this series converges, one would expect the final value of SN(x) at the edge of
the discontinuity to be either -1 or +1, depending upon whether one is to the left or to the right of
a discontinuity, or to approach these numbers asymptotically.  However, such is not the case 
[ 3, 7, and 8].  There are several ways to show that this assertion is true.

 One way uses complex notation for Fourier series.  In this case, the form of the series that is
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given in Eq. (3) is not as convenient to use as the complex form corresponding to it.  The latter is
given by
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The  partial sums of equation (4) can be written as [3]
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When one particularizes equations (5) and (5a) to the square wave given in Equation (1) and
focuses attention to the neighborhood of the discontinuity at, say,  x = 0, it is found that the
maximum value of SN(x) is reached at x = B/(N+1/2), where N can be made arbitrarily large, and
the maximum value of SN(x) at that point is given by [3,7,8]
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This result was obtained by first writing the integrand of eq.(6) as a power series and then
integrating the resulting series term by term [12].  Equation (6) shows that the maximum value of
the partial sum SN(x) of the infinite series given in equation (2) is greater than 1 near the
discontinuity (at x = 0+), no matter how many terms one chooses to include in the partial sum
SN(x).  But “1" is the maximum value of the original function that is being represented by Fourier
series in the interval 0< x <B.  It follows, therefore, that, near the discontinuity, the maximum
difference between the value of the  partial sum and the function itself, sometimes called the
overshoot, the bump, or the error, remains finite as N 64.  And it is approximately 0.18 in this
case.  Thus, the condition

S x f x n Nn ( ) ( ) ,− < >ε
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is not satisfied near the discontinuity and, hence, is not satisfied everywhere in the interval 
 0< x <B.  Therefore, convergence is not uniform over the specified interval.

In our teaching, we have found two other methods that can be used to demonstrate nonuniform
convergence using Gibbs Phenomenon. The first to be presented here is a graphical illustration of
the shapes of the curves that represent successive partial sums.  The second is the comparison of
how the magnitudes of the local peaks achieved by these curves decrease as a function of the
number of terms retained in the partial sums.  These two methods are particularly effective in
teaching sophomore and junior classes.  Students understand them quickly because these methods
utilize  basic materials from  math courses that the students would have taken in the first two years
of their university education.

6.  Graphical illustration: plots of partial sums

We can show plots of successive approximations of the series given by equation (2a) by letting 
N = 1, 2, 3,...,100.  In other words, we plot the sequence of partial sums S1, S2, S3,...,S100.  We limit
our plot window to the interval 0 < x < B because this scale allows us to see the fine oscillations
of the plotted function  more easily than if we plotted the whole period (-B < x < B).  First, we
plot only one term of the series, then the first two, then the first three, and so on.  We continue the
process this way, adding one term at a time, and watching for Gibbs phenomenon in every new
plot until significant changes in the plots can no longer be detected, or until we reach the limits of
the resolution of the device being used to generate the plots.  We generated fifty, or a hundred
plots, corresponding to as many different partial sums.  However, in order to economize the use of
space, only a representative sample of the whole set is actually displayed at any given time.  The
resulting graphs can be sorted and arranged to show the variation of the peak values of SN(x). 
After looking at many of these plots, it can be seen in that the peak values of the partial sums near
the edges of the discontinuities do not change very much after a while and that they do remain
larger than 1.18, no matter how many of the forty terms one includes into the partial sums. 

The plots discussed above and the computations on which they are based can be generated using
current versions of  Maple, Mathematica ( Fig.1 ), and MATLAB.  We computed  the first fifty
terms and Gibbs phenomenon was clearly shown in all the fifty plots.  We repeated this process
with the next fifty terms and obtained similar results.  Our plots are not displayed herein because
there are many web sites that display similar plots and they do so in color [24, 25, 26, 27]. 

7.  Magnitudes of the local peaks of partial sums

Here, we first determine the location of the peaks that are closest to the discontinuities; then, we
evaluate the functions that represent the successive partial sums at those peaks; finally, we plot the
magnitudes of the peaks so obtained as a function of the number of terms in the partial sums.   

The peaks and troughs were located by taking the derivatives of the partial sums, SN (x), given by
Equation (2a), setting them to zero and solving for the corresponding values of x.  If we use
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primed quantities to denote derivatives with respect to x, then, taking first derivatives gives
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Using the trigonometric identity Cos(A) + Cos(B) = 2 Cos[(A-B)/2 ]Cos[(A+B)/2 ], one can find
the values of x at which Equation (7) goes to zero.  Doing so repeatedly and collecting terms, one
can see that the results follow a simple pattern.  This detailed work was carried out for each of the
first seven partial sums and  mathematical induction was used thereafter.  This process established
the location of peaks and troughs for a partial sum that is made up of any arbitrary number of
terms.  For an arbitrary integer, N,
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Thus, in the interval 0 < x < B, the partial sum SN(x) has either a local maximum or a local
minimum at (2N-1) different points.  Their locations are given by Equation (8).  The first peak in
that interval is located at x(N)

1 = (B /2N), while the last peak is located at
 x(N)

2n-1 = [(2N-1)B /2N].  As N becomes larger and larger, the location of the first peak moves to
the left and approaches zero while that for the last peak moves to the right and approaches B.  The
value of the partial sum, SN(x), at any extremum ( peak or trough) is determined by substituting
the appropriate expression for x, chosen from Equation (8), into Equation (3c).  Doing so for the
first peak (the one closest to x = 0) , we get

( )

( )
( )

( )

S
N

n
N

n

N N N N
N

N
N

N

N

( )
sin

.......................( )

sin sin sin sin
...

sin

π
π

π

π

π π π π π

2
4

2 1
2

2 1
9

4 2
1

3
2
3

5
2
5

7
2
7

2 1
2

2 1

1
=

−






−

=





 +





 +





 +





 + +

−






−



















∑

It can be seen that the expression given in equation (9) implies that of Equation (6).  The former 
has been evaluated for N =1, 2, ..., 100.  The values so obtained are then studied to see how their
magnitudes behave as one includes more and more terms into the partial sums.  It was observed
that these magnitudes did not change very much; indeed, they did remain larger than 1.18, no
matter how many terms we included into the partial sums.  Similarly, we can study how the
magnitudes of the first through fifth peaks changed with the addition of new terms to the partial
sums.  Here, however, the resulting curves were so close to each other that, without excellent
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resolution of the plotting software, they may appear indistinguishable.  To help separate these
curves, somewhat, one needs to change the scale of the graph by computing and plotting the
overshoots only.  An overshoot of a peak is defined as the amount by which its magnitude exceeds
unity.  Thus, the first peak has the largest overshoot.  That overshoot decreases as one adds more
terms to the partial sum. However, it does not fall below 0.18, even after one hundred  terms are
utilized.  The second peak is smaller. The third peak is smaller yet, and so on [7].  It was also
observed that the closer the peak is to the discontinuity, the larger its magnitude and the slower its
rate of decrease.  Thus, the first peak decreases very slowly, the second peak decreases faster than
the first, the third peak faster than the second, and so on.  This process continues until one reaches
the middle of the interval, where, because of symmetry, the rate of decrease must be greatest.  It
was observed that points in the middle of the interval reach a magnitude of unity first and this
effect moves slowly toward the edges.  However, the points at the very edge of the discontinuity
never come arbitrarily close to unity [7].

8. Conclusion
   
With appropriate computer software, it is possible to do a demonstration of Gibbs phenomenon
interactively in class, to assign it as homework, or to use it as a small, hands-on, class project.  By
using software to do repetitive numerical evaluations of the partial sums involved and then
plotting the results graphically on a computer screen, for example, students can create self-paced
demonstrations of Gibbs phenomenon for themselves.  They then see what it is, how it arises, and,
at the same time, illustrate to themselves the meaning of the concept of nonuniform convergence
of a function over a specified interval.  Obviously, web sites currently exist that allow students to
observe this behavior interactively by using results that were generated by someone else [25].

Nevertheless, the two graphical techniques discussed here are easy to implement because they are
accessible to students as soon as they learn how to plot trigonometric functions and to take their
derivatives.  Mathematical subtleties are kept to a minimum and the results are easy to interpret. 
These techniques have been tested in our classrooms and labs and they have been found to be
effective learning tools for our students.  We believe that they will be useful to many others as
well.
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Fig. 1.  A sample plot generated with Mathematica [26]
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