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Abstract 

 

The paper considers generalized functions as a necessary ingredient in various signal-

processing techniques.  Oftentimes generalized functions are implemented in a casual 

way and not reflecting the need to establish results on a mathematical platform.  A few of 

the important connections between the applications and mathematical foundations are 

included together with several illustrations. 

 

I.  Introduction 

 

The rapid descent test functions with the inclusion of a few very needed principals are 

given in section 2. It also gives a brief introduction of tempered distributions including 

some very important theorems.  The paper then moves into section 3 giving the 

fundamentals of a discrete Fourier transform pair.  This is then embedded into a tempered 

distribution setting.  Section 4 gives an introduction to windowing signal data and again 

embeds it into the tempered distribution setting. The paper concludes with a very brief 

overview on filtering frequency techniques. 

 

II. The Test Space S 

 

We adopt the following notation conventions.  For positive integers, qi, ( )ni ≤≤1 , the 

length of q=(q1, q2,…, qn) is defined as ∑
=

=
n

i

iqq
1

.  The absolute values in the paper also 

use the same notation.  The context of the notation will indicate the appropriate meaning.  

The Euclidean distance for nRx∈  will be denoted as a norm, ∑
=
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differentiable functions, φ(x), the differential operator will be denoted as  
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The test space S of rapid descent test functions are all infinitely differentiable and 

together with all of their partial derivatives decrease to zero faster than every power of 
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x

1
 as ∞→x .  An example of such a test functions is 

22
1 ...

1 ),...,( nxx

n exx
−−−=φ .  Figure 1 

illustrates such a rapid descent test function in three dimensions. 

 

 

 

 

   
We equip S with the following sequences of norms: 

 

  )()(sup
,

xDxM q

p
pqRx

p
n

φφ
≤∈

=   

with p=0,1,2,…. And p

np xxxM ))1)...(1(()( 1 ++= .  Figure 2 illustrates the test 

function norm p=2 on the test function illustrated in Figure 1. 
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II Tempered Distributions, 'S  

 

The classes of linear and continuous functionals on S to the scalars, K, are termed 

tempered distributions.  A fundamental result is that a linear functional is continuous in 

this setting if and only if it is bounded.  This is the content of Theorem 1. 

 

Theorem 1 A linear functional, F, on S to K is continuous if and only if there exists a 

“level” norm, 
p

• , and a positive real number, pn , such that 
ppnF φφ ≤, for every 

S∈φ . 

 

Proof
 
 
13 

 

Example 1.  For an integer, In∈ , the translated Dirac Delta functional, nδ , when 

applied to a test function, )(tφ , has the value, )(, tn φδ = )(nφ .  Figure 3 illustrates the 

Dirac Delta functional at n =0, 1,2,3 applied to the test function, 
2

)( tet −=φ . 

 

      
     

 

Example 2.  The translated delta train, ∑
=

n

i

i

1

δ , when applied to a test function, )(tφ , has 

the value, )(,
1

t
n

i

i φδ∑
=

= ∑
=

n

i

i
1

)(φ . 

 We see from example 2 if the index  nii ≤≤1,  is considered to be spaced one 

unit apart, we can think of ∑ ∑
= =

⋅=
n

i

n

i

ii
1 1

)(1)( φφ , where )(iφ  is the “height “ at i  and 1 the 

width between the divisions.  We then construct a trapezoid connecting the )(iφ  location 

to the )1( +iφ . This gives us trapezoids and therefore if we take the width of the sample 
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to the limit in theory gives us the trapezoidal method for Riemann Sums.  This with 

minor modifications will give us the power of the signal. 

Theorem 2.  The infinite translated Dirac delta train, ∑
∞

=1i

iδ , is a tempered distribution. 

 

Proof. 

 

Select any rapid descent test function, )(tϕ , and apply to it a finite delta train, ∑
=

n

i

i

1

δ .  

This process provides us with the following: 

 

)(,
1

t
n

i

i φδ∑
=

=∑
=

n

i

i
1

)(φ  ≤  
ni≤≤1

max )(iφ  ∑
=

n

i

i
1

 =
ni≤≤1

max )(iφ
2

)1( +nn
≤  

Rt∈
max )(tφ

2

)1( 2+t
 ≤  

2

1
2

φ  . 

 

This proves the desired result since n is an arbitrary integer. 

 

 We notice that if St ∈)(α  and F S ′∈ , then there is a multiplication defined for 

St ∈)(α  and F S ′∈  as )(,)( tFt φα  = )()(, ttF φα  where )(tφ  is a rapid descent test 

function.  Furthermore if we select our tempered distribution to be F=δ h
, then 

δα
h

t)( = δα
h

h)( .  This is clearly seen by observing that 

 

 )(,)()(,)()()()()(,)(,)( ththhhtttt
hhhh
φαφαφαφαφα δδδδ ==== . 

 

Removing the arbitrary rapid descent test function and the brackets give the desired 

result.  The functions, )(tα , are termed multipliers. 

 

III Discrete Fourier Transform 

 

The discrete Fourier transform pairs are introduced as 

 

 ∑
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For each j, we consider the tempered distribution, 
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where )/2( Njtie π−  are multipliers.  If we apply the tempered distribution, )(tF j , to a test 

function, )(tx , the result is the discrete Fourier transform.  This is seen by the following 

calculation, 

 

 )(,
N
1)(),(

1

0

/2( txetxtF k

N

k

Njti

j δπ∑
−

=

−= = )(
1 1

0

)2( kxe
N

N

k

jki∑
−

=

− π . 

 

IV Windows 

 

The frequency amplitude graphs are greatly enriched by implementing the technique of 

windowing.  This process assigns a weight to each data value, which will then give us a 

sharper frequency amplitude analysis.  The Blackman, Hamming and Hanning windows 

are just a few standards for this analysis.  Let us demonstrate the procedure by selecting 

the Hamming window.  It is described by the trigonometric formula, 

 

 .,1,...,2,1,0,
2

cos46.54.)( NNt
N

t
tw −=−=

π
 

 

Let us investigate the value of the window at .,
2

,0 Nt
N

tt ===  We have 

 

1
2

2
cos46.54.)

2
(,08.)0cos(46.54.)0( =





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−==−=
πN

ww , and 

( )π2cos46.54.)( −=Nw =.08. 

 

Figure 4 is a plot of this window for 511,...2,1,0=t  where N=511. 
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We now consider this window function, ),(tw  to be a multiplier together with our 

tempered distribution, ∑
−

=

−=
1

1

)/2(1
)(

N

k

k

Njti

j e
N

tF δπ , which then 

becomes ∑
−

=

−=
1

1

)/2()(
1

)()(
N

k

k

Njti

j etw
N

tFtw δπ .  We could now apply this to any test 

function, which represents real data, and we would have the so-called windowed Fourier 

Transform. 

  

V  Filters 

 

In applications the windowed Fourier Transform will give resulting frequencies.  

Oftentimes it becomes necessary to remove some of the none-critical frequencies.  This is 

accomplished by applying appropriate filters. A high pass, band pass and low pass filter 

in illustrated in Figures 5, 6 and 7 respectively.  These filters are given by the Heaveside 

and translated Heaviside functions which can be regarded as a regular tempered 

distribution.  The formula for the high pass filter is the translated Heaviside function 

whose formula is as follows: 

  





<

>
=−

50.,0

50.,1
)50.(

t

t
tH . 

The band pass and low pass filter formula can be developed in a similar fashion. 

 

 

 

  
 It is easily shown that for any rapid descent test function, )(tφ , that there 

holds ) ∫ ∫
∞

∞−

∞

≤=−=−
50.

)()()50.()(),50.( φφφφ kdttdtttHttH 1 for a constant k . 

 

However an ideal filter such as this is too crude in applications and filter design theory is 

another art in mathematics. 
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Figure 6.  Band Pass Filter
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