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 HLM modeling of Pre/Post-Assessment Results from a Large-Scale Efficacy 
Study of Elementary Engineering (Evaluation) 

Introduction 

More than 10 years ago, we began development of an engineering curriculum for elementary 
school, Engineering is Elementary (EiE). Our goals were, and are, to (1) Increase children’s 
knowledge about engineering technology, and their skills in solving engineering problems; (2) 
Support teachers to improve their ability to teach engineering and technology; and (3) to 
advocate for the inclusion of engineering in elementary schools1. 

Engineering is new in elementary school classrooms. Teachers and administrators want to know, 
before adopting new curricula, what evidence exists that it works. Does a curriculum help 
students achieve a better understanding of the problems and processes of engineering? Does it 
support them to become more skilled in engineering and science practices as laid out by the Next 
Generation Science Standards2? Does it contribute to students’ understanding of science? 

To answer these questions, we began the Exploring the Efficacy of Engineering is Elementary 
(E4) study of our curriculum to examine the effects of a set of critical curriculum design 
components on student learning of engineering and science concepts at the elementary level. In 
this paper, we present an intermediate-stage model of the science outcomes from one of four 
units examined during this study: the Environmental Engineering unit. In future work, we will 
examine engineering outcomes as well, and extend the analysis to the other three units examined 
in the study. 

Theoretical Framework 

Inquiry and Project-Based Learning 

EiE curricular units place the teacher in the role of facilitator, while students have agency to 
make design decisions. This approach is consistent with inquiry learning, often used in science. 
Research comparing well-scaffolded inquiry-based methods to direct instruction has shown that 
students’ cognitive gains are comparable both immediately and after a delay, while their attitudes 
towards science and their procedural skills are improved3-9. Geier et al.10 found that an inquiry 
curriculum helped to narrow the achievement gap for underserved urban students while 
improving achievement and engagement. 

EiE also meets the criteria for project-based learning (PBL): design projects are central, and 
focused on questions that engage students with key ideas in science and engineering; these 
projects and activities are open-ended, largely student-driven, and concerned with realistic 
problems. Engaging in PBL is challenging for both teachers and students, but when compared to 
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traditional learning methods, has been shown to lead to improved attitudes, self-efficacy, and 
learning gains on both traditional subject matter and problem-solving skills11. Underrepresented 
minorities specifically have also been found to benefit in these ways from PBL curricula and 
training for their teachers12. 

Efficacy Study 

The intent of an efficacy study is to test whether an educational innovation, implemented under 
ideal conditions, has a causal effect on student outcomes13. Resources should be ample and 
fidelity carefully monitored, with teachers given feedback to help them to improve fidelity14,15. 
Efficacy should be tested, if possible, using random-assignment controlled tests (RCT’s) because 
only RCT’s and related designs are suitable for determining causality13. Researchers must 
implement randomization at the school or teacher level, not the student level, to prevent bias, and 
must recruit sufficient subjects to achieve the power to detect potentially small effect sizes15,16. 

In addition to randomization, it is important to establish the validity of independent and 
dependent variables15,17, including potential moderators18. The treatments must be carefully 
differentiated from each other, and implementation monitored to ensure they are implemented 
with fidelity14,19, because if they are or become too similar in implementation, the study risks 
Type III errors15. On the other hand, researchers must take care to ensure that both treatments 
address the learning objectives measured in the assessments--otherwise effect sizes may be 
inflated due to over-alignment of the intervention with outcome measures16. 

Methodology 

Study Design 

The E4 study employs a Random-assignment Controlled Test (RCT) design to test whether 
participation in EiE has a causal effect on student outcomes. We randomized our sample at the 
school level, to avoid cross-contamination of samples within schools. We use Hierarchical 
Linear Modeling (HLM)20 to implement an ANCOVA model to measure the effect sizes of 
treatment and demographic variables. We choose to implement hierarchical models because our 
data is hierarchically organized, with students nested within classrooms within schools, and a 
multilevel analysis provides more accurate estimation of the effects of variables at different 
levels of hierarchy than other analytic methods. We use pre-assessment class means as covariates 
to reduce intercluster correlation, as this is a more efficient way to improve power than a 
matched pairs design21.  

In this paper, we examine the following question from our proposal: 

1. What effect does the EiE curriculum have, when implemented under ideal conditions, on 
children’s learning of engineering and science content and processes compared to lessons 
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that address similar learning objectives but do not include EiE’s hypothesized “critical 
components” (see below)?  
 

In designing the EiE curriculum, we adhered to key critical components that we believe are 
essential for optimal learning by all students. Critical components include that:  

(a) engineering content is introduced in a context 
(b) students learn about and use the engineering design process 
(c) engineering challenges specify a challenge and constraints and permit many possible 

solutions 
(d) children use math and science to design solutions 
(e) children use failure constructively and design iteratively 
(f) students work collaboratively.  

These critical components are congruent with the definitions of both inquiry learning and 
project-based learning. We developed a rubric to measure the presence of critical components in 
curriculum materials; this rubric was employed by an independent researcher to independently 
verify that the critical components are strongly represented in the EiE curriculum units, while 
they are only weakly represented in the comparison curriculum units developed for the E4 study.  

Instrument Development Process 

Engineering instruments suitable for elementary school students are only beginning to be 
published in the literature. Therefore, we have invested in the development of our own 
instruments and instrument development process. This process begins with (1) the specification 
of learning objectives to be tested; (2) development of a large set of candidate questions for each 
learning objective; (3) analysis of questions to ensure they do not violate basic principles of item 
development as specified by Taylor and Smith22; (4) validity testing of revised items using a 
talk-aloud protocol for cognitive interviews with the target population of students; (5) revision 
and further validity testing as necessary; (6) reliability testing, IRT analysis, determining items to 
be dropped using PCA, finalizing of scales, and further revision as necessary. In-depth 
description of our process can be found in Lachapelle & Cunningham23. 

 
Materials Development Process 

The E4 project is examining the implementation and effect of four out of 20 EiE units, as testing 
all 20 would require considerably more resources than available. We selected the four EiE units 
to represent a range of types of science disciplines—physical, life, and earth sciences—and a 
range of engineering fields (see Table 1). Each of the four units is designed to guide students to 
apply relevant science content in the process of completing their designs. 

P
age 26.848.4



In addition, we have included a fifth pair of units addressing the civil engineering of structures to 
be implemented by half of participating teachers as an additional “dose” of engineering. The 
content of the additional unit is not assessed. 

The five comparison Engineering For Children (E4C) curriculum units are intended to match 
engineering content and process learning objectives with the chosen EiE units but to differ from 
those units, inasmuch as possible, in critical components. These were chosen to represent a more 
“traditional” pedagogy, with more direct instruction. To represent a more “business as usual” 
approach to engineering, we started with lessons freely available on the web, and modified the 
lessons until the comparison curriculum could address the same learning objectives and engage 
children in engineering for the same amount of time. E4C units are weak in the critical 
components listed above:  

(a) the challenge is presented with little or no context 
(b) no engineering design process is formally presented, though from time to time steps are 

mentioned 
(c) engineering challenges may not specify either a goal and/or constraints 
(d) math and science are not incorporated into lesson design 
(e) opportunities to analyze results and make improvements are not part of the lessons 
(f) students sometimes work independently, often competitively, and sometimes in teams 

To gauge adherence to (or in the case of the comparison curriculum, differentiation from) our 
critical components, we developed a rubric of adherence to the critical components. An outside 
reviewer judged all 10 units against the rubric. For cases of low adherence for the EiE 
curriculum, or high adherence for the E4C curriculum, we modified the curriculum materials. 

Table 1: Intervention and Comparison Curricular Materials  

Engineering Field EiE® Units Related Science 
Package 
Engineering 

Thinking Inside the Box:  
Designing Plant Packages 

Plants: structures and functions; survival 
needs 

Geotechnical 
Engineering 

A Stick in the Mud: 
Evaluating a Landscape 

Landforms and erosion 

Environmental 
Engineering 

A Slick Solution: Cleaning an 
Oil Spill 

Ecosystems: reading and analyzing food 
webs. 

Electrical 
Engineering 

An Alarming Idea: 
Designing Alarm Circuits 

Electricity: conductors and insulators; 
properties of electricity; forms of energy 

Civil Engineering 
To Get to the Other Side: 
Designing Bridges 

N/A 
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Procedure 

Materials: Intervention and Comparison Curriculum 

Data analyzed for this paper is from the Environmental Engineering pair of units. The 
engineering learning objectives for these units include that students can demonstrate (1) an 
understanding of environmental engineering and the role of environmental engineers in cleaning 
up pollution; (2) an understanding of the nature of pollution and different ways that pollution can 
spread, particularly via rain and the action of water moving above and underground; and (3) that 
they can communicate their ideas through drawings, justify design decisions, and understand 
testing as an important step in engineering design. In addition, the EiE Environmental 
Engineering unit is designed to reinforce the following learning objectives that should have been 
previously addressed in science: that students can demonstrate (1) an ability to read food web 
and food chain diagrams; (2) an understanding of the major components of ecosystems 
(producers, consumers, decomposers, and the physical environment) and how they are 
interdependent; and (3) an understanding of how a change in one part of an ecosystem can be 
related to other changes. 

The EiE Environmental Engineering unit consists of four lessons. In the first lesson, students are 
introduced to the design challenge and the engineering field through a fictional story about a girl 
from the Elwha tribe in Washington State, who finds an oil spill on the river, reports it to 
authorities, and learns about oil spill clean-up methods from an environmental engineer as she 
provides documentation of the prior state of the river and helps with the wildlife rescue efforts. 
In the second lesson students learn more about environmental engineering by exploring a 
fictional challenge to identify the source of pollution in a town by reading about recent changes 
in different areas and taking “pH” measurements. They discuss the effects of pollution on an 
ecosystem in the third lesson; they also test common household materials for their ability to 
contain, absorb, or remove oil. In the fourth lesson, they design and test a plan to clean up an oil 
spill in a tub of water, using what they’ve already learned.  

For the matching E4C unit, we combined multiple lessons so as to match time spent on the 
lessons across treatment conditions. We revised lessons selected for inclusion in E4C to be age-
appropriate and share a similar format across E4C lessons and units. We also designed a few 
lessons to address learning objectives for which we could not find engineering lessons available 
on the web. In lesson 1, students learn about pollution and how pollution moves through the 
environment by observing a model. In lesson 2, students read about environmental engineers and 
draw pictures of environmental engineers. In lesson 3, students design and build water filters to 
clean muddy, “polluted” water. In lesson 4, students explore a fictional challenge to identify the 
source of pollution in a town by reading about recent changes in different areas and taking “pH” 
measurements—this lesson is adapted from the EiE lesson, with changes to pedagogy and 
materials so that critical components are not as well represented. In lesson 5, students test 
different materials to use as booms to contain an oil spill. Finally, in lesson 6, students design 
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and test a plan to clean up an oil spill in a tub of water—this lesson, again, is adapted from the 
EiE version described above. 

Instruments 

A large number of assessments, surveys, observations, and video data were collected; those that 
inform this paper are the student pre-/post-assessments that probe students’ knowledge of science 
concepts. The science assessment for the Environmental Engineering unit includes 14 questions 
addressing the three learning objectives listed above (interpretation of food webs, components of 
ecosystems, and the implications of changes in ecosystems). The COs instrument is available in 
Appendix A. 

We recoded student responses to each question on the assessment as correct (1) or incorrect (0). 
We separately checked the initial pre- and post-assessment scores for internal reliability and 
factorability by means of reliability analysis and principal component analysis with direct 
oblimin rotation in SPSS v22.0. Where scales demonstrated sufficient internal reliability, we 
used principal component analysis to identify which questions could or should be dropped. Item 
3 was removed to improve reliability. Details of the reliability analysis are presented in Table 2 
below. 

Table 2: COs Instrument Reliability 

Scale 
N of 

Students 
# Items Items 

Reliability: 
Cronbach’s α 

Reading Food 
Webs 

333 7 1, 2, 4-6, 7a, 7e 0.692 

Analyzing 
Food Webs 

333 6 7b - 7d, 8a - 8c 0.775 

 

We completed further data cleaning after analysis of reliability of scores, but before beginning 
analysis. Any student who had missed more than twenty percent of the questions on either the 
pre- or post-assessment was excluded from the dataset. All remaining missing responses were 
replaced with a zero – a coding of “incorrect.” We also excluded any students who were missing 
ethnic and gender demographic information. 

Sample Selection and Randomization 

To recruit teachers, we sent mail and email invitations in January of 2013 to principals of schools 
in Massachusetts, Maryland, and North Carolina, inviting them to put up flyers and spread the 
word with teachers who may be interested in participating in an engineering education research 
study. We promised teachers free professional development, materials, and a stipend for 
implementing an assigned engineering unit and collecting data from their students. We P
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encouraged teachers to apply as “school teams” as our goal was to have two teachers from each 
school participate. We collected applications and principals’ letters of support online.  

We considered applications only from generalist or science specialist teachers of grades 3, 4, or 
5. Applications were rejected if the teacher had already taught the intervention curriculum or a 
similar curriculum, or if a colleague in the same school was teaching EiE. We accepted school 
teams of non-consecutive grades (all one grade, or grades 3 & 5) wherever possible, with some 
of those from consecutive-grade teams rejected, so that students would not participate in the 
study over two consecutive years. Ineligible teachers made up the majority of those not accepted 
to the study. 

Of the 613 applications we received, we either accepted or placed on a wait list 359 teachers 
from 231 schools, with 131 of the schools from North Carolina, and the remainder split between 
Massachusetts (52 schools) and Maryland (48 schools). Ten teachers from 10 schools in North 
Carolina were placed on a waitlist. For each of the three states, we listed the accepted and 
waitlisted schools alphabetically in Microsoft Excel, with each school assigned a random number 
between 0 and 1 using the RAND function. The schools were then sorted by random number, 
and assigned alternately to intervention (EiE) and comparison (E4C) groups in order of their 
random assignment.  

Teachers were assigned to one of the four units according to what science they taught. If teachers 
taught more than one of the target science units (Plants, Ecosystems, Electricity, or Landforms) 
they were assigned to the less-popular of the science units.  

We then contacted teachers with news of their acceptance, waitlist, or rejection status by email. 
Any teacher who did not reply with confirmation of his or her participation was replaced from 
the waitlist by a teacher from the appropriate treatment group.  

Teachers were invited to volunteer to implement the Civil Engineering unit in addition to their 
assigned unit. As 252 teachers, most of the sample, expressed interest, we randomly assigned 
those interested so that half of each treatment sample includes the second “dose” of engineering. 

We performed an analysis of the equivalence of the two samples (intervention and comparison) 
at the school and classroom levels at the start of the study to determine the effectiveness of 
randomization. In the case of categorical variables we performed a chi-squared analysis to 
determine significance between samples. We observed a number of different variables, all 
showing there was no significant difference between the two samples, indicating that they are 
indeed equivalent. Details of the analyses are presented in Tables 3 and 4 below.  
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Table 3: School Level Variables Analyzed for Equivalence 

 
Total 
(N/%) 

Intervention 
(N/%) 

Comparison 
(N/%) 

Chi 
Squared 
p-value 

School Setting 0.271 

City 8 13.6% 6 19.3% 2 7.1%  
Rural 24 40.7% 14 45.2% 10 35.7%  
Suburb 23 39.0% 10 32.3% 13 46.4%  
Town 4 6.8% 1 3.2% 3 10.7%  

School Location 0.799 

MA 10 16.9% 5 16.1% 5 17.9%  
MD 15 25.4% 9 29.0% 6 21.4%  
NC 34 57.6% 17 54.8% 17 60.7%  

Title I Eligibility 0.697 

Ineligible 14 24.6% 8 26.7% 6 22.2%  
Eligible 43 75.4% 22 73.3% 21 77.8%  

 

Table 4: Classroom Level Variables Analyzed for Equivalence 

 
Total 
(N/%) 

Intervention 
(N/%) 

Comparison 
(N/%) 

Chi 
Squared 
p-value 

“Bridges” Second Dosage 0.133 

No 60 52.6% 26 45.6% 34 59.6%  
Yes 54 47.4% 31 54.4% 23 40.4%  

Grade Level 0.588 

3rd 17 14.9% 9 15.8% 8 14.0%  
4th 18 15.8% 7 12.3% 11 19.3%  
5th 79 69.3% 41 71.9% 38 66.7%  

 

Teacher Preparation 

All teachers in the study participated in 3-day professional development workshops during the 
summer of 2013. Separate workshops for intervention and comparison curricula were held in 
Massachusetts, Maryland, and North Carolina. Members of the EiE project team conducted 
professional development with the assistance of E4 staff and state coordinators. After being 
introduced to the subject of engineering (with which many had not had significant contact), 
teachers engaged in hands-on training for their assigned engineering unit as well as a second unit 
in order to increase exposure to the curriculum. Throughout the workshop, professional 
development staff modeled curriculum-specific pedagogy for teachers by placing them in the 
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role of students while engaging in the activities. Staff also helped participants to reflect as 
teachers on the classroom management and logistical necessities of the units. In addition, the 
workshop focused heavily on the data collection requirements of the E4 study for which teachers 
were responsible. Continued progress in the study was contingent upon participation in these 
workshops. 

Data Collection 

Teachers’ participation during the school year included three phases: 

1. Collect pre-assessment and demographic data 
2. Complete all related instruction (related science, the optional Civil Engineering unit, and 

the assigned Environmental Engineering unit) 
3. Collect post-assessments and attitudes survey 

Each teacher is implementing one of the eight “core” units for two consecutive years; half of 
teachers additionally implement the Civil Engineering unit. All teachers must implement the 
related science content, using a curriculum of their choice. After completing the pre-assessment, 
teachers must implement the related science content, as well as the bonus civil engineering unit if 
assigned to do so, before implementing their assigned unit. Once all required units are complete, 
they must have students do the post-assessments. 

The presented data was collected during the first year of implementation. We expect the second 
year of implementation to show stronger effects as teachers learn improved implementation and 
data collection practices.  

Sample Demographics 

Initially, we began the study with 114 classrooms in the Environmental Engineering condition, 
taught by 99 teachers in 59 schools. This number had a certain attrition rate as the first year of 
the study progressed. Reasoning for drops included: teachers electing to teach fewer classes than 
originally intended, teacher drops from the study, and unusable student or classroom data during 
the data cleaning process. For analysis purposes we had 1658 students within 91 classrooms, 
taught by 68 teachers in 48 schools. Details are presented in Table 5 below. 
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Table 5: N of Schools, Teachers, Classrooms, and Students in Environmental Engineering 

 
Start of 
Study 

Intervention Comparison
End of 

Year One
Intervention Comparison 

Schools 59 31 28 48 26 22 
Teachers 99 55 44 68 34 34 
Classrooms 114 57 57 91 45 46 
Students* N/A N/A N/A 1658 816 842 

*Number of Students at the Start of Study is N/A as teachers would not have been assigned classrooms at that point. 

Student level demographics collected for this analysis included gender and racial ethnicity. 
Ethnicity was further collapsed into the Racial Representation variable, with White and Asian 
making up the “represented” ethnicities within the field of engineering and Black, Hispanic, and 
Other making up the “underrepresented” ethnicities. (See Table 6). 

Table 6: Student Sample Demographics 

Student Demographic 
Proportion: 
Intervention

N: 
Intervention

Proportion: 
Comparison 

N: 
Comparison

Gender (Male)) 45.8% 374 49.6% 418 
Gender (Female) 54.2% 442 50.4% 424 

Race/Ethnicity 

White 67.9% 554 62.9% 530 
Asian 5.6% 46 2.5% 21 
Black* 10.2% 83 19.5% 164 
Hispanic* 12.4% 101 10.1% 85 
Other* 3.9% 32 5.0% 42 

*Denotes underrepresented races/ethnicities. 

Analysis and Results 

Preliminary Analyses 

As preliminary analyses, we conducted a series of independent sample t-tests to examine the 
group mean differences in each of pretest and posttest scores. We also conducted the analysis of 
variance (ANOVA) to examine the interaction of time and conditions, i.e., whether the change in 
test scores from pretest to posttest is significantly different between the intervention and the 
comparison groups.   

The t-test results indicated that, for both outcomes (i.e., Reading Food Webs and Analyzing Food 
Webs), the pretest score was not significantly different between the groups, but the posttest score 
was significantly higher in the intervention group. For the Reading Food Webs scale, the mean 
pretest score was 4.95 (SD=1.63) for the intervention group and 4.80 (SD=1.65) for the 
comparison group. The mean posttest score was 6.03 (SD=1.19) and 5.75 (SD=1.43) for the 
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intervention and the comparison group, respectively. The pretest score mean was not 
significantly different between groups (t=1.871, p=0.061), but the posttest score mean was 
significantly higher for the intervention group than for the comparison group (t=4.368, p<.001).  
The results were similar for the Analyzing Food Webs scale. The mean pretest and posttest 
scores were 3.69 (SD=1.86) and 4.75 (SD=1.63), respectively, for the intervention group, and 
3.55 (SD=1.89) and 4.44 (SD=1.76), respectively, for the comparison group. The group 
difference was not statistically significant in the pretest scores (t=1.48, p=.138), but significant in 
the posttest scores (t=3.73, p<.001).  

The intervention group showed greater increases in test scores from pretest to posttest than did 
the comparison group, as graphically shown in Figures 1 and 2. However, the results of the 
treatment status-by-time interaction effect in ANOVA indicated that there were no significant 
interactions of time by treatment status (F=1.467, p=0.226 for Reading Food Webs; F=2.040, 
p=0.153 for Analyzing Food Webs).  

Figure 1: Reading Food Webs ANOVA 
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Figure 2: Analyzing Food Webs ANOVA 

 
 
Main Analyses 
 
This study was a randomized controlled trial, with schools as the unit of random assignment and 
students as the unit of collection of outcome data. Because students were nested within teachers 
or classrooms, which in turn nested within schools, we employed hierarchical linear modeling 
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௜ܻ௝௞ ൌ ଴௝௞ߨ ൅ ሻݐݏ݁ݐ݁ݎ݌ଵ௝௞ሺߨ ൅ ଶ௝௞ሺ݈݉ܽ݁ሻߨ ൅ ሻ݀݁ݐ݊݁ݏ݁ݎ݌݁ݎݎ݁݀݊ݑଷ௝௞ሺߨ ൅ ݁௜௝௞ 
 

This formula represents the posttest score for student ݅ in classroom ݆ in school ݇ ሺ ௜ܻ௝௞ሻ modeled 

as a function of the intercept for each classroom ݆ in school ሺߨ଴௝௞ሻ, three student-level 

predictors, and a random student-level error ሺ݁௜௝௞ሻ.  In Level 2, the coefficients from the level-1 

model were further modeled as below.  

଴௝௞ߨ ൌ ଴଴௞ߚ ൅ ሻ݁݃݀݅ݎܤ଴ଵ௞ሺߚ ൅ 4ሻ݁݀ܽݎܩ଴ଶ௞ሺߚ ൅ 5ሻ݁݀ܽݎܩ଴ଷ௞ሺߚ ൅  ଴௝௞ݎ
ଵ௝௞ߨ ൌ  ଵ଴௞ߚ
ଶ௝௞ߨ ൌ  ଶ଴௞ߚ
ଷ௝௞ߨ ൌ  ଷ଴௞ߚ

 

We treated pretest score, gender and race as fixed effects and only the intercept as a random 
effect. The intercept from the level-1 model, that is, the mean test score of classroom ݆ in school 
݇ ሺߨ଴௝௞ሻ, was modeled as a function of the intercept for each school ݇ ሺߚ଴଴௞ሻ, two dummy-

coded classroom grade variables (with Grade 3 as a reference category), a dummy variable 
indicating whether the class taught a Civil Engineering (Bridge) unit, and a random classroom-
level error ሺݎ଴௝௞ሻ.  

At Level 3 of the model, we estimated the school-level effect of the curricular intervention on the 
mean posttest score in school ሺߚ଴଴௞ሻ, controlling for two dummy variables indicating the 
location of school (i.e., Maryland and North Carolina with Massachusetts as a reference 
category). The level-3 equation is as below.  

଴଴௞ߚ ൌ ଴଴଴ݎ ൅ ሻݐ݊݁݉ݐܽ݁ݎ଴଴ଵሺܶݎ ൅ ሻܦܯ଴଴ଶሺݎ ൅ ሻܥ଴଴ଷሺܰݎ ൅  ௢௢௞ݑ
 

where ݎ଴଴଴ is the grand mean of the outcome and ݑ௢௢௞ is a random school-level error. All the 
coefficients from the level-2 model except ߚ଴଴௞	were treated as fixed effects.  

The results of the analyses of unconditional models indicated that about 11% of the variance in 
the Reading Food Webs scores resided between schools and 7% of variance in the Analyzing 
Food Webs scores occurred between schools. The results of the analyses of final models are 
presented in Table 7. As shown in Table 2, the intervention-comparison group difference in the 
Reading Food Webs scale scores was close to significance at the 0.05 level controlling for pretest 
scores and other student-, classroom- and school-level covariates. The unstandardized coefficient 
of treatment status suggests that the EiE curriculum leads to about a 0.2 point increase in 
Reading Food Webs scores, on average.  The result also indicates higher average scores of 
Analyzing Food Webs in intervention schools than comparison schools, above and beyond basic 
student-, classroom-, and school-level characteristics. The estimate of treatment effect suggests 
that the EiE curriculum intervention leads to about 0.22 point increase in Analyzing Food Webs 
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scores, on average. However, this difference was not statistically significant. The results also 
show that only two covariates were statistically significant predictors of the test scores: pretest 
scores and student race/ethnicity.  

Table 7. Multilevel Analysis of Posttest Scores  

  Reading Food Webs  Analyzing Food Webs 
  Estimate SE T p-value  Estimate SE T p-value

Intercept 5.75 0.20 28.47 <0.001 4.63 0.29 15.81 <0.001
Treatment 0.20 0.10 1.94 0.059 0.22 0.13 1.60 0.116
Pretest Score 0.35 0.03 13.76 <0.001  0.42 0.02 17.59 <0.001
Bridges -0.04 0.10 -0.39 0.698  0.09 0.14 0.66 0.515
Male 0.07 0.06 1.36 0.173  0.05 0.07 0.70 0.484
Underrepresented -0.16 0.07 -2.25 0.025  -0.37 0.09 -4.12 <0.001 
Grade 4 -0.20 0.22 -0.94 0.354  -0.21 0.25 -0.82 0.42
Grade 5 0.03 0.17 0.18 0.859  -0.14 0.22 -0.62 0.542
School State MD 0.13 0.18 0.74 0.461  0.09 0.24 0.36 0.72
School State NC 0.07 0.14 0.51 0.616  -0.01 0.25 -0.05 0.962

 

Discussion, Implications, and Next Steps 

For this initial foray into modeling treatment effects on student outcomes, we have found only 
marginal effects of the intervention on students’ science scores for reading food webs—our first 
analysis does not establish that students learned the science concepts better with the intervention 
curriculum than the comparison curriculum. Pretest and student race/ethnicity were the strongest 
predictors of posttest scores, suggesting the need for strong science and engineering 
interventions for underrepresented minority students. 

However, we have only begun our investigations and modeling for the E4 study. We continue to 
add variables to the HLM models that reduce variance and increase power. A vital next step is to 
add variables accounting for teacher fidelity, as this can have a major impact on intervention and 
comparison curriculum implementation, causing differences between the curricula to shrink in 
practice, and lessening the power of the study. We will also add interaction terms to our models 
to examine the moderating effects of demographic variables on the outcomes. 

In addition, we will model the engineering student outcomes for the Environmental Engineering 
units, and we will extend our analyses to the other three pairs of engineering units that comprise 
the E4 study. 
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