
Paper ID #26050

Hypermodeling: A Profile for Teaching SysML Modeling

Mr. Michael J. Vinarcik P.E., University of Detroit Mercy

Michael J. Vinarcik is a Chief Solutions Architect at SAIC and an adjunct professor at the University
of Detroit Mercy. He has nearly thirty years of automotive and defense engineering experience. He
received a BS (Metallurgical Engineering) from the Ohio State University, an MBA from the University
of Michigan, and an MS (Product Development) from the University of Detroit Mercy. Michael has
presented at National Defense Industrial Association, International Council on Systems Engineering, and
American Society for Engineering Education regional and international conferences. He is a regular
speaker at the No Magic World Symposium. Michael has contributed chapters to Industrial Applications
of X-ray Diffraction, Taguchi’s Quality Engineering Handbook, and Case Studies in System of Systems,
Enterprise Systems, and Complex Systems Engineering; he also contributed a case study to the Systems
Engineering Body of Knowledge (SEBoK). He is a licensed Professional Engineer (Michigan) and holds
INCOSE ESEP-Acq, OCSMP: Model Builder – Advanced, Booz Allen Hamilton Systems Engineering
Expert Belt, ASQ Certified Quality Engineer, and ASQ Certified Reliability Engineer certifications. He
is a Fellow of the Engineering Society of Detroit. He is the President and Founder of Sigma Theta Mu,
the systems honor society.

c©American Society for Engineering Education, 2019

Hypermodeling: A Profile for Teaching SysML Modeling

Abstract

Competent execution of descriptive models in SysML, the system modeling language, facilitates
rigor and analysis in support of systems architecture and engineering activities. However, this
requires mastery of SysML, the selected modeling tool, and the method used. A semester-long
course is not long enough to provide students with adequate time and experience to
independently construct a high-quality model.

This paper details the content and use of the hypermodel profile, originally released by the author
in 2017. It contains an organizational structure, stereotypes, queries, analysis aids, metrics, and
quality checks that can be leveraged by students. Use of the profile allows students to focus on
the intellectual content of their assignments while modeling in compliance to a provided style
guide. It permits them to experience the benefits of automated quality checks, detailed
inferential queries, and other modeling aids without having to have the advanced knowledge to
construct them independently. This approach also exposes students to the full benefits of a
sophisticated model and encourages them to explore and gain deeper insights into their system of
interest.

The specifics of the hypermodel profile will be presented, including its organization, content, and
customizations. Guidelines for its use will be presented in conjunction with lessons learned from
its use at the University of Detroit Mercy in the Master of Science Product Development,
Systems Engineering Certificate, and Advanced Electric Vehicle programs.

The Digital Transformation

Modern systems are increasingly complicated and complex; the number of components (and
software elements) continues to grow. Document-Intensive Systems Engineering (DISE) is
unable to keep pace with the need to keep stakeholders, program managers, design engineers,
and other individuals informed about the consequences of their decisions and the current state of
the system under development. This problem is particularly acute in military and aerospace
development; a United States Air Force general recently stated, “Our current defense acquisition
system applies industrial age processes to solve information age problems [1].”

Emergent behaviors (wanted, unwanted, and unanticipated) are particularly difficult to manage
with traditional systems engineering approaches. Although functional decomposition and related
deconstructive approaches are useful, they fail to fully manage interactions. As David Cohen,
Director of Naval Air Systems Command’s Systems Engineering Department, recently stated:
“We have been using Newtonian systems engineering. We need quantum or string theory
systems engineering to manage modern system development [2].” Model-Based Systems
Engineering (MBSE) is one solution to this need.

Descriptive system modeling, making descriptive information available in an evolving, organic
system model (typically using SysML, the OMG Systems Modeling Language) is an important
enabler to transform DISE into MBSE.

The Department of Defense released a Digital Engineering Strategy in June 2018; it outlines five
goals:

1. Formalize the development, integration, and use of models to inform enterprise and
program decision making

2. Provide an enduring, authoritative source of truth
3. Incorporate technological innovation to improve the engineering practice
4. Establish a supporting infrastructure and environment to perform activities, collaborate,

and communicate across stakeholders
5. Transform the culture and workforce to adopt and support digital engineering across the

life cycle [3]

These goals are foundational and applicable to any organization that seeks to develop
complicated and complex systems. The development of hands-on system modeling exercises
directly supports Goals 1, 2, 4, and 5 by:

 Showing students how to create descriptive system models that serve as the authoritative
source of truth for a system under development [Goal 2]

 Demonstrating how models may be queried to answer relevant questions [Goal 1]

 Illustrating collaborative techniques using modeling tools and collaboration servers (such
as No Magic’s MagicDraw and TeamWork Cloud) [Goal 4]

 Showing the value of MBSE through student experience [Goal 5].

Hypermodeling

System modeling is inherently difficult; language, tool, and method must be mastered
sufficiently to competently model. Because there is no simple visual analog to a system model
(unlike the case of CAD, in which a solid model can be viewed and easily compared with the
desired design), modelers must rely on a variety of secondary work products (validation suites,
metrics, tables, and matrices) to judge the quality of their work.

In addition, “Every modeling effort has several factors that may be used to describe it:

 = Efficiency factor = output/input (0 < < 1)

 = Effectiveness factor = ability to accomplish intended outcome (0 < < 1)

 = Elegance value (0 < < 1)

 =

Language, tool, and method each have their own contributions to this equation:

language language tool tool method method =

Once the tool and language are selected, those terms are effectively constants…so any modeler is

only able to directly influence method method.

Therefore, productivity, effectiveness, and elegance depend heavily upon the methods used to
construct the descriptive system model. One critical, inescapable fact is that every model
element has a cost associated with its elicitation, creation, definition, and maintenance.
Therefore, if a system can be described rigorously and completely with n elements, each n + i,
where i > 0, element adds no value and only increases cost [4].”

Because of these considerations, it is critical to teach students to model economically from the
start. If students’ initial modeling instruction is diagram-centric (the “pictures”) and ignores the
reality that a competently-executed system model is model-centric (focused on elements,
attributes, and relationships), they will need to overcome this intellectual deficit to become
capable modelers.

Hypermodeling is an attempt to unify pragmatic modeling techniques supported by a shareable
modeling profile that extends SysML. It includes stereotypes, customizations, enumerations,
metrics suites, and validation suites. It is paired with a blank “stub” model that organizes
modeling artifacts into a progression that supports systems architecture engineering processes. A
reference model based on a next-generation Mars Orbiter (NeMO) was released for public use
(and served as the basis for demonstration of a state-machine based interdiction of cybersecurity
threats) [5].

Conceptual Framework

The hypermodeling approach builds on work previously published [6] and expands upon it by
increasing the focus on state machines as the unifying behavioral construct and explicitly
including analysis before requirements generation. Note that although needs/objectives/mission
statements/etc. are considered critical up-front source content, the authoring of system and
subsystem requirements is deferred until late in the process. The intent of hypermodeling is to
use the descriptive model as analytical support to facilitate an entire spectrum of analysis without
resorting to traditional “shall” statements. Those can be authored, if necessary, once appropriate
sections of the system model are sufficiently mature.

Although Figure 1: Content Relationships shows a cascade, feedback loops and iterations are
implicit to the hypermodeling approach. As new information is captured in the model, either
through analysis or exploration of another level of abstraction, model elements, attributes, and
relationships are updated to remain synchronized.

Figure 1: Content Relationships

• Source Content

• Mission / Vision

• Goals / Objectives

Needs /
Capabilities

• Use Case Diagrams

• Activity Diagrams

• State Machine
Diagrams

Behavior
• State Machines

• Block Definition
Diagrams

• Internal Block
Diagrams

Structure

• Parametric Diagrams

• External Analysis
Tools

Analysis
• Requirements

Matrices

• Requirements Tables

Requirements

Basic Structure

The structure of the stub hypermodel consists of the following packages:

 00 Source Content

 10 Behavioral Analysis

 20 Context

 30 Functional Architecture

 40 Logical Architecture

 50 Physical Architecture

 60 Verification

 70 Analysis

 90 Tables and Matrices

 QC Quality Checks

00 Source Content is intended to contain packages for relevant source content, such as Goals and
Objectives, Mission Statement, Regulatory Requirements, and other source material. It is listed
first in the containment tree as a matter of convenience and to subtly emphasize that it is
authoritative information or guidance imposed on the system of interest.

10 Behavioral Analysis contains high-level analysis of goals, objectives, capabilities, and use
cases. As a matter of convenience, use cases, use case elements, and use case diagrams are
collected in separate subordinate packages. This facilitates reuse of elements and prevents
duplication (a common rookie modeling mistake).

20 Context contains contextual elements (typically external and domain blocks). There is one
and only one system context block (named “[system of interest] Context”); it owns part properties
typed by the contextual elements. Each part property must be connected to a use case element
(such as an actor, boundary system, or environmental effect) by a <<trace>> relationship. These
relationships are used as the basis of a quality check in the validation suite to ensure that all
context elements represent use case elements and vice versa. Although the use case elements
could be used to directly type the part properties of the system context block, the author finds it
convenient to use <<traced>> blocks instead (since they can own ports and be used to fully
describe the interfaces between them).

30 Functional Architecture is a package to contain the functional architecture of the system, if
desired. The author often omits this step because, in his experience, purely functional
decomposition is often more of an academic exercise than a useful one. If one is aware that
functions can be re-assigned to different logical or physical elements as needed, a purely
functional decomposition is unnecessary. If a functional architecture is constructed, the author
recommends that activities be used as basis for collecting operations (his preferred atomic
behavioral element). Operations must be owned by either blocks or activities; using a block
implies a specific architectural element whereas using an activity makes it clear that is a purely
behavioral element. Because operations own parameters that are typed by signals, they allow
the rigorous capture of inputs and outputs for each function.

40 Logical Architecture contains one or more logical architectures (made up of blocks with the
<<logical>> stereotype applied). Each should be organized in a sub-package. Logical blocks
own operations, value properties, and ports (the author prefers the exclusive use of proxy ports).
Note that value properties at this level should be related to performance or measures of
effectiveness and not physical properties (which should only be present in the physical
architecture). If a functional architecture has been constructed, operations in the logical
architecture use <<realization>> relationships to provide traceability to the related functional
architecture operation.

50 Physical Architecture contains one or more physical architectures (made up of blocks with the
<<physical>> stereotype applied). Each should be organized in a sub-package. Physical blocks
own operations, value properties, and ports (typed by proxy ports). Operations and ports in the
physical architecture are connected to their logical architecture analogues with <<realization>>
relationships. This allows another quality check to ensure consistency between layers of
abstraction. By having each architectural element own its operations and ports, this approach
allows tailoring (eliminating or adding parameters to an operation, for example). It also permits
the creation of variant-specific activity diagrams, state machines, sequence diagrams, and
internal block diagrams.

60 Verification is a location to store test cases that <<verify>> requirements. A test architecture
can also be stored here (by creating blocks to own the operations called on test case activity
diagrams). Alternatively, the operations can be owned by the test case activities themselves.

70 Analysis is a catch-all package for collecting any ancillary analysis, parametric diagrams, or
model elements used to interface with modeling and simulation tools.

90 Tables and Matrices is provided as a convenient storage location for tables and matrices that
make up the bulk of the derived work products. Because blocks can also own tables and
matrices, it is usually beneficial to allow context-specific products to reside with the block that
described them (for example, a table listing ports owned by a given subsystem should be owned
by that subsystem block).

QC Quality Checks is a repository for tables and matrices used for quality checks (e.g.,
parameters unable to flow over interfaces because the block owning them lacks a suitable port).
These may overlap with the validation suite rules, but the author finds tabular representations are
often useful additions to the model.

Ontology

Figure 2 and Figure 3 illustrate the allowed relationships between source content elements.
<<trace>> relationships are the primary relationship used; <<include>> relationships connect
goals, objectives, sub-objectives, and investigations. Proper use of these relationships enables
inferential querying, metrics suites, and validation rules to operate correctly.

Figure 2: Source Content <<trace>> Relationships

Figure 3: Source Content <<include>> Relationships

Figure 4 and Figure 5 illustrate the allowed relationships between behavioral elements. Note that
if any goal, objective, sub-objective, investigation, capability, or use case elements are further
decomposed with activity diagrams, every node on the activity diagram must be a call operation.

This eliminates the need for swimlanes, since every operation has an unambiguous owner; it also
allows rigorous elicitation of inputs and outputs for each function.

Figure 4: Behavioral Analysis <<trace>> Relationships

Figure 5: Behavioral Analysis Relationships

Figure 6 shows the <<trace>> relationships between context elements and behavioral analysis
elements.

Figure 6: Context <<trace>> Relationships

Figure 7 illustrates the decomposition of an activity in the Functional Architecture and how it
appears in the model containment tree.

Figure 7: Functional Architecture

Figure 8 illustrates the structure of the Logical and Physical Architectures; note that the use of
reference properties is discouraged. The author has found that any reference property can be
illustrated by a part property at a higher level in the architecture (or context) structure. This
eliminated ambiguity and reduces the number of element types in use (slightly easing the
cognitive burden on the student modeler).

Figure 8: Logical and Physical Architecture

The allowed relationships for requirements are shown in Figure 9. Note that the <<satisfy>>
relationship is used instead of <<allocate>>. This forces the creation of specific model elements
that make the relationship true and facilitates automatic requirements verification. It also aids in
the detection of redundancy (consider the relative ease of detecting two conflicting <<satisfied>>
by the same mass value property versus the difficulty in finding them in five hundred
requirements <<allocated>> to the same block). Also, the ends of <<satisfy>> requirements are
intentionally limited by SysML (e.g., functional requirements must be <<satisfied>> by an
activity or an operation…they cannot be <<satisfied>> by a block). This promotes a crispness in
requirements formulation and fosters singularity and precision.

Figure 9: Verification

The author found that despite providing quality check tables (that contained elements that
violated a style guide rule), some students had difficulties in using them to improve model
quality. The introduction of an on-demand validation suite (See Table 1) significantly improved
project quality (no projects have been submitted with violations since its introduction). It allows
the codification of the quality checks and when the validation engine processes the rules,
violating elements are identified within the model. It is relatively simple for modelers to then
correct the issues (receiving satisfying feedback as the element’s red highlighting vanishes once
the error is corrected).

Name Constrained Element Error Message Severity

CAPDOC capability [UseCase] All capabilities must be documented. error

CAPTRACE capability [UseCase]
All capabilities must be traced to some
authoritative source element. error

CONNECTPIN InputPin OutputPin Pins must be connected error

EDGEGUARD ActivityEdge
All activity edges that exit a decision
node must have guards defined. error

GOALDOC goal [UseCase] All goals must be documented. error

GOALTRACE goal [UseCase]
All goals must be traced to source
content error

IBFLOW InterfaceBlock [Class]
Interface blocks must own a flow
property. error

INVDOC
investigation
[UseCase] All investigations must be documented. error

INVTRACE
investigation
[UseCase]

All investigations must be
<<included>> by an objective or sub-
objective. error

NOALLOC Allocate [Abstraction] Allocation relationships are forbidden. error

OBJDOC objective [UseCase] All objectives must be documented. error

OBJTRACE objective [UseCase]
All objectives must be <<included>>
by a goal. error

SUBDOC
sub-objective
[UseCase]

All sub-objectives must be
documented. error

SUBTRACE
sub-objective
[UseCase]

All objectives must be <<included>>
by an objective. error

TRIGGERS Transition

All transitions (except those from
history or initial nodes) must have
triggers. error

TYPEFLOW
FlowProperty
[Property] Flow properties must be typed. error

TYPEPAR Parameter All parameters must be typed. error

TYPEPART PartProperty [Property] Part Properties must be typed. error

TYPEPORT ProxyPort [Port]
Proxy Ports must be typed by interface
blocks. error

Name Constrained Element Error Message Severity

TYPEVAL
ValueProperty
[Property] Part Properties must be typed. error

UCDOC UseCase Use Cases must be documented. error

UCTRACE Actor
All Use Case Elements must be traced
from the context. error

Table 1: Validation Suite

By providing a comprehensive set of stereotypes (see Table 2), the hypermodel profile enables
students to focus on modeling the system of interest rather than creating customizations. Some
individual exercises require them to make personalized customizations; the use of the standard
profile simplifies the collaborative term projects models.

Name Metaclass Definition

cable Class
This stereotype is used to create cables (1..* connectors and
0..* ports to describe connections).

capability UseCase
Stereotype applied to use cases to indicate they are
capabilities.

CIS control Class
Stereotype applied to cybersecurity controls from the
Center for Internet Security.

conceptual NamedElement
Stereotype applied to elements of the conceptual
architecture.

context NamedElement Stereotype applied to context elements.
dissociation Association Stereotype used to dissociate elements.

exception Extend
Stereotype applied to extend relationships associated with
"rainy day" scenarios.

goal UseCase Stereotype applied to goals of the MEPAG report.

hazard UseCase
This stereotype is applied to hazard that represent
undesired safety-related outcomes.

immutable NamedElement

This stereotype is applied to model elements that cannot be
modified. The documentation should be used to indicate
the rationale.

inheritance NamedElement Stereotype applied to elements used to inherit relationships.
investigation UseCase Stereotype applied to investigations of the MEPAG report.
line contact Connector Stereotype for line contact physical interfaces.
logical NamedElement Stereotype applied to elements of the logical architecture.

mission NamedElement
Stereotype applied to elements used to define a NeMO
mission.

MPD NamedElement
Stereotype used to assign students to given model
elements.

objective UseCase Stereotype applied to objectives of the MEPAG report.
physical NamedElement Stereotype applied to elements of the physical architecture.
pinout Class Stereotype applied to the pinout-level interface blocks.

power scenario UseCase
Stereotype applied to use cases that represent power
scenarios

Name Metaclass Definition

power usage Usage
This stereotype is applied to usages that describe power
scenarios.

reference NamedElement Stereotype applied to reference elements.
social NamedElement Stereotype applied to social elements of a system.

software Class
This stereotype is applied to a block that represents a
software element in the system.

source content Artifact
Stereotype applied to reference elements (such as source
documents, mission statements, needs statements).

sub-objective UseCase Stereotype applied to objectives of the MEPAG report.
test method Activity Stereotype applied to activities to define test methods.
threaded
fastener Connector

Stereotype applied to connectors that describe physical
threaded fasteners.

variant NamedElement
Stereotype applied to elements used to describe variant
architectures.

Table 2: Hypermodel Stereotypes

Metrics suites allow periodic creation of model metrics (e.g., weekly to show model maturation)
(see Table 3). Their use will be expanded as the hypermodel profile matures. For example, the
count of untraced elements will be eliminated (since that is now an error identified by the
validation suite and the expectation is that it will always be zero).

Name Owner
Untraced Use Case Elements Behavioral Analysis Metrics Suite
Use Case Elements Behavioral Analysis Metrics Suite
Use Cases Behavioral Analysis Metrics Suite
Use Cases Without Behavior Behavioral Analysis Metrics Suite
Logical Blocks Logical Architecture Metrics Suite
Logical Connectors Logical Architecture Metrics Suite
Logical Operations Logical Architecture Metrics Suite
Logical Part Properties Logical Architecture Metrics Suite
Logical Ports Logical Architecture Metrics Suite
Unrealized Logical Connectors Logical Architecture Metrics Suite
Unrealized Logical Operations Logical Architecture Metrics Suite
Untyped Logical Part Properties Logical Architecture Metrics Suite
Untyped Logical Ports Logical Architecture Metrics Suite

Table 3 Hypermodel Metrics Suites

Notable Customizations

The profile provides a stereotype for software (which is modeled identically to hardware, with
blocks, operations, ports, and part properties). The exception stereotype is applied to
<<extend>> relationships to identify use cases as “rainy day” scenarios.

Power scenarios and <<power usage>> relationships are used to illustrate the use of a model in
analysis. For example, a considerable effort is required to analyze power consumption with a
fully-executable model; as elements change state, power consumption increases or decreases. A

simple, direct approach is to identify power scenarios and associate with them the part properties
that consume power under those conditions. The customization for power scenario contains a
script that adds up the power consumption of all part properties that are connected to it with
<<power usage>> relationships. The <<physical>> blocks typing each part property contain the
power demand information and the script respects multiplicities to calculate the total power
demand. Each <<power usage>> has a usage factor property (default value = 1) to allow
individual usage-based tailoring (for example, a low-power mode). The required relationships
can be rapidly made in a dependency matrix; the results of the analysis are displayed in tabular
form (such as the percentage of demand for a given scenario for each part property). This
example also shows the value of single authoritative sources of truth (in this case, the power
demand of a block); if the power demand is changed, all impacted scenarios update immediately.

Guidelines for Use

The Hypermodel Profile and stub model are provided at http://hypermodeling.systems. The
author suggests the following:

Establish a TeamWork Cloud (or comparable server for non-MagicDraw tools) and use it to
support modeling classes. Setup and administration of this environment is beyond the scope of
this paper. Using the collaboration server minimizes the need for students to manage local files,
enables the instructor to actively correct issues during help sessions, and provides valuable
practice at collaboration.

Place the stub model and profile on the server and share them with students. As of version 19.0,
users can “clone” models; by having students clone their own copy of the stub model,
administrative burden on the instructor is reduced.

Instruct the students to update the model from the server upon each open (to ensure they have
any changes committed by collaborators) and to run the validation suite as the last step before
committing. This instills in them good modeling practices and fosters pride in maintaining a
“zero error” model.

Instructors may choose structure-first (block/part property/port/operation) or behavior-first (use
case/activity/operation) organization to their curricula. Students may have an easier time
understanding architectural decomposition because they can see example systems; behavioral
analysis (particularly when coupled with the need to create operations to call on activity
diagrams) can be a greater cognitive leap. Because the hypermodel approach is
capability/behavior-first, if a structure-first approach is used any hypermodel projects should be
deferred until appropriate behavior instruction has occurred. Note that the validation suite is
independent of instructional sequence (it checks elements that have been created) and that the
metrics suites are separated into behavioral and structural suites.

The most fruitful instructional method is to create five-to-ten-minute instructional videos
showing tool use and method application. Because system modeling is tool dependent, the use
of PowerPoint slides and static images is of limited utility. Live demonstrations are equally
problematic, not just because of the possibility of error but also because recorded lectures are

often run-on. It is hard for students to locate specific content in a lengthy lecture recording; a
playlist of short task-based videos is far easier to review as needed. The author has
experimented with several recording and editing programs; Camtasia, by TechSmith, has proven
to be the simplest to use. Its productivity aids include easy pan-and-zoom, transitions,
annotations, keystroke display, and archival of source files.

The author has posted more than 100 videos to YouTube (more than 60 dedicated to
hypermodeling) at http://videos.systemsarchitectureguild.org. Instructors are invited to leverage
this body of work in their instructional efforts. Many of these show non-obvious techniques
borne of the author’s experience as a professional, full-time modeler. For example, the “ferret
table” to identify all usages of various elements is particularly useful when refactoring a model.

Whatever approach is taken, it is imperative that the instructor maintain a positive demeanor. No
matter the modeling challenge, it is still easier than trying to find information in a stack of
documents, disconnected databases, Excel sheets, and analytical models. Showing students that
solving a modeling problem elegantly is no different than other engineering challenges and they
must be confident that they can find a way to express engineering information in the modeling
language. It is also critical to infuse a sense of curiosity into students: what queries can they run
to answer important questions related to thought excursions? What tables, matrices, diagrams,
and other derived work products can help them explore the system and support analysis? The
Q.E.D. mnemonic is particularly useful to help them frame modeling investigations:

 What is the Question we need to answer?

 How can we Extract it from the model?

 How should we Display it to stakeholders in a meaningful, easy to consume way [4]

Future Work

In order to quantitatively assess the improvements related to the use of the hypermodeling
profile, a term-long system modeling project created before hypermodeling will be reused with a
new group of students. They will be given the same assignment and both system models will be
assessed with the same metrics and validation suites. This will enable a quantitative assessment
of the model quality improvements related to the profile and the improved instructional videos.

The primary focus of hypermodeling has been to improve the quality of students’ descriptive
models; a near-term objective is to introduce the use of simulation and analysis to allow
automated requirements verification and trade studies. This will require more emphasis on
constraints and parametric diagrams and will be coordinated with instructor of the Systems
Optimization course.

Conclusion

Modeling is hard work and requires mastery of language, tool, method, and often, a new way of
seeing problems and systems. Sharing a customized profile with students reduces the barrier to
entry for novice modelers, allows more time to focus on intermediate and advanced concepts,
permits easier collaborative modeling, and demonstrates the value of reuse. The hypermodel
profile was created to address this need and will undergo continued development as the author’s
modeling approach and skills mature.

Bibliography

[1] D. Cohen, "SE Transformation - “Shaping our Future…”," in NASA Jet Propulsion
Laboratory MBSE Symposium, Torrance, 2019.

[2] Office of the Deputy Assistant Secretary of Defense for Systems Engineering, "Department
of Defense Digital Engineering Strategy," Department of Defense, Washington, 2018.

[3] L. R. D. McMurray, AFLCMC/CC, Keynote address, Dayton: 2017 Wright Dialogue With
Industry Conference, 2017.

[4] M. J. Vinarcik, "The NeMO Orbiter: A Demonstration Hypermodel," in Ground Vehicle
Systems Engineering and Technology Symposium, Novi, 2018.

[5] M. J. Vinarcik, "Interdiction: The Application of SysML State Machines to Cybersecurity,"
in National Defense Industrial Association Systems Engineering Conference, Tampa, 2018.

[6] M. J. Vinarcik, "A Pragmatic Approach to Teaching Model Based Systems Engineering:
The PRZ-1," in American Society for Engineering Education Annual Conference,
Columbus, 2017.

Appendix: Hypermodel Style Guide

Use Cases:

 Behavioral sketchpad to show behaviors/capabilities.

 <<capability>> stereotype applied to capabilities

 <<extend>> use cases are triggered by extension points

 <<include>> use cases are always executed by the use case to which they are connected

 May be more fully described by activity diagrams

 <<dissociation>> relationships used to exclude inherited relationships

 <<exception>> relationships used to capture “rainy day” use cases

 Specialized by other use cases realized by variants (provides a basis for variant-specific
activity diagrams)

Activity Diagrams:

 Flowcharts of behavior; describe activities that are made up of actions

 Call behavior actions execute other activities (activity diagrams)

 Call operation actions execute “leaf node” functions owned by functional (activities),
logical (blocks), or physical (blocks) elements (the smallest behaviors we will model)

 Send and accept event actions model messages flowing into/out of activities and may be
assigned to ports

 Complicated logical behaviors may be modeled (decision nodes, forking, etc.)

Functional Architecture (optional):

 Composed of activities that own operations

 They are only used as containers for operations

 They should be organized so that most operations within a given activity are realized by a
logical block (for example, a collection of testing/status/heartbeat functions that always
are performed by a subsystem)

 These may be omitted if it is more appropriate to begin modeling at the logical level

Operations:

 Model elements that MUST be owned by a block or activity

 May own in, out, or result parameters

 Parameters are typed by signals

 Parameters may have multiplicities

Signals:

 Are used to type parameters, information flows, item flows, flow properties, and send or
accept events

 Can own attributes that include other signals

Logical Blocks

 Own part properties typed by blocks

 Own operations that realized operations owned by functional blocks

 Are connected to other logical blocks by connectors (ports may also be used, if
appropriate)

 May own value properties typed by value types (which are typed by units)

Physical Blocks

 Own part properties typed by blocks

 Own operations that realize operations owned by logical blocks

 Own proxy ports typed by interface blocks

 Are connected to other physical blocks by connectors

 May own value properties typed by value types (which are typed by units)

Interface Blocks:

 Own flow properties typed by signals

 May own ports typed by other interface blocks

 May own signals and interface blocks (if appropriate)

State Machines

 All transitions are defined by signals, change events, time events, or operations

 All states have entry/do/exit behaviors defined

 Most do behaviors will call activities owned by use cases; alternately, the activities may
be moved from the use cases to the states.

End state:

 All use cases are decomposed by activity diagrams

 All activity diagram nodes are either call behavior nodes that trigger other activities or
are call operation nodes triggering leaf-node operations on activities, or logical/physical
blocks

 Functional requirements are either <<satisfied>> by operations or by activities

 All leaf-node functions are operations on with in, out and result parameters typed by
signals.

 Ports have been added to the logical blocks (if appropriate) and are typed by interface
blocks

 Internal block diagrams have been created to show how logical blocks connect; all
connectors have item flows showing what signals flow along them.

 Item flows are used because of their ability to connect deeply nested ports and relate
object flows, conveyed information, and messages

 All object flows, messages, and signal event transitions are mapped to item flows.

 <<physical>> blocks realize logical blocks and are used to redefine part properties of
each physical architectural variant.

 All quality checks pass (no untyped elements, documentation fields complete, no
unconnected pins, etc.)

Requirements:

 All functional requirements are satisfied by operations or activities

 All interface requirements are satisfied by ports

 All physical and performance requirements are satisfied by value properties

 All design constraints are satisfied by blocks

 All requirements are verified by test cases

