
Paper ID #33203

Implement Your DSP Algorithm on Android Tablet: Real-time DSP Labora-
tory
Course

Prof. Thomas Moon, University of Illinois at Champaign Urbana

Thomas Moon received the B.S. degree in electrical electronic engineering from Pohang University of
Science and Technology (POSTECH), Pohang, Korea, in 2008, and the Ph.D. degree in electrical and
computer engineering from Georgia Institute of Technology, Atlanta, GA, USA in 2015. Between 2015
and 2017, he worked at IBM in Burlington, Vermont where he developed mmWave test equipment as a
principle development engineer. He joined Coordinated Science Lab, University of Illinois at Urbana-
Champaign (UIUC), IL, USA in 2017 as a post-doctoral researcher. He has been a Teaching Assistant
Professor at Department of Electrical and Computer Engineering at UIUC. His current research interests
include wireless sensing and communication in mmWave.

Prof. Minh N. Do, University of Illinois at Champaign Urbana

c©American Society for Engineering Education, 2021

Work-In-Progress: Implement Your DSP Algorithm on Android Tablet:
Real-time DSP Laboratory Course

Abstract
The rapid development of embedded systems brings new opportunities for modernized real-time
digital signal processing (DSP) education. This paper introduces a novel real-time DSP
laboratory course that aims to give students hands-on experience with real-time embedded
systems using Android tablets at an early stage of their careers. The students broaden and deepen
their understanding of basic DSP theory and techniques and learn to relate this understanding to
real-world observations and applications. The students learn industrially relevant skills such as
rapid design prototyping in Python and Android development of DSP applications in C++/Java
for computationally constrained mobile devices. The course advances in two phases: structured
labs and team projects. In the first half of the course, a series of structured labs are provided to
implement and analyze real-time DSP systems that utilize fundamental DSP concepts acquired in
the introductory signal processing course. The fundamental concepts include topics such as FIR
and IIR filtering, multi-rate processing, sampling, windowing, and spectral analysis. The
remaining weeks in the course are about implementing and simulating a DSP algorithm of a
student’s choice from a set of seminal DSP papers such as adaptive filtering, pitch detection,
edge-aware filtering, motion tracking, pattern recognition, etc. The team project revolves around
the development, testing, presentation, and documentation to help the students defend their
proposed design and receive feedback from the teaching staff. We have offered this course for
four years, and the student’s feedback in the form of survey questionnaires has confirmed that this
course has been successful.

1 Introduction
The growing popularity and trend of mobile devices have impacted our lives in a wide range. In
particular, mobile devices such as smartphones and tablets have become ubiquitous. Such mobile
devices with higher computing power now integrate various I/O modalities, including
high-resolution cameras, microphones, speakers, and IMU sensors. The hardware improvement
has inspired new mobile applications in signal processing areas such as human voice recognition,
gesture tracking, music discovery, face recognition, etc. Consequently, it is important to reflect
these trends in the embedded DSP education.

However, conventional courses tend to persist in the traditional application whose modality has

been one-dimensional audio or communication signal. Most embedded DSP courses take a
bottom-up approach, starting from the architecture, data types, and I/Os of the hardware platform,
then reaching the DSP topics such as digital filters and spectral analysis. Such limitations come
from their hardware platforms, typically a development kit for digital signal processors. For
example, the DSP development kits from Texas Instruments are the most popular choices in the
embedded DSP courses [1, 2, 3]. With the bottom-up approach, the students often find it
challenging to absorb all the hardware details and are likely to lose interest before reaching the
main DSP topics. Moreover, the development kits are typically limited by their computing power,
memory, and modality of I/O’s. Such limitation hinders the scope of courses from more advanced
applications in image and video processing.

In this paper, we introduce a novel senior-level real-time DSP laboratory course. The course
targets senior Electrical and Computer Engineering (ECE) students who already took their first
DSP course and introductory programming courses of Python and C/C++. However, the
programming skills used in the course do not require advanced concepts. The course aims to
introduce the fundamentals of real-time DSP by purposefully hiding the complexities associated
with the hardware. This enables students to stay focused on learning new signal processing topics
and progress toward the non-traditional DSP topics. We adopted Android tablets for the hardware
platform. Unlike the conventional DSP development kits, the Android tablet supports higher
computing power, more memory space, various I/O modality, a user-friendly interface, and high
mobility. With less burden and hassle from the hardware, the course can provide a group project
helping students explore research-level topics in the signal processing field and implement one of
them. Although the course targets senior students, this aspect also attracts some graduate students
(10% of the students registered in Spring and Fall 2020). This paper is an extension of work that
studied a hybrid real-time DSP course using DSP processors and Android tablets together
[4].

The rest of this paper is organized as follows. In Section 2, we present the components of the
course and how they are structured. Then, we provide the modifications made in Fall 2020 from
in-person to online due to the pandemic in Section 3. In Section 4, we summarize the assessment
results, then conclude the paper in Section 5.

2 Course Components
This section describes the course components, outlines how they are structured, and provides
some examples.

2.1 Embedded DSP Platform - Android Tablet
A critical component in this course is the hardware platform. A large variety of devices are
available, from conventional DSP development kits to more modern mobile devices. We chose a
commercial Android tablet as opposed to a traditional DSP development kit or an open-source
platform for the following reasons:

1. Out-of-box experience: Students spend zero setup time for its peripherals such as a
touchscreen, speaker, microphone, camera, IMU sensors, accelerated graphics, etc. It

minimizes the distractions for the students who are not familiar with configuring the
hardware setup and environment.

2. Developer friendly: Android Studio is the official Integrated Development Environment
(IDE) for Android app development. It offers many developer-friendly features such as a
flexible Gradle-based build system, a fast and feature-rich emulator, a unified environment
for all Android devices, C++ support, etc. It is available on most operating systems
(Windows, macOS, and Linux). All the developing tools work out-of-the-box with no need
to build the tools from the source. It minimizes students’ time to set up the tools and
provide a consistent development environment.

3. Mobility and wireless connectivity: Android tablets provide integrated I/Os into a single
hardware platform. Many such devices can also connect to the Internet via Wi-Fi. The
mobility and wireless connectivity allow students to run more experiments with fewer
efforts and easily demonstrate their works by a video conference app.

The tablets are managed by the course staff. A group of the students (two or three) shares one
tablet. During the pandemic, we distribute one tablet for each student to minimize unnecessary
inconvenience.

From Spring 2017 to Spring 2020, we chose Nvidia SHIELD tablet for its powerful graphic
performance and low-price. As the tablet was discontinued, we adopted Lenovo Tab M10 from
Fall 2020 for its comparable performance and price. Figure 1 compares their hardware
specifications and price.

Nvidia SHIELD Tablet Lenovo TAB M10
Price $200 (discontinued) $200

CPU 2.2 GHz ARM Cortex A15 MediaTek® P22 Tab, Octa Core 4 x 2.3
GHz + 4 x 1.6GHz

GPU 192 core Kepler Integrated IMG GE8320

RAM 2 GB 4 GB

Display 8-inch 1920x1200 10-inch 1920x1200
Android
version Android 7.0 Nougat Android 9.0 Pie

Sensors IMU, MIC, Speaker, Camera

Figure 1: Android tablets used in the course

2.2 Structured Labs
The first seven weeks of the course are structured labs based on the fundamental DSP concepts
learned from ECE 310. By completing the weekly labs, students should be familiar with the
Android tablet as a real-time DSP hardware and be able to implement, debug, and test the
real-time DSP algorithm. The attainment of these learning outcomes is assessed through quizzes,
prelab assignments, and lab demonstrations. Table 1 shows the topics and desired learning
outcomes of the structured labs covered in Spring and Fall 2020.

Lab
number

Topic Desired Learning Outcomes

Lab1 IMU pedometer, peak detec-
tion

Be familiar with Python and Android Studio development
environment.

Lab2 Real-time audio filtering Learn how to design FIR band-stopped filter in Python and
Android. Understand real-time audio processing mecha-
nism in Android.

Lab3 Spectrogram Understand the effects of windowing, zero-padding, and
batch-processing in the frequency domain by the Short-
Time Fourier Transform (STFT).

Lab4 Pitch detection, autocorrela-
tion

Learn how to detect the pitch of a speech signal in real time
via autocorrelation.

Lab5 Pitch synthesis, TD-PSOLA Understand a simplified model for human speech and how
to use this model to shift the frequency of an incoming
speech signal. Learn how to produce a continuous speech
signal within a batch processing framework.

Lab6 Image processing, 2D convo-
lution, Histogram equalizer

Learn how to process an image using histogram equaliza-
tion and 2-D convolution.

Lab7 Video processing, Kalman
filter, Tracking by KCF

Learn how to process video with the OpenCV library and
track objects using KCF (Kernalized Correlation Filters)
tracker.

Table 1: Topics and desired learning outcomes of structured labs.

1. Lab quizzes: At the beginning of each lab, a 15 minutes in-lab quiz asks the students the
basic concepts learned in the previous lab. The quiz is a mix of True/False, multiple-choice,
and short-answer questions. From Fall 2020, the in-lab quizzes were replaced by
computer-based-testing (CBT) format due to COVID-19.

2. Prelabs: Prelab aims to reinforce the materials and knowledge covered in the lectures and
the prerequisite courses. Students develop and test DSP algorithms in a high-level language
such as Python before working on the corresponding lab.

3. Labs: The labs’ main task is to port the algorithm tested in the prelab into Android tablets
using C++/Java. We design the labs to showcase the practical challenges of implementing a
real-time algorithm on embedded platforms and further introduce how to solve the
challenges. For example, students work on a scenario that discontinuity and distortion arise

Figure 2: Examples of quizzes.

while synthesizing a speech signal. The discontinuity is caused by segmenting and
processing the data in real-time, which is not a common issue in simulation. We introduce
them to a block processing algorithm (PSOLA in Lab5) that addresses the discontinuity
issues.

2.2.1 Example: Spectrogram lab

In this lab, students learn the effects of windowing and zero-padding on the Discrete Fourier
Transform (DFF) of a signal and the effects of data-set quantities and weighting windows used in
power spectral density estimation. We also introduce the Short-Time Fourier Transform (STFT)
as a tool to visualize the time evolution of the frequency content of non-stationary signals, such as
speech.

1. Lab Quiz: A set of multiple choice and short answer questions tests students’ understanding
of the topics. Two examples are shown in Figure 2.

2. Prelab: The prelab is composed of three parts about zero-padding and windowing in DFT,
frequency resolution, and STFT. For example, students are asked to explore the effect of
multiplying the time signal by different window functions and using zero-padding to
increase the length (and thus the number of sample points) of the DFT. Figure 3 shows the
Python code and assignment provided to students.

3. Lab: In the previous lab (Lab 2), OpenSL, a royalty-free audio API tuned for embedded
system, is introduced to students. This lab aims to use OpenSL and implement a real-time
STFT in Android. First, students receive a buffer from the microphone and convert the
samples from byte-packed PCM-16 to an integer-type variable. Second, students use the
Kiss FFT library for computing the FFT in Android. Importing the library has already been
done in the provided code, and students need to figure out how to use it. To provide more
insight into the real-time process, we emphasize the processing time when handling audio
data. For example, if it takes too long to process a buffer, the next buffer may be missed.
Timing is not a problem when dealing with offline data, but it is a critical factor while

(a)

(b)

Figure 3: Example of prelab: (a) assignment and (b) Python code provided to students.

developing the algorithm on a real-time embedded system. Figure 4 (a) and (b) shows the
C++ code and assignment provided to students, and Figure 4 (c) shows the final
implementation of the real-time STFT.

The grading is based on the completion of the laboratory assignment and oral examination
during the demonstration. TA’s ask questions on the underlying theory, details of the
implementation and code, and the system’s observed behavior. For example, in Lab3, the
following questions are asked by TA’s.

• Why would you use a STFT over a single-snapshot FFT?

• What allows us to ignore the second half of our FFT output? Recall the Conjugate
Symmetry property of the Fourier Transform.

• Given a buffer size N and a sampling rate Fs, how much time do you have to
complete your processing before the next buffer comes in?

(a)

(b) (c)

Figure 4: Example lab: (a) assignment and (b) C++ code provided to students, and (c) sample
result of the implementation.

2.3 Independent Group Projects
After the 7 structured labs, students explore more advanced DSP topics by choosing a research
paper. Groups of two are typically recommended, but three or one is allowed on rare occasions.
We provide a list of recommended papers on the course website. Students can consult with the
instructor and TA’s in picking a paper. Table 2 shows the count of topics chosen by the groups in
Spring 2020 and Fall 2020. Note that two or more topics can be counted for some groups based
on their final implementation.

The project follows the basic procedure similar to the structures labs: 1) students simulate the
algorithm using a high-level language (Python) for 2 weeks (called “Assigned Project lab”), then
2) build the final implementation on the tablet (called “Final project”).

Category Topic SP 2020 FA 2020 Total By Category

Audio processing

Audio classification [5] 3 0 3

10
Speech synthesis [6] 2 1 3
Speech detection [7] 1 2 2
Music synthesis [8] 1 1 2

Image/Video processing

Shape detection [9] 2 2 4

15
Face recognition [10] 2 3 5

Text detection [11] 2 1 3
Object tracking [12, 13] 3 0 3

Table 2: Count of groups by project topics.

2.3.1 Assigned Project Lab

Before starting the assigned project, students submit a proposal outlining the work to perform. In
the proposals, students should 1) review the chosen papers and summarize the algorithms to be
implemented, 2) develop a testing and validation plan for Python simulation, and 3) propose
rough ideas for final project applications of the algorithm. By completing the 2-week-long
assigned project lab, students better understand the algorithm and collect a preliminary result
against embedded implementation.

2.3.2 Final Project

Similar to the assigned project lab, students start the final project by submitting a final project
proposal. The proposal includes 1) a description of the intended final “product” (e.g., DSP-based
program for setting calendar by text recognition), 2) a literature review on the specific algorithm
or approach for the implementation, 3) the results from the assigned project lab, 4) two milestones
to be achieved during the course of project development, 5) testing and validation plan, and 6) the
minimum viable product (MVP) and stretch goals.

At the beginning of the final project stage (after 2-week assigned project lab), students
demonstrate their assigned project work together with an oral presentation on the final project
proposal. The oral presentation includes the project goals, the proposed project design, the
background research findings or other arguments leading to selecting this approach as the
preferred solution, and a plan for completion, including milestones, timetables, and individual
responsibilities or work packages. A test and verification plan must also be included. Results and
observations from the Assigned Lab are included as part of this presentation.

The final project proposal and oral presentation summarize the background research and the
preliminary decisions as to the exact scope of the project, the algorithms and approach to be used,
and the expected final product. The resulting revised project plan serves as a “contract” with
measurable milestones to specify the technical accomplishments required for full credit. The
project’s final evaluation is based on completing the proposed work as agreed in the revised
project plan after the oral presentation.

During the project, students demonstrate 2 milestones toward the completion of their projects.

The revised project plan must clearly state the deliverables at each of these project milestones as
“contract” between the student and the teaching staff. These project milestones are evaluated
based on this contract.

In the final project demonstration, the group presentation provides each group with the
opportunity to show the final project deliverable and the implemented algorithm. The groups
demonstrate the system or all functional components if incomplete, perform verification
experiments, and show test results to the course staff.

After the final project demonstration, each group submits a final report summarizing literature
reviews, technical descriptions of the implemented algorithms, final results including the testing
done on the project and problems encountered, suggestions for extensions and modifications, and
software/hardware documentation.

2.4 Lectures
There are one-hour lectures every week. During the structured-labs period, the lecture discusses
the DSP algorithm and theoretical background of the upcoming lab. For the remaining weeks, the
lecture covers a wide variety of embedded DSP topics that were not necessarily discussed in the
structure labs. Special guests, including faculties, graduate students, or industry engineers, are
often invited to give a seminar.

3 Modifications for Online Delivery
In Fall 2020, the course was switched from in-person to fully online due to the pandemic. Thanks
to the Android tablet’s mobility and wireless connectivity, we only need a few minor
modifications.

• Lab and project demonstration: Using Zoom video conferencing application, students can
share the tablet screen and demonstrate their work in real-time. However, as the Android
version Zoom does not support in-app sound sharing, Lab 2 and 5, which grade the output
sound, needed to be modified. We suggested the students use an aux cable to re-route the
sound to a laptop or a desktop (the Window and Mac version Zoom supports sound
sharing). For the students who did not have the second device, we provided modified labs
that combine Lab 3 to display the spectrogram of the output sound.

• The in-lab quizzes were converted to computer-based testing (CBT).

• The live lectures were delivered via Zoom, and the recorded lectures were provided in the
course website.

4 Results
Each student who took the course in Spring 2020 and Fall 2020 was asked to respond to five
questions. Each answer was mapped to a numerical value. The survey was anonymous. The five
survey questions are listed below.

• Q1: Rate the overall quality of this course. [1-Exceptionally Low, ..., 5-Exceptionally High]

• Q2: How much have you learned in this course? [1-Very Little, ..., 5-A Great Deal]

• Q3: Statement of objectives and purposes throughout course. [1-Never Clear, ...,
5-Consistently Clear]

• Q4: Quizzes - fairness. [1-Unfair Content, ..., 5-Very Fair Content]

• Q5: Quizzes - grading. [1-Unfairly Graded, ..., 5-Fairly Graded]

There were 8 responses out of 31 students in Spring 2020 and 9 out of 21 students in Fall 2020.
The survey results are summarized in Table 3 with each question’s mean and standard deviation
(STD).

Questions Spring 2020 Fall 2020
Mean STD Mean STD

Q1 4.25 1.16 4.00 1.22
Q2 3.88 1.13 4.22 0.97
Q3 4.00 1.07 4.11 1.27
Q4 4.00 0.76 4.00 1.12
Q5 3.88 1.13 4.00 1.12

Table 3: Survey results from Spring and Fall 2020 courses.

Some students provided encouraging written remarks, such as

• “The course gives us an opportunity to learn how to design an app, which involves multiple
programming languages.”

• “Very clearly laid out requirements for what was required.”

• “I loved how hands on the course was. Being able to directly apply what was learned in
lectures to python and C++/Java was one of my favorite things about the course. That
leads me to the labs which I thought were another strength of the course. I liked the
diversity of content and learned a lot working on them. I also liked the flexibility given with
the assigned and final labs. It was fun being able to have the agency to pick what we
worked on and figure out what steps we needed to take to make something functional.”

• “Interesting topics covered, useful skills like Android taught.”

Some also offered constructive suggestions for improvement, such as

• “I think additions to the lectures can be made to add more practice and to address real life
practices. Most of the learning is done in the lab and that is most likely by design, but if
there is a lecture then there might as well be a deeper dive into the material.”

Table 4 shows the number of groups who fully implemented or partially implemented or failed to
implement the final project. A fully implemented project means that a group completed all the
proposed features and demonstrated and presented them in time. A partially implemented project
is that a group completed a part of the proposed features or did a late demo.

Spring 2020 Fall 2020
Fully implemented 9 6

Partially implemented 3 3
Failed to implement 0 1

Table 4: Number of groups completed Final Project.

Based on the survey results in Table 3, the written responses, and the final project completion rate,
we have made a few key observations:

• Most students felt that the course was a valuable experience. For Q1 in the survey, 82.4% of
students rated the course’s quality as high or exceptionally high (4 or 5 out of 5). For Q2,
76.5% of students felt they learned a good or great amount in the course (4 or 5 out of 5).

• The majority of groups were able to complete the final project. 21 out of 22 groups
demonstrated their works in the final demo, although 6 of them were a partial
implementation.

• The conversion for online delivery was successful. With some modifications described in
Section 3, the online demos for lab sections and final project were smooth. Comparing Q4
and Q5 between Spring and Fall 2020, it suggests that the conversion to CBT quizzes was
also successful.

5 Conclusion
In this paper, we present a new senior-level embedded DSP laboratory course driven by Android
tablets. The Android tablet proved to be a powerful and flexible platform allowing students to
explore more advanced topics in the embedded DSP field. The qualitative survey data and
students’ feedback indicates that the combination of the structured labs and group project
succeeded in engaging students’ interest. In the future, we plan to run more detailed surveys to
collect students’ feedback on the lab components and whether the course has impacted their
career in the embedded DSP area.

References
[1] Arizona State University. Eee 404/591 real-time digital signal processing. http://lina.faculty.asu.edu/realdsp/.

[2] The University of Texas at Austin. Ee 445s real-time digital signal processing laboratory.
http://users.ece.utexas.edu/ bevans/courses/realtime/.

[3] University of London. Real-time digital signal processing with tms320c6000.
http://www.ee.ic.ac.uk/pcheung/teaching/ee3 Study Project/index.html.

[4] David Jun, Douglas L Jones, and Minh N Do. From fixed-point processors to android: A hybrid course for
real-time dsp laboratory. In 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting
(DSP/SPE), pages 279–283. IEEE, 2013.

[5] Avery Wang et al. An industrial strength audio search algorithm. In Ismir, volume 2003, pages 7–13. Citeseer,
2003.

[6] Eric Moulines and Francis Charpentier. Pitch-synchronous waveform processing techniques for text-to-speech
synthesis using diphones. Speech communication, 9(5-6):453–467, 1990.

[7] Ronald W Schafer and Lawrence R Rabiner. System for automatic formant analysis of voiced speech. The
Journal of the Acoustical Society of America, 47(2B):634–648, 1970.

[8] John M Chowning. The synthesis of complex audio spectra by means of frequency modulation. Journal of the
audio engineering society, 21(7):526–534, 1973.

[9] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern recognition,
13(2):111–122, 1981.

[10] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1):71–86,
1991.

[11] Hojin Cho, Myungchul Sung, and Bongjin Jun. Canny text detector: Fast and robust scene text localization
algorithm. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3566–3573, 2016.

[12] Md Zahidul Islam, Chi-min Oh, and Chil-Woo Lee. Real time moving object tracking by particle filter. In
International Symposium on Computer Science and its Applications, pages 347–352. IEEE, 2008.

[13] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. High-speed tracking with kernelized
correlation filters. IEEE transactions on pattern analysis and machine intelligence, 37(3):583–596, 2014.

