
Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Session 1520

Implementing CPLD-Based Interfaces for Sensors and Actuators in a

Mechatronics Design Course

Nicholas Krouglicof
Union College, Mechanical Engineering Department

E-Mail: krouglin@union.edu

Abstract

Complex Programmable Logic Devices (CPLDs) are a class of programmable logic
device that are commonly used to implement complex digital designs on a single
integrated circuit. Current applications of CPLDs in the field of computer engineering
include the implementation of bus controllers, address decoders, communication
interfaces, etc. This paper outlines a novel application for CPLDs in the field of
mechatronics. A low cost, microcontroller-based data acquisition system has been
developed that incorporates both a user programmable microcontroller and a user
reconfigurable CPLD. The CPLD basically provides reconfigurable digital I/O that
permits the implementation of interfaces for smart sensors and actuators. Typical
applications include quadrature decoder/counter interfaces for optical encoders, stepper
motors controllers and Pulse-Width Modulation (PWM) motor drives. By incorporating a
CPLD that supports In-System Programmability (ISP) the target device can be
reprogrammed by the user for a variety of applications without removing it from the host
system.

Introduction

Mechatronics can be defined as a design philosophy which encourages engineers to
integrate precision mechanical engineering, digital and analog electronics, control theory
and computer engineering in the design of “intelligent” products, systems and processes
rather than engineering each set of requirements separately. The advantages of the
mechatronics approach to design are shorter design cycles, lower costs, and elegant
solutions to design problems that can not easily be solved by staying within the bounds of
the traditional engineering disciplines.

With an underlying focus on integration, the Mechatronics Design course (MER-180) at
Union College emphasizes the fundamental technologies on which contemporary
mechatronic designs are based: sensors and actuators, system dynamics and control,
analog and digital electronics, microcontroller technology, interface electronics and real-
time programming. The laboratory sessions focus on small, hands-on interdisciplinary
design projects in which small teams of students configure, design, and implement a
succession of mechatronic subsystems, leading to system integration in a final project.

For example, as an introduction to digital design, students apply the fundamental
principals of combinatorial and sequential logic to the design of a quadrature
decoder/counter circuit that is used to interface an incremental optical encoder to a
microcontroller. The design is implemented using the appropriate software development
tools and tested on a Complex Programmable Logic Device (CPLD). Complex

P
age 9.695.1

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Programmable Logic Devices (CPLDs) are commonly used to implement complex
digital designs on a single integrated circuit. As part of the final design project, students
integrate the interface circuit and optical encoder with a DC servomotor / lead-screw
assembly to construct a servomechanism which controls one axis of a simple machine
tool.

While there are numerous applications for CPLDs in the field of computer engineering
[1] (e.g., bus controllers, address decoders, communication interfaces, simple
microprocessors), this paper outlines several novel “mechatronic” applications for
CPLDs that can be readily implemented in an undergraduate laboratory setting.
Pedagogically these applications serve as both case studies for introducing various digital
design methodologies as well as a “toolbox” of predefined modules that can be integrated
into a final design project.

Hardware Platform
The primary hardware platform for the Mechatronics Design course (MER-180) at Union
College is the UC2 system (Union College Universal Controller); a system tailored to the
needs of engineering students at Union College. This novel, low cost, microcontroller-
based system enables students to interface a variety of sensors and actuators to their
laptop computers in a laboratory or studio classroom environment. The system is unique
in that it functions as a data acquisition system, stand-alone controller or data logger. As
illustrated in Figure 2, the UC2 system incorporates both a user programmable
microcontroller and a user configurable Complex Programmable Logic Device (CPLD).
For a more detailed description of the UC2 system, refer to reference [2].

Figure 1: Image of populated printed circuit board for the UC2 system.

P
age 9.695.2

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 2: Block Diagram of System

Complex Programmable Logic Device

Perhaps the most innovative feature of the UC2 system is the incorporation of a user
configurable Complex Programmable Logic Device (CPLD). The CPLD handles all the
routine tasks normally associated with embedded controller applications; data latching,
address decoding, and memory management. This effectively eliminates the need for any
discrete logic on the board. In addition, approximately 75% of the internal resources and
18 IO pins on the CPLD are made available to the user for custom applications. The
CPLD supports in-system programmability (ISP) via the IEEE 1149.1 Joint Test Action
Group (JTAG) test port. This permits the target device to be reprogrammed by the user
without removing it from the host system. Code for the CPLD is developed in either in
Verilog HDL (Hardware Description Language), VHDL (Very High Speed Integrated
Circuit Hardware Description Language) or AHDL (Altera Hardware Description
Language) using the MAX+plus II 9.23 Baseline development environment from
ALTERA. Educational institutions can obtain a MAX+plus II software license for the
specific device used in the UC2 system at no cost over the WEB.

Clearly reconfiguring the CPLD is beyond the capabilities of many students. In
recognition of this, the 18 free IO pins on the device are predefined as 8 digital input lines
and 8 digital output lines plus a free chip select (CS) and a PWM (Pulse-Width-

80C52-BASIC

MICROCONTROLLER

32K X 8 EEPROM

32K X 8 SRAM

12 / 16 BIT ATOD

CONVERTER

COMPLEX

PROGRAMMABLE LOGIC

DEVICE

16 CHARACTER

LCD DISPLAY

RS232

PORT

JTAG

PORT

DIGITAL I/O

(18 LINES)

ANALOG IN

(4 CHANNELS)

DATA BUS

ADDRESS BUS

CONTROL LINES

P
age 9.695.3

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Modulation) signal. These IO signals are all readily accessible by the user through the
microcontroller via the MCS BASIC-52 programming language.

For the advanced user the CPLD provides reconfigurable digital I/O that facilitates the
implementation of hardware interfaces for smart sensors and actuators. This paper details
several typical “mechatronic” applications that have been successfully implemented in
hardware (i.e., in the CPLD) on the UC2 system. These applications include:

• A quadrature decoder/counter interface for an incremental optical encoder
• A unipolar, half-stepping, stepper motor controller
• A Pulse-Width-Modulation (PWM) driver for controlling DC motors.

Conventional tasks (e.g., address decoding) are not the primary reason for incorporating
the CPLD, but can also be explored in a laboratory environment.

Quadrature Decoder/Counter Interface

In digital closed loop motion control systems, optical encoders are customarily used to
translate the rotary motion of a shaft into digital form. Optical encoders typically employ
a Light Emitting Diode (LED) as a light source (or emitter) and a photodiode as a
detector. A codewheel (Figure 3) rotates between the emitter and detector, causing the
light from the emitter to be interrupted by the radial slots in the codewheel. The angular
position of the shaft is evaluated by counting the pulses generated by the detector. For
bidirectional operation, a second emitter/detector pair is positioned on the circumference
of the code wheel so that when the first detector (channel A) reads a slot, the second
detector (channel B) reads a bar. The digital output of channel A is said to be in
quadrature with that of channel B (i.e., 90 degrees out of phase). When the codewheel
rotates in the counterclockwise direction, channel A will lead channel B and the system
must count up. In the clockwise direction, channel B leads channel A and the system
must count down (Refer to Figure 4).

Figure 4: Quadrature decoding timing diagram
illustrating the four possible states.

Figure 3: HEDS-5120 Codewheel
 from Agilent Technologies.

P
age 9.695.4

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

As illustrated in Figure 4, channels A and B can be in one of four possible states. Based
on the past binary state of the two signals and the present state, the binary counter must
be either incremented or decremented as illustrated in Figure 5. By counting high-to-low
or low-to-high transitions on both channels, a resolution corresponding to four times the
basic resolution of the codewheel can be achieved. Thus a typical 512 slot codewheel
yields an effective resolution of 2048 counts per revolution.

Channel A Channel B State

1 0 1

1 1 2

0 1 3

0 0 4

Figure 5: Valid state transitions.

CPLD Implementation

The CPLD implementation of the quadrature decoder/counter interface consists of four
modules; edge detectors for channels A and B, quadrature decoder logic, a 16-bit binary
counter and bus interface circuitry.

Figure 6: Edge-detection circuitry.

P
age 9.695.5

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

The edge detectors operate by sampling the incoming channels at a frequency
significantly higher than the fundamental encoder frequency. In the case of the UC2
system, the global clock is set at 11.0592 MHz which results in a maximum operational
speed of over 300,000 rpm for a typical 512 slot codewheel. As illustrated in Figure 6, a
two-bit shift register employing D-type flipflops is used to detect transitions on channels
A and B.

By way of example, a rising edge on channel A is detected when enc_dec0.q and
enc_dec1.q are “1” and “0” respectively. The transitions between the various states
illustrated in Figure 5 can be decoded by analyzing the outputs of the four D-type
flipflops as shown in Table 1 below.

State Transition Encoder Signals Flipflop outputs: enc_decX.q

Past

State

Present

State

Count Chan

A

Chan

B

0 1 2 3

1 2 UP 1 ↑ 1 1 1 0
2 3 UP ↓ 1 0 1 1 1
3 4 UP 0 ↓ 0 0 0 1
4 1 UP ↑ 0 1 0 0 0
1 4 DOWN ↓ 0 0 1 0 0
4 3 DOWN 0 ↑ 0 0 1 0
3 2 DOWN ↑ 1 1 0 1 1
2 1 DOWN 1 ↓ 1 1 0 1

Note: ↑ and ↓ indicate a rising and falling edge respectively.

Table 1: Summary of quadrature decoding logic.

Although there are several methods of implementing state machines in VHDL or AHDL,
this particular example was implemented by means of a truth table. In an AHDL truth
table, each entry in the table contains a combination of input values that will produce
specified output values.

P
age 9.695.6

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Table 2: Truth table implementation of quadrature decoder.

The two nodes up_cnt and dwn_cnt are subsequently used to increment or decrement a
16-bit binary counter which holds the encoder pulse count. Note that for the majority of
states, nodes up_cnt and dwn_cnt are both “false” and the current count is simply
maintained. In the AHDL implementation of the counter module shown below, the
variable encoder is a 16-bit array of D-type flipflops which allows for 32 complete shaft
revolutions for a 2048 (effective) pulse per revolution encoder.

IF up_cnt THEN
 encoder[].d = encoder[].q + 1;
 ELSE
 IF dwn_cnt THEN
 encoder[].d = encoder[].q - 1;
 ELSE
 encoder[].d = encoder[].q;
 END IF;
 END IF;

TABLE
 enc_dec[3..0].q => dwn_cnt, up_cnt;

 B"0000" => 0, 0;
 B"0001" => 0, 1;
 B"0010" => 1, 0;
 B"0011" => 0, 0;
 B"0100" => 1, 0;
 B"0101" => 0, 0;
 B"0110" => 0, 0;
 B"0111" => 0, 1;
 B"1000" => 0, 1;
 B"1001" => 0, 0;
 B"1010" => 0, 0;
 B"1011" => 1, 0;
 B"1100" => 0, 0;
 B"1101" => 1, 0;
 B"1110" => 0, 1;
 B"1111" => 0, 0;

END TABLE;

P
age 9.695.7

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

The interface circuitry allows the microcontroller to both read and reset the binary
counter. In many respects this is the most complex part of the design since it involves
implementing a tri-state, bidirectional bus. In addition, since the microcontroller data bus
is 8 bits wide, the Most Significant Byte (MSB) of the encoder count must be latched into
a data buffer when the Least Significant Byte (LSB) is read to prevent a false count due
to delays between subsequent microcontroller reads. The interface circuitry is beyond the
scope of this paper but the basic implementation is summarized below.

The LSB and MSB of the binary counter are mapped to memory locations enc_low and
enc_high respectively. The bidirectional data bus is accessed via a tri-state node (tri-
node[7..0]) which is connected to two tri-state primitives corresponding to the LSB and
MSB of the binary counter.

Unipolar Half-Stepping, Stepper Motor Controller

Stepper motors are characterized as bipolar or unipolar. Bipolar stepper motors have four
lead wires and require a total of eight drive transistors (i.e., two full H-bridges). Unipolar
have an additional center-tap on each phase for a total of six lead wires. With the center-
taps connected to a common voltage source, unipolar stepper motors can be controlled
with four identical NPN or N-channel drive transistors (Figure 7). In conventional full-
stepping mode, one motor phase is energized at a time resulting in minimum power
consumption and high positional accuracy regardless of winding imbalance. Half-
stepping control alternates between energizing a single phase and two phases
simultaneously resulting in an eight-step sequence which provides higher resolution,
lower noise levels and less susceptibility to motor resonance.

The desired drive waveforms are illustrated in Figure 7. The eight step drive sequence
shown (steps 1 through 8) advances the stepper motor four full steps or eight half steps.
Reversing the drive sequence (i.e., from step 8 towards 1) reverses the direction of
rotation.

tri_node[7..0] = tri_enc_low[7..0].out;
 tri_enc_low[7..0].in = encoder[7..0].q;
 tri_enc_low[7..0].oe = enc_low & !read/;

% MSB of encoder count is latched when LSB is read to prevent a false
count due to delay between reads %

 enc_latch[].clk = clk;
 enc_latch[].clrn = VCC;
 enc_latch[].prn = VCC;
 enc_latch[].ena = enc_low & !read/;
 enc_latch[].d = encoder[15..8];

 tri_node[7..0] = tri_enc_high[7..0].out;
 tri_enc_high[7..0].in = enc_latch[7..0].q;
 tri_enc_high[7..0].oe = enc_high & !read/;

P
age 9.695.8

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

STEP TRANSISTORS

 1 2 3 4

1 ON OFF ON OFF

2 ON OFF OFF OFF

3 ON OFF OFF ON

4 OFF OFF OFF ON

5 OFF ON OFF ON

6 OFF ON OFF OFF

7 OFF ON ON OFF

8 OFF OFF ON OFF

Figure 7: Half-step switching sequence for unipolar stepper motor.

CPLD Implementation

As with the decoder/counter interface, there are several possible methodologies for
implementing a stepper motor controller on a CPLD [3] [4], however synthesizing the
desired waveforms by applying the basic principles of synchronous sequential circuit
design has significant pedagogical value.

The basic design is that of a conventional synchronous counter employing JK-type
flipflops running off a common clock. In this particular case, four flipflops are required to
generate the required waveforms for the four drive transistors. In order to achieve speed
control, the common clock is generated by the microprocessor programmable timer. As
shown in Tables 3 and 4, the two inputs to the flipflops, J and K, are synthesized from the
current output state of the flipflops using conventional combinatorial logic. The
appropriate Boolean logic functions are determined by applying Karnaugh maps of five
variables. Four of the variables are the current outputs of the flipflops (Q0 to Q3). The
fifth variable, Qt, is a direction bit. If Qt equals zero the sequence advances from step 1
towards 8, whereas if Qt equals 1, the direction is reversed. The complete schematic for
the unipolar, half-stepping, stepper motor controller is shown in Figure 8 while the
AHDL implantation is shown in Table 5.

Although this particular design may appear somewhat complex, it was successfully
completed by senior undergraduate students who genuinely appreciated seeing the fruits
of their labors implemented in hardware and tested on a real stepper motor.

P
age 9.695.9

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Table 3: Truth Table for half-step switching sequence.

Table 4: Karnaugh maps for stepper motor half-stepping synchronous counter design.

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X 1 0 0 X X X X 00 X X X X X X 0 0

01 X 0 0 0 X X X X 01 X X X X X X 1 0

11 1 X X 0 X X X X 11 X X X X X X X 0

10 0 X X 0 X X X X 10 X X X X X X X 1

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X 0 X X X X 0 0 00 X X 1 0 X X X X

01 X 1 X X X X 0 0 01 X X 0 0 X X X X

11 0 X X X X X X 0 11 X X X 1 X X X X

10 1 X X X X X X 0 10 X X X 0 X X X X

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X X X 1 X X X 0 00 X 0 0 X X X 1 X

01 X X X 0 X X X 1 01 X 0 1 X X X 0 X

11 0 X X 0 X X X 0 11 X X X X X X X X

10 0 X X 0 X X X 0 10 X X X X X X X X

000 001 011 010 110 111 101 100 000 001 011 010 110 111 101 100

00 X 0 0 0 X X 0 1 00 X X X X X X X X

01 X 0 0 1 X X 0 0 01 X X X X X X X X

11 X X X X X X X X 11 0 X X 0 X X X 1

10 X X X X X X X X 10 0 X X 1 X X X 0

J0 = Q2*Q1' * Qt + Q2' *Q1' *Qt' K0 = Q3*Qt + Q2*Qt'

J3 = Q2' *Q0' *Qt' + Q2' *Q1' *Qt

J2 = Q3' *Q1*Qt + Q3' *Q0*Qt'

K3 = Q3*Q1*Qt + Q0*Qt

K2 = Q3' *Q1*Qt' + Q0*Qt

J1 = Q3' *Q0' *Qt' + Q3*Q0' *Qt K1 = Q2*Qt + Q3*Q0' *Qt'

Present Input Next

Q3Q2Q1Q0 Qt Q3Q2Q1Q0 J3 K3 J2 K2 J1 K1 J0 K0

1010 0 1000 X 0 0 X X 1 0 X

1010 1 0010 X 1 0 X X 0 0 X

1000 0 1001 X 0 0 X 0 X 1 X

1000 1 1010 X 0 0 X 1 X 0 X

1001 0 0001 X 1 0 X 0 X X 0

1001 1 1000 X 0 0 X 0 X X 1

0001 0 0101 0 X 1 X 0 X X 0

0001 1 1001 1 X 0 X 0 X X 0

0101 0 0100 0 X X 0 0 X X 1

0101 1 0001 0 X X 1 0 X X 0

0100 0 0110 0 X X 0 1 X 0 X

0100 1 0101 0 X X 0 0 X 1 X

0110 0 0010 0 X X 1 X 0 0 X

0110 1 0100 0 X X 0 X 1 0 X

0010 0 1010 1 X 0 X X 0 0 X

0010 1 0110 0 X 1 X X 0 0 X

Half-Stepping Forward and Backward

P
age 9.695.10

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Figure 8: Schematic of stepper motor controller.

Table 5: AHDL implementation of stepper motor controller.

stepmot3.CLK =pwm_in;
stepmot3.K =stepmot3.q & stepmot1.q & data0 # stepmot0.q & !data0;
stepmot3.J =!stepmot2.q & !stepmot0.q & !data0 # !stepmot2.q & !stepmot1.q & data0;
stepmot3.clrn =VCC;
stepmot3.prn =stepmot3.q # stepmot2.q # stepmot1.q # stepmot0.q;

stepmot2.CLK =pwm_in;
stepmot2.K =!stepmot3.q & stepmot1.q & !data0 # stepmot0.q & data0;
stepmot2.J =!stepmot3.q & stepmot1.q & data0 # !stepmot3.q & stepmot0.q & !data0;
stepmot2.clrn =VCC;
stepmot2.prn =VCC;

stepmot1.CLK =pwm_in;
stepmot1.K =stepmot2.q & data0 # stepmot3.q & !stepmot0.q & !data0;
stepmot1.J =!stepmot3.q & !stepmot0.q & !data0 # stepmot3.q & !stepmot0.q & data0;
stepmot1.clrn =VCC;
stepmot1.prn =VCC;

stepmot0.CLK =pwm_in;
stepmot0.K =stepmot3.q & data0 # stepmot2.q & !data0;
stepmot0.J =!stepmot1.q & stepmot2.q & data0 # !stepmot2.q & !stepmot1.q & !data0;
stepmot0.clrn =VCC;
stepmot0.prn =VCC;

dig_out0 =stepmot3.q;
dig_out1 =stepmot2.q;
dig_out2 =stepmot1.q;
dig_out3 =stepmot0.q;

 P
age 9.695.11

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Pulse Width Modulation Controller
Pulse Width Modulation (PWM) amplifiers are commonly used to control the speed or
torque or DC servomotors. They operate by switching the DC supply voltage to the motor
“on” and “off” at a fixed frequency (typically 10 kHz). The average current through the
motor is controlled by varying the duty cycle, i.e., the ratio of the “on” time to the period
of the PWM waveform. This effectively changes the speed and torque at the output of the
motor.

CPLD Implementation

The CPLD implementation of the PWM controller is perhaps the simplest mechatronic
example presented in this paper. The microprocessor basically sets the period of the
PWM waveform (totaltime) and the “off” time (lowtime) in clock cycles (Figure 9).
These 8 bit values are latched by the CPLD into two 8 bit registers consisting of D-type
flipflops. These values are compared to a free running counter (cntr). An output pin is set
when cntr exceeds lowtime and cntr is reset when it reaches totaltime. The complete
AHDL implementation of the PWM is given in Table 6.

This particular implementation allows both the duty cycle and base frequency to be set by
the microcontroller. If the base frequency is fixed at say 256 clock cycles then an even
simpler implementation is possible.

Figure 9: Drive waveform for PWM controller.

Conclusions

Undergraduate students are increasingly involved in mechatronic design projects that call
for small, microcontroller-based, stand-alone controllers. For example, student
participating in the SAE Walking Machine Challenge must design an intelligent,
autonomous system that must perform a variety of simple tasks without human
intervention. Both the UC2 system and the CPLD-based interfaces described in this paper
have been used extensively in such projects. Students have also adapted the three basic
interfaces for specific sensors and actuators. For example, a custom PWM controller has
been developed for driving Radio Control (RC) servos directly from the UC2 system.

P
age 9.695.12

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

In the Mechatronics Design course (MER-180) at Union College students apply the
fundamental principals of combinatorial and sequential logic to the design of the various
mechatronic interfaces described in this paper. The designs are implemented using the
appropriate software development tools and tested on the UC2 system with the
appropriate sensors and actuators (e.g., encoder, stepper motor). As part of the final
design project, students integrate the various modules developed into servomechanisms,
robots or autonomous vehicles. As a general observation, students greatly appreciate the
hands on experience and the ability to see their designs in operation (as opposed to on
paper or in computer simulations).

Table 6: AHDL implementation of PWM controller.

totaltime[].clk = clk;
totaltime[].clrn = VCC;
totaltime[].prn = VCC;
totaltime[].ena = io_space_2 & (add_latch[3..0].q == B"0110") & !write/;
%7ff6h%
totaltime[].d = add_data[];

lowtime[].clk = clk;
lowtime[].clrn = VCC;
lowtime[].prn = VCC;
lowtime[].ena = io_space_2 & (add_latch[3..0].q == B"0111") & !write/;
%7ff7h%
lowtime[].d = add_data[];

cntr[].clk = clk;
cntr[].clrn = !(cntr[].q == totaltime[].q);
cntr[].prn = VCC;
cntr[].ena = VCC;
cntr[].d = cntr[].q + 1;

switch.clk = clk;
switch.clrn = VCC;
switch.prn = VCC;
switch.ena = VCC;
pwm_out = switch.q;

switch.d = (cntr[].q < lowtime[].q);

P
age 9.695.13

Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2004, American Society for Engineering Education

Bibliographical Information

1. M.E. Parten, “Teaching Digital Design with HDL,” Proceedings of the 1997 American Society for

Engineering Education Annual Conference and Exposition, Milwaukee, WI, June 15-18, 1997.

2. N. Krouglicof, “Development of a Universal Controller for Pedagogical Applications Involving Data

Acquisition, Data Logging and Control,” Computers in Education Journal, vol. XIII, No. 2, pp. 2-10,
2003.

3. D.J. Ahlgren and J.E. Mendelssohn, “The Trinity College Fire-Fighting Home Robot Contest: A

Medium for Interdisciplinary Engineering Design,” Proceedings of the 1998 American Society for
Engineering Education Annual Conference and Exposition, Seattle, WA, June 21-24, 1998.

4. O. Fucik, B. Wilamowski, and M. McKenna, “Laboratory for the Introductory Digital Course,”

Proceedings of the 2000 American Society for Engineering Education Annual Conference and

Exposition, St. Louis, MO, June 18-21, 2000.

Biographical Information

NICHOLAS KROUGLICOF joined the Mechanical Engineering Department at Union College in
September 2000. Previously, he was a faculty member at the École de technologie supérieure in Montreal.
He has taught and developed laboratories for a number of undergraduate courses relating to system
dynamics and control, mechatronics, automation, and CAD. His research interests are in the areas of
machine vision, intelligent sensors, and mechatronics.

P
age 9.695.14

