
2006-1547: IMPLEMENTING SENSOR NETWORKS USING SENSOR MOTES
AND J-DSP

VISAR BERISHA, Arizona State University
VISAR Ho-Min Doctoral student under an NSF Fellowship working in speech processing and in
real-time sensor fusion.

HO-MIN KWON, Arizona State University
Ho-Min is a Doctoral student working on beamforming and on real-time sensor networks.

Andreas Spanias, Arizona State University
Dr. Andreas Spanias is professor working in the area of signal processing in the Department of
Electrical Engineering.

© American Society for Engineering Education, 2006

P
age 11.728.1

Interfacing Java DSP with Sensor Motes

Abstract

Distributed wireless sensor networks (WSN) are being proposed for various

applications including defense, security, smart stages, and other. The introduction

of hardware wireless sensors in a signal processing education setting can serve as

a paradigm for data acquisition, collaborative signal processing or simply as a

platform for obtaining, processing, and analyzing real-life real-time data. In this

paper, we present a software interface that enables the Java-DSP (J-DSP) visual

programming environment to communicate in a two-way manner with a wireless

sensor network. This interface was developed by writing nesC code that enables

J-DSP to issue commands to multiple wireless sensor motes, activate specific

transducers, and analyze data using any of the existing J-DSP signal processing

functions in real time. A series of exercises were developed to provide hardware

experiences to signals and systems and DSP undergraduate students. The

interface, the exercises, and some preliminary assessment results are discussed in

the paper.

1. Introduction

The application area of wireless sensor networks poses a series of important

research problems in signal processing, communication networks, power-aware

implementations, and remote sensing
1,2

. Wireless sensors have been applied to a

diverse series of applications including ecological and environmental monitoring,

sound and sniper localization, multiple target tracking, smart stages, and

biofeedback
3-7

. Theoretical aspects of sensor networks include power versus

bandwidth tradeoffs, clever parameterization schemes, robust information

extraction, and collaborative sensor configurations. In addition to theoretical

issues, implementation aspects present equally challenging problems owing to the

lack of user-friendly software tools, poorly documented interfaces, “leaky”

buffers, drifting sampling periods, etc. Although many of these problems will be

eventually solved and perhaps some solutions are already available in classified

literature, working with sensor motes is very useful from the education point of

view. Working with inexpensive wireless sensor motes can be valuable in terms

of providing undergraduate experiences with real-time heterogeneous transducer

data. Simple paradigms of signal conversion, data collection and fusion, real-time

filtering, and spectral estimation can go a long way in explaining both theory and

applications of signal processing. The main difficulty, even with simple

implementations of the above, is again the absence of user-friendly software tools.

In this paper, we describe a Java/nesC graphical interface that we developed to

provide capabilities for two way communications between a PC platform and a

network of wireless sensor motes. This interface is integrated in our J-DSP
8
 visual

programming environment and enables J-DSP to issue selective commands to

P
age 11.728.2

multiple sensors on different wireless platforms, acquire data from a single or a

group of sensors, etc. This capability enables students to use all of the existing

signal processing functions in J-DSP and form and execute real-time/real-life

simulations using the user-friendly environment of J-DSP.

Educational simulations include, obtaining data, characterizing the frequency

spectrum using real-time FFTs, performing time-invariant or adaptive filtering,

using simple non-linear functions (thresholds) to detect events at specific

locations, etc. In fact virtually all non real-time online laboratories that we

previously developed
8
 can be adapted for use with real-time sensor data. Not only

can undergraduate experiments now be performed real time, but we can also use

these platforms to provide exposure to exciting new applications. For example,

simple data fusion simulations can be formed by having multiple sensors acquire

and parameterize distinct sub-bands of an audio signal and wirelessly transmit

these sub-band parameters to a base station where data is fused and processed to

recreate the signal. Studies of transmission errors, sampling drifts, the sharing of

signal processing functions, and collaborative approaches are a possibility with

this graphical interface; some of these have already been worked out and

presented to students in the DSP class. TCP-IP control of the motes is seamless

with this Java interface and remote sensing paradigms are a possibility and an

example is presented later in this paper. The rest of the paper is organized as

follows. A hardware overview is presented in Section 2 and the native software

platform for the motes is described in Section 3. Section 4 presents the Java

interface and in the same section we describe J-DSP dialogue panels that are used

to issue commands to the wireless motes and acquire data from the sensors.

Section 5 describes hardware experiments with the sensor motes assisted by J-

DSP and provides preliminary assessment. The last section presents our

concluding remarks.

2. Hardware and Software Overview

A wireless sensor network consists of nodes that have several capabilities. Each

node must have low power consumption, programmable scheduling, independent

operation of transducers, and some basic signal and data processing capabilities.

Researchers at several universities and industrial settings developed circuits - with

the efforts at Berkeley and Rice being perhaps more known in the signal

processing circles. In our work, we used the Crossbow
TM

 motes which we

describe briefly below.

2.1 The Mote

The commercial version of the wireless sensor hardware is called a mote
9-13

. The

sensor mode is comprised of two parts, the MICA2
TM

 microprocessor board (Fig.

1) and the sensor daughter board (Fig. 2). The combination of the two boards can

be used for data acquisition from transducers, data forwarding, or information

processing. The MICA2 board has an RF transceiver, 512KB external flash

P
age 11.728.3

memory, an Atmel ATMega128 8-bit microprocessor operating at 7.3728 MHz

clock. The ATMega128 contains 128KB internal memory and 4KB SRAM and

supports a serial port and and an I
2
C (Inter IC) bus; it has an interface to an 8-

channel, 10-bit analog-to-digital converter. The RF transceiver supports FSK

modulation and a 38.4 kBaud rate.

Figure 1. The MICA2 Platform (by permission from Crossbow).

The sensor board MTS310CA contains a set of five sensors, i.e., a temperature

sensor, a photo sensor, a microphone, an accelerometer, and a magnetometer. A

buzzer and three LEDs are also part of the mote.

Figure 2 MTS310CA Sensor Board (by permission from Crossbow).

2.2 Software Aspects of the Mote

The TinyOS
 TM

, is the operating system used for the distributed wireless sensor

network. The TinyOS libraries, and applications are written in nesC, which is a

programming language for the TinyOS. A TinyOS component hierarchy for

sensing applications was established. To manage the demand of interrupts and

sensing data requests, TinyOS provides an event-driven concurrency model.

TinyOS schedules tasks sequentially corresponding to events caused by interrupts

and all tasks are executed in a FIFO mode. The nesC is a dialect of the C

language designed for component-based applications. The grammar of nesC is an

extension the ANSI C grammar
10

.

3. Interface with JAVA

3.1 Programming the Board (MIB510).

The programming board is connected to the COM port in the PC with a data rate

of 57600bps. USB to RS232 adaptors may be used for USB connectivity. A user

P
age 11.728.4

can download an application onto MICA2 processor board by first

communicating with the base station via the RS232 which then sends the

information to the appropriate mote through the RF connection.

3.2 Serial Programming and Java.

A packet switched communication scheme is implemented between Java-DSP and

each MOTE. The general structure of each data packet is shown in TABLE I. The

first and last portion of the data packet contains the synchronization byte, 0x7E.

This is used to detect the start and end of a packet from the data stream. In

addition, each packet has an identifier that determines its type (as shown in

TABLE I). Following the identifier is the active message, the CRC byte, and the

termination byte
13,14

.
BLE I

TinyOS Data Packet

Index Field Description

0 Sync. 0x7E

1 Packet

Type

There are five known packet types:

‚ P_PACKET_NO_ACK(0x42):

User packet with no ACK required

‚ P_PACKET_ACK(0x41):

User packet with ACK required. It includes a prefix byte. Receiver

must send a P_ACK response with prefix byte as contents

‚ P_ACK(0x40):

The ACK response to a P_PACKET_ACK packet. It includes the

prefix byte as its content.

‚ P_UNKNOWN(0xFF):

An unknown packet type

2 - 33 Active

Messag

e

‚ Destination Address(2 bytes)

‚ Active Message Handler ID(1 byte)

‚ Group ID(1 byte)

‚ Unknown (2 bytes): 0x5D & 0x1A

‚ Node ID(2 bytes)

‚ Message Length(2 bytes)

‚ Channel ID(2 bytes)

‚ Data (20 bytes)

34-35 CRC (2 bytes)

36 Sync. 0x7E

3.3 Creating a GUI for the mote in J-DSP.

The GUI of the mote has been developed and integrated in J-DSP. J-DSP acts as

an additional layer at the base station through a physically wired serial port. Java

requires a signed applet to permit resource access
15

. Additionally, Java needs the

Communication API to build the RS232 serial interface. A user must copy three

different files, win32com.dll, comm.jar, and javax.comm.properties, to the

specific directories described in Communication API manual. The Mote block in

P
age 11.728.5

J-DSP allows users to individually control the available motes and base station

settings. The control panel has four settings, RS232 settings, the mote settings,

output buffering, and the plot area. A user can seamlessly perform a set of sensing

operations (Light, Temperature and MIC sensor) and activate a set of outputs

(LED and Buzzer). The real-time graph plots data as it comes in and the output

buffer allows manipulation of data in individual frames (8 to 256 samples each).

A frame-by-frame interface was written to facilitate the application of signal

processing tools for non-stationary signals. The size of the window and degree of

overlap can be defined by the user. Just about all the J-DSP signal processing

functions, such as the FFT, the filter, the AR spectral estimation, the correlation,

and the periodogram/correlogram, etc, can be interfaced with any of the wireless

motes. Commands to any of the sensor motes can be issued from the J-DSP mote

dialog (Figure 3), and data can be acquired from any sensor on any mote

individually or even from groups of sensors simultaneously.

Figure 3. The Mote Block in J-DSP.

P
age 11.728.6

Figure 4. A simulation of an auto-regressive (AR) spectral estimator operating on

a microphone sensor signal.

4. Exercises with Sensor Motes

The presence of the J-DSP interface enables students to perform real-time signal

processing experiments with signals acquired from the sensor motes. Filter

design exercises have been developed where frequency responses are designed to

select tones generated by two motes and acquired by a third sensor mote with its

microphone activated. Low pass, high pass, and notch filters are designed and

programmed in J-DSP to filter the real time signal captured by the third mote. The

sampling frequency of the motes is set at 8 kHz. The frequencies of the tones are

measured using the FFT and the problems of spectral leakage and resolution are

examined with real time data. Students are asked to observe the overall spectra

with the FFT and with autoregressive spectral estimators (Figures 4 and 5).

P
age 11.728.7

Figure 5. J-DSP real-time filtering block diagram.

In addition to the signal processing functions available in J-DSP, a simple remote

sensing demonstration was also developed. An animated graphical panel, with the

four motes placed in four corners of a 200 square feet room, was also

programmed and integrated in J-DSP as shown in Figure 6. Every mote has four

sensors that are activated from the J-DSP dialog panel and in turn pass continuous

data to J-DSP. Data is obtained from all accelerometers, microphones, light

sensors, and temperature sensors. At the base station data is fused and the

location, temperature, sound and light intensity, and accelerometer reading are

collected. An algorithm is used to locate a walking person within the room by

using all the available sensor data.

Figure 6. Demo of Remote Sensing and Localization.

 P
age 11.728.8

One of the important aspects of this localization experiment is that the sensors can

also be placed at a remote location and communicate with J-DSP through a TCP-

IP connection - thereby demonstrating truly remote sensing that uses the internet

infrastructure.

5. Assessment Results and Concluding Remarks

A group of students of varying technical expertise was selected to perform some

of the experiments described in the paper. Pre/post-lab evaluation questions are

posed to the students before and after completion of the experiments in order to

evaluate the success of using the motes in an educational setting. The questions

are technical and they are posed in order to evaluate the understanding of

important mote concepts. We describe here some of the preliminary results

obtained in this study. The evaluation consisted of 12 multiple choice (MC) and

true/false (TF) questions. Multiple choice questions were of the form “What are

the characteristics of individual sensors in wireless sensor networks”. Preliminary

results show an increase in the average score on the evaluation questions. The

average score in the pre-test was 52.4% with a standard deviation of 14.9,

however this increased to 71.4% with a standard deviation of 12.6 in the post test.

In addition, in TABLE II, we show statistics from each of the questions

individually. For most of the questions, the percent of correct answers

significantly increases. More information, screenshots and AVI files associated

with this study can be found on http://jdsp.asu.edu.

TABLE II

PRE/POST STATISTICS [THE PERCENT OF STUDENTS THAT OBTAINED THE CORRECT

ANSWER] FOR EACH QUESTION OF THE MOTE QUIZ

Evaluation question
Pre

(%)

Post

(%)

What are sensor networks used for? (MC) 28.6 28.6

The processor on a sensor mote is faster than the PC processor.

(TF)
57.1 85.7

The processor on a sensor mote is capable of high precision

arithmetic. (TF)
42.9 100

The processor speed on a sensor mote is (circle one) (MC) 42.9 71.5

The information communicated by the mote to the base station

is (circle one) (MC)
85.7 71.5

The sensors are (circle one) (MC) 14.3 71.5

The benefits of a sensor network are primarily (MC) 42.9 100

Sensor motes are optimized for (MC) 28.6 14.3

Sensing acoustic signals and temperatures require the same

sampling rate. (TF)
71.4 85.7

Near real-time processing with the motes and J-DSP is

possible. (TF)
100 100

Measuring the spectrum of a signal from an acoustic sensor

using the FFT in J-DSP enables users to estimate the pitch

period of a voice signal. (TF)

100 100

In the mote platform what is the most power consuming

component? (MC)
0 28.6

† The assessment results are preliminary.

P
age 11.728.9

References:

[1] I.F. Akyildiz, et al, “Wireless Sensor Networks: a Survey,” Computer Networks, Vol. 38, pp.

393-422, 2002.

[2] D. Culler, D. Estrin, M. Srivastava, “Overview of Sensor Networks,” IEEE Comp. Sos. Mag,

pp. 41-49, August 2004.

[3] R. Want, et al, “The Active Badge Location System,” ACM Trans. on Info. Syst., Vol. 40, No.

1, pp. 91-102, January 1992

[4] N.B. Priyantha, A. Chakraborty, H. Balakrishnan, “The Cricket Location-Support System, 6th

ACM Int. Conference on Mobile Computing and Networking, August 2000.

[5] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless sensor

networks for habitat monitoring,” in Proc. of 1st ACM workshop on Wireless sensor networks and

applications, pp. 88-97, ACM Press, September 2002

[6] D. Li, K. Wong, Y.H. Hu, and A. Sayeed, “Detection, Classification and Tracking of Targets

in Distributed Sensor Networks,” IEEE Signal Proc. Mag., Vol. 19, March 2002.

[7] M. Maroti et al, “Shooter Localization in Urban Terrain,” IEEE Computer, Vol. 37, pp. 60-61,

August 2004.

[8] A. Spanias, V. Atti, A. Papandreou-Suppappola, K. Ahmed, M. Zaman, and T. Thrasyvoulou,

“On-line Signal Processing using J-DSP,” IEEE Signal Processing Letters, vol. 11, no. 10, pp.

821-825, Oct. 2004

[9] Crossbow, “TinyOS Getting Started Guide”, 2004

[10] Crossbow, “MTSMDS sensor and data acquisition boards user’s manual”, 2004

[11] D. Gay et al, "The NesC Language: A Holistic Approach to Networked Embedded

Systems," Intel Research, IRB-2002-019, Nov. 15, 2002

[12] Berkeley TinyOS project http://webs.cs.berkeley.edu/tos/

[13] Crossbow, “TinyOS Tutorial”, 2004

[14] J. Thorn, “Deciphering TinyOS Serial Packets,” Octave Technology, Octave Tech Brief #5-

01, March 2005

[15] Java Technology http://java.sun.com

Acknowledgment: This work has been sponsored in part by the ASU SenSIP cluster and by

NSF DUE 0443137.

P
age 11.728.10

