
 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

 Session 582

Implementing Simple Protocols in Multiple Processors Control Applications

Steve Hsiung,

Tyson McCall,

Corinne Ransberger

Engineering Technology Department

Old Dominion University

Norfolk, VA 23529

Abstract

Using microprocessor/microcontroller in various control applications is not only one of
the major topics in Engineering Technology curricula, but also of interest in industry
applications. To accomplish it correctly the process of designing application programs starts
from the individual module development through extensive testing, verification, and
modification. Applying these developed modules in a useful manner requires the links and
integrations that lead to the practical project implementation. Frequently, in students’ senior
project designs and faculty’s research plans, the microprocessor/microcontroller resources
become scarce or cause conflicts during the modules’ integration stage.

To accommodate the shortfall of the resources and resolve any conflict state, several
choices must be considered, such as the need to revise or totally rework the module, or apply the
module with additional circuit design. This article presents a proven concept that implements the
simple serial communication protocols in a multi-processor environment, which aims to keep the
pre-developed modules intact with the least possible modification when they are integrated into
the project.

I. Introduction

 A project called Sparring Partner was implemented under a contract between a private
company and Old Dominion University, Technology Applications Center in 2004. This project
was to design and develop a training robot that is to be used in the boxing training exercises. Its
original design relied on a single CPU (Motorola 68HC11) to control 8 DC motors, 8 position
sensors, and some other peripheral and safety features.
 After the prototyping and examination of the mechanical functions, it was determined
that the control circuits had to be revised. The requirements for this 68HC11 had grown to 9 DC
motors and 18 position sensors with the same safety features. Due to the limitation of the 8 bit
68HC11 CPU, the processor’s resources were exhausted 6,7. The mechanical designers desired to

P
age 10.725.1

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

have a total of 20 or more position sensors to gain adequate controls of the training model, but
this list was forced to cut down to accommodate the CPU.
 The 68HC11 is a microcontroller that has been in the market since 1980 2 and Motorola
has discontinued the manufacture of this product. It became difficult to find the supplier for this
chip and its price is higher than expected. After a study of the specifications and potential
applications on SPI 11, I2C 8, and SMBus 12,13, an idea has surfaced to revise the designs on the
electronic hardware and software to use multiple and cheaper CPUs, such as Microchip’s
16F84A in a form of serial communication links 8,11,13. The 16F84A is a popular 8 bit
microcontroller in many places and the vender suppliers are plentiful 1.

The design initiative is to have multiple slave processors that everyone is in the same
format, which uses one 16F84A as a dedicated CPU to control one motor. A single master
16F84A CPU controls and links all the slave CPUs. This design becomes a multiple processor
environment that has a single master which takes the control commands from a user and passes
the necessary control functions to an appropriate slave to perform the operations. With this
design concept, there will be virtually no limit on the number of slaves in the system. The
previous limitations on a single CPU design are automatically resolved.
 Certainly, this approach requires a well planned software protocol design, and the
hardware requirement becomes a fixed module that is less complex 8,13. This paper focuses on
hardware, software designs, and their implementation as a proof of concept of a multiple
processor control application. The use of multiple PIC 16F84As in a system design is doable,
low cost, and increases the system efficiency.

II. Software Design

Since there are multiple slaves and a single master in this control system design, two
kinds of software are needed for this project. The major proof of concept in this project heavily
relies on the software design. In order to better clarify the design of this proof of concept
project, subsequent sections of this paper will describe the master, slave protocol, and
communication.

1. Software on Master

 The master is the controlling microcontroller which handles all the controlling sequences,
such as taking interaction between a user and the system, making sure the right motors are
running in the specified time and position. The master controller oversees major system
components such as the keypad, LCD, and slave microcontrollers that run the motors.

In operation, the master starts with the keypad and LCD display module, handling
interactions between the user’s inputs and system’s response. The keypad routine is a standard
scanning, debouncing, and decoding of the four rows and four columns to detect the user’s input.
The LCD routine implements serial communication between the master CPU and display module
via a 74164 shift register 14.

A major portion of the software design in this project is the communication between the
master and the multiple slaves. All the communications are initiated by the single master. Once
the master has processed an action selected by the user input, it determines which action was
chosen and transmits the information/instructions to the appropriate slave using serial
synchronous communication 11. Both read and write on the master side are implemented in the

P
age 10.725.2

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

same subroutine. This routine is in charge of generating the clocks, and sending and receiving
the bits of information. Since 16F84A does not have any hardware support for serial
communication, the clock and data bits rely entirely on software bit banging. The time between
the clock edges is preset at .2ms for the whole system. In order to control the multiple slaves,
every slave has a unique address that is embedded in the master software. There are pre-defined
four bytes commands that a master sends to all the slaves in the system. Two dedicated I/O pins
on the master and slaves synchronize the intended action between the parties.

Every communication sequence consists of the master broadcasts five bytes (four
command bytes and one 0XFF byte to read from the slave) on the shared bus lines 11,13 consisting
of a clock (CLK), data out (DOUT), data in (DIN), and framing I/O bits. The first byte is the
slave address, the second byte is a master read, the third byte is the speed of the motor, the forth
byte is the motor direction, and the last byte is the motor running time period. Once the master
receives the acknowledgement (ACK) from the intended slave, it sends the remaining three
bytes. When that is done, it goes on to the address of the next action line of bytes that needs to
be sent and continues on until the control sequences are finished. When all instructions are sent
to the slaves, the master will return to start and wait for the next control sequence from the user
through the keypad.

2. Software on Slave

The slave is in charge of executing what the master has sent. It does not start processing

information until the master is ready to send. However, the slave has a few tasks it must
complete before it is ready to start the communication.
 To make the individual motor controller as a fixed modular design, it should have the
same hardware and software but perform different action. A unique address has to assign to each
slave to differentiate them. This becomes the only difference between the slaves in this system.
To start, the slave first pulls its address from the EEPROM and stores it into its DRAM 9. Once
this is accomplished, it waits for the master to signal the start condition with a framing of “00”
as an initiate of the sending information. The first byte is going to be the address byte. The
address byte that is received is compared to the address of the particular microcontroller. If they
are different, the microcontroller does nothing but waits/polls for the next action address. Once
it receives the correct address, the slave waits/polls for another framing condition “01” and sends
the ACK.

After the ACK, the slave waits/polls for a different framing condition of “10” to receive
three more motor control bytes information. All the bytes will be stored in the predefined
DRAM locations 1,9. When the slave is finished receiving the rest of the instructions, it activates
the motor accordingly.

 The motor speed byte is used to determine the prescalor to the 16F84A TMR0 timer
interrupt interval that is used to generate the PWM signal to regulate the motor speed 1,9. The
motor running period byte is used in conjunction of the sensors to determine when to shut down
the gate of the PWM signal that eventually stop the motor. When that is accomplished, the slave
is ready for the next set of information from the master.

3. The Protocol

 There are basically three I/O lines (clock, data in, and data out) used in this

P
age 10.725.3

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

communication. These are all shared as a serial bus between a master and multiple slaves 8,13. In
each action of the serial communication bits streams, there are total of five bytes either transmit
or receive between a master and any particular slave CPU. The pre-defined bytes are: (1)
address byte, (2) slave acknowledge byte, (3) speed byte, (4) direction byte, and (5) time period
byte.

There are several set of rules for this communication 8,11,13: (1) only one master is
allowed in the system, (2) only the master can generate the clock, (3) only the master can
start/stop the communications, (4) only the master is responsible for the framing I/O bits, (5)
there are multiple slaves allowed in the system, but each slave shall have a unique address
recognizable by the master, (6) the slave can only monitor the framing I/O bit for communication
responses, (7) the slave is required to respond to its address call by sending an ACK byte, (8)
after the initiation of a start from the master, every slave has to read the address that master
broadcasts, (9) the slave is not permitted to respond if its address is not called, and (10) the only
time that the slave sends a byte is when it is required to ACK.

To ensure the safety of the system performance, an alarm condition is implemented in the
event of violation of the protocol. The alarm condition is defined as: when the master sends a
legitimate address to the slaves and does not receive an ACK or the ACK is not recognized for
any reason. As soon as the master detects this alarm condition, it will disable the de-multiplexer
that is used by the slaves to activate the motors.

4. The Communication

At the beginning of the protocols testing stage, it was difficult to keep the master and

slave synchronized with each other. Therefore, the protocol rules mentioned above were
introduced and the framing I/Os were added. These two additional I/O pins were developed to
frame the states of the communication bytes to fix the problem. They are the states that the
master controls and slaves poll during each action. The framing I/Os are inputs to the slave.
They are used to indicate to the slaves that the master is ready to do the next set of instruction.
There are four different states (00, 01, 10, 11) the master sends to the slaves. Since the slaves
don’t perform as much work as the master, these states let the slaves recognize where the master
is in the communication sequence. “00” informs the slaves as a start that the master is getting
ready to send the first byte (address). Following the first byte, the master sends a “01” to notify
the slaves it is ready to receive the ACK. When the I/O pins switch to “10”, the slave knows that
the master has received the ACK and is about to send the last three bytes. Finally, the master
will send an “11” through the I/O pins, indicating it is done with the transmitting action.

The synchronous serial communication shares the same clock 8,11,13, and every party
relies on the clock edges to either read or write the bits. The framing implementation resolves
the timing issues and differentiation of the start, end/stop, address, and command bytes. The
presentation of the protocol bytes and associate framing I/O is presented in Figure 1.

III. Hardware Design

Although the hardware design appears complex, it has a lot of duplications due to multiple CPUs
in the system. There are three major parts in this design: (1) the master that handles the user’s
commands and communications via keypad and LCD module, (2) the multiple slaves that actual P

age 10.725.4

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

generate the PWM signals to drive the motors via DC motor interface board, and (3) the motor
driver board circuit that handles the high current to activate the DC motors.

Figure 1. Master & Slave Protocols

1. Master Control Circuit

 The master interface circuit has a standard 4x4 keypad, a LCD module, a shift register,
and three software controlled I/Os for the serial interface buses to the slave CPUs.

The keypad is direct interfaced to PORTB RB0-RB8 with eight 10K pull up resistors 1,9.
RB0 (IO_1) and RB1 (IO_2) are dually used for the slaves’ serial communication framing I/O
controls. These two logic lines will generate four different states that are used as guidance to the
slaves to follow the predefined protocols. RB2 (MA_E) is also used as a control of the slave’s
de-multiplexer enable that serves as an alarm condition for master to shut down all the motors
when an emergency condition is encountered.

The LCD module is connected to a 74164 shift register in a parallel format, but its
interface to the CPU is in a serial form. This is needed because of the limited number of
available I/Os on the master CPU. RA2 (LCD_E) and RA3 (LCD_RS) are used for E and RS
controls on the LCD display module 4.

The entire serial interface is done through PORTA. RA0 (marked as CLK) is used to
generate the clock, RA1 (marked as DOUT) is the control data output from a master to the
slaves, and RA4 (marked as DIN) is a return data line from the slaves to a master. RA4 is an
open drain I/O, making it the best choice for this type of interface communication 1,9. There are
three serial communication lines that are not only used in master-slave, but also in CPU-LCD
interactions. There is no unused pin on the master circuit. Figure 2 presents the master hardware
circuit design.

2. Slave Control Circuit

The serial communication interface is implemented on PORTA where RA0 (CLK) is
used to accept the clock signal from the master, RA1 (DOUT) is used to read the command bytes
from the master, and RA4 (DIN) is used to send the ACK to the master. The PWM signal is
generated from the TMR0 timer via interrupt control on RB0 pin 9. It is used to control the de-
multiplexer output that eventually is used to regulate the energy to the DC motor. The PWM
signal is generated constantly since it is an interrupt driven event. To gate this PWM to a proper
channel (either forward or reverse control of the motor), RB3 (marked as SLX_E) is used as an
enable control. Both RB1 (marked as SLX_RB1) and RB2 (marked as SLX_RB2) are used as

P
age 10.725.5

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

channel select on the 74138 3-to-8 decoder that is functioned as a de-multiplexer. The X on SLX
stands for the number of the motors in the circuit.

+5V

U1 MASTER:PIC16F84

GND
5VDD

14

OSC2/CLKOUT
15

MCLR
4

OSC1/CLKIN
16

RA0
17

RA1
18

RA2
1

RA3
2

RA4/TOCKI
3

RB0/INT
6

RB1
7

RB2
8

RB3
9

RB4
10

RB5
11

RB6
12

RB7
13

CLK

+5V

DOUT

DIN
J2

4*4 KEYPAD

1
2
3
4
5
6
7
8

R11

10K

R12

10K

R13

10K

R14

10K

R10

10K

R15

10K

R16

10K

MA_E/RB2

R17

10K

IO_2/RB1
IO_1/RB0

RB3

RB5
RB6
RB7

RB4

+5V

SW1

RESET

+5V

R4

10K

R5

100

0

+5V

0

+5V

R1

10K

R2

10K

R3

10K

IO_1/RB0
IO_2/RB1

Y1 20 MHz or 10 MHz

MA_OSC1

C2
22pF

MA_OSC1

C3
22pF

MA_OSC2

J1
LCD Module

1 2
3 4
5 6
7 8
9 10

11 12
13 14

MA_OSC2

D0 D1

MA_E/RB2

C1
.1uF

RB3

0

RB5
RB4

RB6

D3

RB7

D7
D5

0

+5V

RA2/LCD_E
RA3/LCD_RS

RA3/LCD_RS

U4 74164

A
1

B
2

CLK
8

CLR
9

Q0
3

Q1
4

Q2
5

Q3
6

Q4
10

Q5
11

Q6
12

Q7
13

VCC
14

GND
7

D4
D2

D0

D2

D6

D1

D6

D4
D5

D3

D7

CLK

DOUT

RA2/LCD_E

0
Figure 2. The Master Hardware Circuit

There are two position sensors on each slave. The signals are monitored on RB4

(SLX_SENSOR1) and RB5 (SLX_SENSOR2) pins to provide feedbacks on the motor’s
position. The framing logic states are monitored on RB6 (IO_2) and RB7 (IO_1), which controls
the slave’s communication protocols sequences. There are two unused I/O pins, RA2 and RA3
on the slave circuit design. The multiple slaves are a duplication of the following slaves’ circuits
as presented in Figure 3.

3. Motor Control Circuit

 The motor driver circuit is a standard H-bridge design. The bridge on-off controls are made
through an IRF530N power MOSFET that can easily handle 10A DC current 5. The circuit can
control a motor in either forward or reverse direction depending on the PWM signal that is
coming in at its P_F_1 or P_R_1 terminal. The two position sensors have RS latch debounce
circuit to produce a clean signal as a feedback to the slave CPU. The motor circuit design is
presented in Figure 4.

IV. The Implementation

 This multi-processor control application that uses simple protocols has been proven
functional. The testing of this concept was carried out in one master and four slaves to control
four different DC motors. The setup is presented in Picture 1.

P
age 10.725.6

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

U6 74HC138

GND
8

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

A
1

B
2

C
3

G2B
5 G2A
4 G1
6

VCC
16

U2 SLAVE_1:PIC16F84

GND
5VDD

14

OSC2/CLKOUT
15

MCLR
4

OSC1/CLKIN
16

RA0
17

RA1
18

RA2
1

RA3
2

RA4/TOCKI
3

RB0/INT
6

RB1
7

RB2
8

RB3
9

RB4
10

RB5
11

RB6
12

RB7
13

U3 SLAVE_2:PIC16F84

GND
5VDD

14

OSC2/CLKOUT
15

MCLR
4

OSC1/CLKIN
16

RA0
17

RA1
18

RA2
1

RA3
2

RA4/TOCKI
3

RB0/INT
6

RB1
7

RB2
8

RB3
9

RB4
10

RB5
11

RB6
12

RB7
13

0

0

+5V

+5V

00

0

SL1_PWM

0

SL2_PWM

SL1_E

SL1_E

MA_E/RB2

SL1_PWM

MA_E/RB2

SL1_RB1

SL2_PWM
SL2_E

SL1_RB2
SL1_RB2
SL1_RB1

+5V

0

+5V

0

0

SW2

RESET

+5V

R6

10K

R7

100

0

SL1_SENSOR1

SW3

RESET

R8

10K

+5V

R9

100

0

CLK

CLK

SL1_SENSOR2
DIN (DOUT on Slave)

DOUT(DIN on Slav e)

DOUT(DIN on Slav e)

SL2_RB1

SL2_E

SL2_SENSOR2
SL2_SENSOR1

SL2_RB2

DIN (DOUT on Slave)

IO_1/RB0

IO_1/RB0

SL2_RB2
0

SL2_RB1

IO_2/RB1

IO_2/RB1

0

M1_F

C4
.1uF

C7
.1uF

0

Y2 20 MHz or 10 MHz

C5
22pF

SL1_OSC2 SL1_OSC1

C6
22pF

Y3 20 MHz or 10 MHz

C8
22pF

SL2_OSC1SL2_OSC2

C9
22pF

M1_R

M2_R
M2_F

SL2_OSC2
SL2_OSC1

SL1_OSC1
SL1_OSC2

U5 74HC138

GND
8

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

A
1

B
2

C
3

G2B
5 G2A
4 G1
6

VCC
16

M1_F
M1_R

M2_F
M2_R

P_R_1
P_F_1

P_F_2
P_R_2

Figure 3. Two Slaves Hardware Circuit

+5V

Q1

2N7000

0

P_F_1

SENSOR_1

D3

LED

U1A
7400

1

2
3

1
4

7

U1B
7400

4

5
6

1
4

7

R5A

1K 7PACK

SW_0

SW_T_SPDT

1

3
2

0

0

+5V

0
+5V

+5V

R5B

1K 7PACK

MOTOR_GND MOTOR_GND

Q3

2N7000

0

P_R_1

CR1A

10K SIP 8 HE

0

CR1B

10K SIP 8 HE

3

C

R1E 10K SIP 8 HE
6

C

R1F 10K SIP 8 HE

7

C

R1G 10K SIP 8 HE
8

M1 Home Sensor

C

R2A

10K SIP 8 HE

C

R2B

10k SIP 8 HE

3

C

R3A

10K SIP 8 HE

C

R3B

10K SIP 8 HE

3

+5V
C

R6A 10K SIP 8 HE

C1

0.1uF
0

C

R7A

330 SIP 10 HE

C

R7B

330 SIP 10 HE

3

Q2

IRF530N/TO

2D

1G
3S

Q4

IRF530N/TO

2D

1G
3S

Q6

IRF530N/TO

2D

1G
3S

Q5

IRF530N/TO

2D

1G
3S

D1
 Red LED

D2

Green LED

R4 680

M1_BLKM1_RED

VCC

M1 Ext SensorSW_1

SW_T_SPDT

1

3
2

0

D4

LED

0

SENSOR_2

U1C
7400

9

10
8

1
4

7

0

U1D

7400
12

13
11

1
4

7

+5V

+5V

Figure 4. The Motor Control Hardware

P
age 10.725.7

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

Picture 1. One Master & Four Slaves Setup

The intended addresses for the 9 slaves are:

PIC 1 = 0X11 (Right Elbow) PIC 2 = 0X22 (Right Shoulder up/down)
PIC 3 = 0X33 (Left Elbow) PIC 4 = 0X44 (Left Shoulder up/down)
PIC 5 = 0X55 (Pivot Torso) PIC 6 = 0X66 (Back/Forth Torso)
PIC 7 = 0X77 (Right/Left Torso) PIC 8 = 0X88 (Right Shoulder Left/Right)
PIC 9 = 0X99 (Left Shoulder Left/Right)

The duty cycles (DC) for the TMR0 timer prescalor are:
Slow Speed = 0XD5 = 20% DC Medium Speed = 0XD6 = 50% DC
Fast Speed = 0XD4 = 80% DC

The direction is defined as:
Motor Backward = 0X01 Motor Forward = 0X02

The time period is defined as:
Short = 0X20 = 2.04 Seconds Medium = 0X33 = 4.02 Seconds
Long = 0X65 = 78.965 Seconds

The sample communication bits streams on clock (CLK), data out (DOUT), and data in

(DIN) lines is presented in Picture 2. The prototype demo system that has one master and four
slaves with two DC motors is presented in Picture 3. The overall operation of this demo system
is presented in a block diagram format in Figure 5.

P
age 10.725.8

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

Picture 2. The Serial Communication Signals

Picture 3. Multiple-Processor Demo System

P
age 10.725.9

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

Figure 5. The Demo System Block Diagram

Table 1 represents the estimated cost of the multi-processors system that uses

PIC16F84As is compared with the original design using a single MC68HC11 processor. The cost
for both systems is very similar, but the flexibility that multi-processor system provides is
beyond this assessment.

Single CPU System Cost Multi-CPUs System Cost

MC68HC11 & EVB $80 PIC16F84A*10 $40

Motor Driver PCB &
Accessories

$100 Motor Driver PCB &
Accessories

$100

Misc Components $30 Misc Components $50

Total $210 Total $190

Table 1. The Estimated Cost Comparison between Two Systems

V. Conclusion

 This project was actually implemented in the students’ (Tyson McCall and Corinne
Ransberger) senior project design. The concept has been successfully proven to be suitable in
real multiple motors control applications. There are several valuable lessons that were learned in
this proof of concept project design.
 The designed serial communication protocols with only byte address can have up to 254
slave processors (that exclude 0X00 and 0XFF). This can easily be extended to any number of
slaves by adding multiple bytes of the address definitions. The three control bytes in the existing
protocols can also be extended to fit any project needs. The two bits I/O protocol framing
controls from the master may be eliminated by using the clock edge sensing interrupt to
synchronize the communications. Certainly, an upgraded CPU such as the 16F877A that has a
built in SPI hardware block would relieve the software bit banging load on the CPUs to improve
communication efficiency, but would also increase the cost of the project design 10. An
implementation of the SLEEP in all the CPUs software will make the system more energy

P
age 10.725.10

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

efficient 1. If security is a concern, adding the CRC-8 implementation in the protocols will be
one of the solutions 3.
 This capstone project brought the theory and protocol design 11,13 of the synchronous
serial communication in the chip level into a practical application has made a good impact on the
students’ understanding of the potential in their ET career. Regarding their accomplishment,
here is what the students said, “As the project nears to an end we have learned so many things.
We learned how to communicate with each other as team members, which we think is important
when we move on and start our careers. We also learned how to communicate with multiple
microcontrollers, and how to design a project that can be useful to the environment. We were
able to take our knowledge and apply it to one project. We were able to see that each one of us
thinks completely different, which makes the project unique and different. The boxing robot no
matter how simple it may sound, it was a great way for us to apply our knowledge of
communication, electronics, and teamwork.”
 The concept of the serial communication is simple and has been utilized in different areas
in the real world. This integration of the existing concept in a custom-made application that
brings real-life applications into classes, has served one the important missions of the ET
education: applied engineering. This proof of concept provides the student with an interesting
application idea and a better understanding of the links between hardware and software along
with their potential applications in the workplaces.

VI. Bibliography
1. Bates, Martin, “PIC Microcontrollers: An Introduction to Microelectronics”, 2nd, Elsevier: Newnes, 2004.
2. Cady, Frederick, M., “Software and Hardware Engineering, Motorola M68HC11“, Oxford University Press,
 1997
3. CRC-8 Implementation White Paper, USAR System Inc., www.semtech.com, 1999.
4. “How to control a HD44780 based character LCD”, http://home.iae.nl/users/pouweha/lcd/lcd0.shtml, 2004.
5. IRF530N, Internacional Rectifier, www.irf.com, 2004.
6. Motorola , “M68HC11 Reference Manual”, Motorola, Rev 3, 1991
7. Motorola , “M68HC11 E Series Programming Reference Guide”, 1991
8. Philips Semiconductors I2C Specification, www-us2.semiconductors.philips.com /i2c/news/, 1997.
9. PIC16F84A Data Sheet, Microchip Technology Inc., http://www.microchip.com/, 2004.
10. PIC16F877A Data Sheet, Microchip Technology Inc., http://www.microchip.com/, 2004,
11. Serial and UART tutorial, Frank Durda, www.freebsd.org/doc/en_US. iso88591-1/articles/serial_uart/,
 Email:uhelm@freebsd.org, 1996.
12. System Management Bus (SMBus) Specification, Revision 1.1, Smart Battery System Specifications,
 www.sbs-forum.org, Email: battery@sbs-forum.org, 1998.
13. System Management Bus (SMBus) Specification, Revision 2.0, Smart Battery System Specifications,
 www.sbs-forum.org , Email: battery@sbsforum.org, 2001.
14. TTL Logic Data Book, Texas Instruments, 1988.

VII. Biography

STEVE C. HSIUNG

Steve Hsiung is an associate professor of electrical engineering technology at Old Dominion University. Prior to his
current position, Dr. Hsiung had worked for Maxim Integrated Products, Inc., Seagate Technology, Inc., and Lam
Research Corp., all in Silicon Valley, CA. Dr. Hsiung also taught at Utah State University and California University
of Pennsylvania. He earned his BS degree from National Kauhsiung Normal University in 1980, MS degrees from
University of North Dakota in 1986 and Kansas State University in 1988, and PhD degree from Iowa State
University in 1992.

P
age 10.725.11

 Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition

Copyright © 2005, American Society for Engineering Education

TYSON J. McCALL

Tyson McCall completed his Bachelor of Science in Engineering & Technology with an emphasis on Computer
Engineering Technology at Old Dominion University, in December 2004. He is currently a member of the National
Society of Black Engineers (NSBE) and is past Telecommunications Chair of the ODU chapter. He is a former
member of The Institute of Electrical and Electronics Engineers (IEEE) and has twice been recognized for academic
achievement Dean List’s at Old Dominion University.

CORRINE A. RANSBERGER
Corinne graduated from Old Dominion University in 2004. She currently has a BS in Electrical Engineering
Technology will continue her advanced education in Electrical Engineering. The last year of her college career,
Corinne had the opportunity to work as a teacher assistant for a few of the teachers in her department.

P
age 10.725.12

