Increasing Accessibility to a First-Year Engineering Course
in Mobile Autonomous Robotics

John C. Gallagher 1’2, Richard F. Drushel 3, Duane Bolick '

Department of Computer Science and Engineering '
Department of Electrical Engineering >
Wright State University
{dbolick,jgallagh}@cs.wright.edu, rfd@po.cwru.edu

Department of Biology *
Case Western Reserve University
rfd@po.cwru.edu

Abstract

Introductory classes in the design and programming of mobile autonomous robots offer both
potential and matriculated engineering students entertaining and engaging educational
experiences that give them early experience with the kinds of open ended design problems they
will face in their professional careers. By their nature, however, these classes often require some
prior computer programming experience — which raises the threshold of entry to the very early
career students who might most benefit from the extra motivation and depth provided by dealing
with open-ended problems. In previous work we discussed minimizing dollar cost and
maximizing physical access to a robot by creating a WWW/web cam based infrastructure and
supporting open sourced robot simulation software. In this work, we will focus on additional
work that addresses more fundamental pedagogical issues including ease of collaboration among
geographically dispersed students and the design of educational materials more suitable for
maintaining low threshold, high ceiling educational experiences for the students.

1. Previous Work -WWW Autonomous Robotics

Formal knowledge based classroom instruction is necessary for the education of engineers.
However, it also requires practicum components in which students can experience both the joys
and frustrations of actual design, implementation, and testing in an environment rich with
possibilities and with the guidance of experienced mentors. Generally, design practica occur
toward the end of a student’s undergraduate career. This is for good reason — many interesting
problems require mastery of a significant body of knowledge to be approachable. On the other
hand, many students receive enormous benefit from engaging in these design practica early in
their undergraduate years. Not only do they get an early look at what real engineers do early on,
they also are shown quite clearly why all the knowledge presented in the other courses is so
valuable in practice. Many students who might otherwise drop out of, or never enter,

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

T'6%7.°0T abed

engineering programs can thus be motivated to not just stay — but seriously apply themselves — in
their traditional classes.

In previous work [1 - 3], we addressed issues related to offering an autonomous robotics course
over the World Wide Web (WWW). By constructing a centralized environment containing a
web connected mobile robot and providing 24/7 access to it via the Internet, we were able to
leverage a single, expensive, robot to serve the needs of geographically dispersed students. By
providing an open sourced Java based robot simulation environment, we were able to relieve
potential bottlenecks caused by many students testing early versions of their robot controllers on
a single robot. Also, we were able to provide these simulators, which run on nearly any modern
microcomputer, free of charge. This further relaxed financial burdens in running the course and
increased access to many under represented demographics. Most of our past work has focused
on the technical nuts and bolts of getting the system running reliably and in maintaining
sufficient fidelity between the simulation code and the actual robot. The point then was to
increase physical access to facilities to many demographics that otherwise not be able to
participate. In this paper, we will focus more on subsequent efforts to tune the pedagogy of the
course material to lower the knowledge threshold of entry into the course and to increase access
to early program undergraduates and advanced high school students. The paper will begin with a
brief description of the course, the attendant infrastructure as it existed, and a few items that were
less than well handled. It will then discuss specific changes that have been made to that
infrastructure to deal with those issues and better support our proposed pedagogy. Following
will be a discussion of specific educational materials developed to lower the knowledge
threshold for participation. The paper will conclude with a brief discussion of future plans and
open issues.

2. Previous Work — Access Issues

In our original class, students developed robot controllers to solve a series of increasingly
difficult problems on a mobile robot simulator that we designed and implemented using Java.
When finished, they upload their controllers to a real robot in our lab and observed the results via
a WWW web cam. Students kept an engineering journal and were graded on the quality of their
design/implement/test processes. Except for the remote and geographically distributed nature of
the course, it was not in principle much different from more traditional robotics practica offered
in person [4 - 7]. Though careful study of the differences between the two methods of offering
the material is still underway, two issues with the online environment quickly became apparent.
The first was that the activation energy just for a student to get his/her personal environment set
up was so high that actual interesting work was delayed far too long. In traditional offerings, a
TA or instructor can pre-configure machines and infrastructure so that a student can get to the
meat of the study problems immediately. In a distributed and/or online environment — such
support is not generally available as students are generally far removed from the instructor.
Though our software was fairly easy to install for the experienced student, many in
demographics of interest had difficulty. This can not be ignored. The second issue had to do
with quality of Internet mediated student-to-student and mentor-to-student interactions.
Generally, students and/or mentors would discuss solutions and tests with one another via
standard text chat tools. Most students, perhaps already comfortable with such communication
due to the growing ubiquity of cell phone based text messaging, were quite satisfied with that

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Copyright © 2005, American Society for Engineering Education

2'6%7.°0T abed

Figure 1: An Internet Connected Khepera Robot
This snapshot was taken from a WWW browser using the student accessible webcam. Users can
pan, zoom, and tilt the camera remotely to get more detailed views as needed.

mode of communication. However, students experienced difficulties in textually describing to
other parties what their robots were doing in the world. It was possible to upload code to the real
robot and have multiple people simultaneously watch its operation. However, this created an
undesireabile resource bottleneck. Extensions that allowed collaborative viewing of the robot
simulation environment across the Internet were sorely needed. The first issue limited access via
a high knowledge barrier. The second issue limited access to collaborative debugging because of
a hardware bottleneck. Before considering how these issues were solved, we will briefly
describe the basic components of the simulation and remote control robot environment.

3. The Physical Robot and Its Environment

The environment we created in our lab consists of a single robot that operates within a 4x4 foot
enclosure. The robotic hardware consists of a standard Khepera robot [8, 9] equipped with an
auxiliary gripper arm module. Communication with the robot is facilitated through a wire
tethered between the robot and a host machine’s serial port. The robot is manipulated using
software that writes/reads data to/from the robot via interpreted commands from the user. Within
its enclosure, the robot may be confronted with a simple set of obstacles: reconfigurable walls
(typically in the form of mazes and/or rooms), lights, and plastic soda pop bottle caps. Wall
sections and lights are fastened to the floor of the enclosure, and therefore cannot be moved by
the robot. Caps are used specifically as objects to be manipulated by the robot via its gripper
attachment. It is this particular environment that is simulated by our software. Due to the
environment’s simplicity, the task of developing sensor and actuator models was significantly
reduced. The color and reflective properties of the obstacles were specifically chosen so that
sensor response would be similar at given distances from an obstacle regardless of its type. These
properties along with the constant lighting in our lab provided the basis for the accurate yet
efficient models eventually used within the simulator. The software architecture used to
interface the hardware with student written controller is described more completely in [3]. Here
it is sufficient to note that the students actually program a “virtual robot object” that is tightly

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Copyright © 2005, American Society for Engineering Education

€'6%7.°0T abed

WSLI Khepera Robot Simulatar v7.0 .=
File fctions Tools Help

Q@ ©riow o um | Bl @

) Distance O Light @ Disahle

Clear Oulpa Winde

O Wvall % Light o Ball o Cap

o ri:tum|ﬂ]m|+w_|—nmm|>(crm| o " Rotate

[ChenServer Status:Disabled (gl Piayfecord Status: Disobee o .

Figure 2: Ksim User Interface
This current simulator user interface. User interface elements include the Robot Control Panel'. The
World Panelz, World Control Panel3, Client/Server Status Bar4, Record and Playback Panel’, Sensor
Display Panel®, Gripper Arm Status Panel’, User Output Panel®, Object Selection Panel’

coupled to the actual state of the real robot. This allows the students to have the illusion that
they are controlling the raw hardware while providing a hidden supervisory layer that prevents
accidental or purposeful damage to the robot hardware. Considering that the robot will be
unattended for most of the time it is used, this is vital. Also, the use of the virtual robot object
eases the transfer of controllers from simulation to real robot so long as the simulation, of course,
provides an identical controller interface.

4. The Simulation and New User Interface Elements

The details of the basic simulation are likewise discussed in [2] and [3]. A great deal of effort
was put into making the simulation highly portable to all common microcomputers and in
making it possible to transfer robot control code unchanged from the simulation to the actual
robot. For purposes of this paper, however, we need only focus on the user interface — as this is

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

v'6%7.°0T abed

where changes required to fix the collaboration bottleneck were needed. Figure 2 shows the
current user interface. Labeled interface components have the following functions:

Interface Element

Purpose/Use

Robot Control Panel

World Panel

World Control Panel

Client/Server Status Bar

Allows a user to position the robot and start and stop control code
execution.

A bird’s eye view of the simulated maze environment. This is updated
real time as the simulation runs.

Allows a user to load, save, and edit world configurations. Wall, cap,
and light positions may be edited.

Displays the current status of the robot movie recording system and
Internet display sharing.

Sensor Display Panel Displays the values being returned by the eight IR distance sensors or
the eight light sensors. This display is updated in real time as the robot
runs.

Gripper Arm Panel Displays the status of the gripper arm.

User Output Panel Space for users to display text messages from their programs.

Record and Playback Allows users to operate a virtual VCR to record movies of robot

Panel operation.

Object Selection Panel Allows users to select non-robot objects to place into the world.

The most newest and most relevant elements are the Record and Playback Panel and the
Client/Server status bar. These two features were added in direct response to student needs for
better collaboration from within the simulation environment. A virtual VCR was integrated into
the simulation that allows students to record the actions of their robot. These “movie” files,
which are ASCII text recordings of all relevant robot parameters taken at user specified time
intervals, can be played back later from within the simulation interface. They can also be easily
emailed to other students for playback in their simulators. Also, since the recordings are in
ASCII text, they can be imported into other tools (text editors, spreadsheets, custom user code,
etc.) to support advanced analysis of sensor inputs and/or motor output timings. This new
facility allows students to maintain and share recordings of particular test runs for group
debugging and analysis. Also added to the simulation was the ability for any particular
simulation to go into a “server” mode where it can stream all robot parameters live to any other
simulator on an Internet connected machine. To accomplish this, a user would simply use the
menu bar interface to tell the simulator to go into server mode. He or she can then tell or email
other remotely located users the IP address of his/her machine — and they can connect their
simulations to the server to display what the server robot is doing live. This facility allows large
groups of students to be watching the same robot activity live and is meant to support group
analysis and debugging. Both of these features are available in the currently distributed
simulator and have been extensively tested for functionality.

5. Easing the Pain by Lowering Threshold to Participate

Because of the inherently distributed nature of the class, there are just some things we won’t be
able to do collaboratively. Among these is the initial set up of each student’s individual
computing environment and coming to grips with just enough Java to be functional. We are
currently developing a textbook that both eases the burden of this setup and provides clear
explanations of requisite Java techniques. We have adopted a conversational, tutorial style that

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition

Convriocht © 2005 Amevican Society for Fnoineerino Fducation

G'6%7.°0T abed

we feel well simulates the style of assistance that an “in person” coach or mentor would provide.
Example pages of this text are provided as an appendix to the paper for reader consideration.
Readers are welcome to use the appendix to help download and configure the simulation for use
on their personal machines at the conference or later. Comments are appreciated and welcome.
A full version of the text will be available for distribution in summer 2005.

6. Conclusions and Future Work

To date, we have expended a significant amount of effort in developing infrastructure in support
of an online robotics practicum. We believe that as more engineering departments consider
placing entire degree programs online, the issues involved with providing meaningful practica
experiences through that medium will become more important. Also, engineering outreach is
both to under represented demographics and pre-college students can be highly enhanced by
allowing communities of interest to form autonomously and asynchronously. WWW practica
experiences can well provide those opportunities at low financial cost. It is unclear, however,
how the change in delivery method changes the pedagogy of these courses. Using first
generation code we have identified and solved a few obvious problems, which have been
discussed in this paper. What remains is to conduct careful studies of learning efficacy in
teaching the same style of practicum course in both online and traditional environments. It is
hoped that, armed with appropriate support structure, we can uncover and correct for what are
perhaps more subtle differences that we have not yet seen or anticipated. These studies will be
conducted over the next three years — with the first full offering of the course using these
materials being coincident with the 2005 ASEE National Conference. The authors will be
conducting the course from the conference with geographically dispersed students.

In addition to what we feel to be much needed studies of pedagogy, we intend to continue
expanding and improving the simulator package and the robot/user code remote interface.
Among issues to be addressed are increasing the accessibility of the interface to those with motor
and/or perceptual disabilities. We have leveraged technology to help overcome barriers of
distance. There is no reason that we cannot similarly use technology to allow access to valuable
engineering experiences to those who might find it difficult to physically manipulate real robots.
Also, we intend to expand the simulator to function with more than just the Khepera robot. The
Khepera is capable, but relatively expensive. However, to ease adaptation and adoption at other
institutions, we wish to maximize the choices of underlying hardware platforms. Course
materials, as well as all software, are available at: http://ehrg.cs.wright.edu/ksim/ksim.html. All
materials are open source and freely available for non-profit educational activities.

Acknowledgements

This work was supported by the National Science Foundation under grants DUE 0341263 and
DUE 0341150. Additional support has been provided by Wright State University and the Ohio
Board or Regents and the Howard Hughes Medical Institute.

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Copyright © 2005, American Society for Engineering Education

9'6%7.°0T abed

Bibliography

1. Gallagher, J.C. and Perretta, S. “WWW Autonomous Robotics: Enabling Wide Area Access to a
Computer Engineering Practicum”, The Proceedings of the 33rd Technical Symposium on Computer
Science Education. ACM Press (2002).

2. Perretta, S. and Gallagher, J.C. “A General Purpose Java Mobile Robot Simulator for Artificial
Intelligence Research and Education”, Proceedings of the 13th Midwest Artificial Intelligence and
Cognitive Science Conference (2002).

3. Perretta, S. and Gallagher, J.C., “A Portable Mobile Robot Simulator for a World Wide Web Robotics
Practicum”, in Proc. of the 2003 American Society for Engineering Education Annual Conference and
Exposition. ASEE Press.

4. Beer, R.D., Chiel, H.J., and Drushel, R.F. “Using Autonomous Robotics to Teach Science and
Engineering”, Communications of the ACM (June 1999). ACM Press.

5. CWRU Autonomous Robotics Course. Online. http://www.eecs.cwru.edu/courses/lego375/
6. Martin, F.M. A Toolkit for Learning: Technology of the MIT LEGO Robot Design Competition.

7. MIT 6.270 Autonomous Robot Design Competition. Online.
http://www.mit.edu:8001/activities/6.270/home.html

8. K-Team (Khepera Info). Online. http://www k-team.com/

9. Mondada, F., Franzi , E. and Ienne, P. “Mobile Robot Miniaturization: a Tool for Investigation in
Control Algorithms”, ISER’93, Kyoto, Japan, October (1993).

JOHN C. GALLAGHER

John Gallagher is dually appointed as an assistant professor in the both the Department of Computer
Science and Engineering and the Department of Electrical Engineering at Wright State University in
Dayton, Ohio. His research interests include analog neuromorphic computation, evolutionary algorithms,
autonomous robotics, and engineering education.

RICHARD F. DRUSHEL

Dr. Richard F. Drushel is a Full-Time Lecturer in the Department of Biology, Case Western Reserve
University, Cleveland, Ohio. He co-invented and has co-taught for 19 semesters a highly-successful
LEGO- and microcontroller-based autonomous robotics course for undergraduates, as well as several
summer courses for educators and secondary-school students. His research interests include 3-D
kinematic modelling of soft-tissue structures in the feeding of marine molluscs, and the use of computers
and robotics in education.

DUANE BOLICK
Duane Bolick is a Masters Student in the Department of Computer Science and Engineering at Wright
State University. His interests are in autonomous robotics and robotics based engineering education.

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Copyright © 2005, American Society for Engineering Education

/'6%/.°0T abed

Getting Started

Here's the path we suggest you follow as you go through the curriculum:

N

v

CBJECT-
ORIENTED
PROGRAMMING

TUTORIAL

KHEPERA
COMMANDS
TUTORIAL

khepera_commands.pdf

PROBLEMS

lesson_problems. pdf

LESSOM

A

Onece thase are complete, you may proceed through the
numbered lessons and the assigned problems for each

lesson.

EXERCISES

Here's where you'll
find the in-lesson
gxercisas. We
suggest that you
give these a try ash

ou're gaing throu
1J|Ieﬂl;:;i"l igssﬁ. Yuu%l
sae the above icon
ithe “thinking cap")
in each lesson
document when-
ever there are ex-
ercises available
for you to try.

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Copyright © 2005, American Society for Engineering Education

8'6%7.°0T abed

SYLLABUS

WEEK 1
Intraduction and Background WEEKS 2-7
il B
Onee we've covered the introductory
m material, we'll look at each of these
. topics, one per week, in this order.
lesson . pdf
v

WEEK 2: Sensors | sensors_l.pdf
WEEK 3. Sensors |l sensors_|l.pdf

OBJECT-
ORIENTED

WEEK 4. Gripper ripper.pdf
PROGRAMMING g—ehpaviur I pdf

WEEK 5: Behavior |
WEEK B Statefulness states.pdf

WEEK 7. Behavior || behavior_ll.pdf

TUTORIAL

KHEPERA
COMMANDS
TUTORIAL

khepera_commands.pdf

LESSON 1

lesson1_problems. pdf

These documents will ba
covered in the first wesak.

They all contain material
necessary for understanding

the rest of the lessons in WEEKS 8-1 D

this course.

In the Bth week, we'll introduce your final project,

and you'll spend weeks 8 and 9 working on it. In

the 15:}1 week, you'll present your final solution for

the project in the form of a working controller source
code file.

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

6°'6%7.°0T abed

Assignment 1: Writing Robot Controllers in Java

First, let's talk about the basics...

"So, what is Java?"

Java is a high-level computer language, like C, Fortran, Perl, and many others. Compared lo these
“others,” Java is most similar to C in its syntax. While knowing C or C++ will help you program in
Java, i's nol necessary lo know either o learn how.

"OK, I know C/C++, This should be a snap!"

In this case, you're right - we won't be using
any complicaled syntax. Just varables,
expressions, loops, conditionals, and func-
tions. And those are pretty much all the same
as CiIC++.

You can probably get through this tutorial
fairly guickly, but make sure you understand
how to compile your controllers and how to
test them.

"L've programmed before, but not in Cor Ce"

Most programming languages use the same
concepls as we're going Lo, so your experience
will help you oul - we won't be using anything
complicated (and if we do, we'll explain it first).

Like | told the C/C++ savvy crowd up there,

we'll use the simplest of programming conslructs.
Jusl pay atlention Lo how they're done in Java,
and you'll be OK.

"I've never programmed before"

There's never a bad time o learmn programming.
We won't be going into tremendous detail here -
You only need to worry about learning enough lo
make the robot do whalt you want it to do, and
as we'll see, it won't be too bad.

Pay close attention to this tutonial, go throu

it a few times if you need to, and ask for help if
necessary.

Without further delay, let's begin...

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

0T'6%2°0T abed

First, here's what you'll need...

1

2
3

If you don't already have Java 2 Standard Edition SDK, version 1.4 or higher, you naed it.

If you're using Windows, Linux, or Solaris, you can get it for free from java.sun.com. We suggest
getting the latast, non-beta version of the Software Developer's Kit {SI’JK . The SDK includes
everything you need to compile and run Java. If you're running Mac OS5 X, the Java SDK is

already installed.

You need a text editor. Any text editor will do (vi, emacs, Notepad, Wordpad, TextEdit. etc)
If you're looking for a text editor with neat features like syntax highlighting, we suggest
JEdit, which you can download for free at www jedit.org.

Onee you've downloadad and unpackedfinstalled/whatever (depending on your OS and
SDK version), you'll nead to add an entry to your PATH environment variable that points
to the /bin directory inside the main Java directory. For example, if installing the J25E SDK
puts a directory on your drive called "j2sdk1.4.2" look inside that directory to find the /bin
directory where the Java tools, like the compiler, are located. You nead to do this so that
when you typa:

% javac
or
CA= javac

at the command line, your terminal will know where to find javac (the compiler).

Finally, Izn:ru need the Wri)gl: State University Khepera Simulator application (KSim).
Gotoe ng.cs.wri ht.edufksim/downloads/downloads. itml and download it Once vou've
unpacked the archive, locate the file JKSim jar in tha main KSim directory - this is the
Java executable to run the simulator (double-click on it, or run it from the command ling).
Also, locate the fcontrollers directory in the main simulator directory. This is where you'll
put your robot controller .class files so the simulator can find them.

Once you've installed the SDK, the Khepera simulator,
you 've picked your favorite text editor, and your computer
is able To find javac (the Java compiler), you're ready fo
caontinue...

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition

Convriocht © 2005 Amevican Society for Fnoineerino Fducation

TT1'6V. 0T obed

And now, an overview of what you'll do to write a robot controller:

You'll write a robot controller source code file, you'll compile it using javac, and you'll
copy the compiled .class file to the /controllers directory in the main KSim directory.
Then you can use your controller to control the simulated robot.

SOURCE COMPILE COPY & RUN JKSim

mMyController. java File Edit Window Help e b CITTTIT

class myController..
{

% javac -cp src source/MyController java . .
Sifyour code here
o - =
L]
} .'- L] — - — ﬂ = |
Compile it usin? javac, the command-line
Java compiler. If you don't have any erors, Copy MyController class
you'll E‘;El a second file named into the feontrollers
Type your source code, yController.class. directory.
Save it as MyController java) :
{We'll show you exactly what to type at Run the sim, and you'l
the command line to get this to work be able to use your
later in the tutarial.) controller!

S0, the next question is: "What's in a source code file?"

The robot controller source code file you'll be writing (and you'll be writing more than one throughout
this course) contains Java code that will tell the robot how to behave - what to do in cerain situations,
how to get out of trouble... Generally, whatever behaviors are required by the problem at hand.

Because the controller is one part of a larger application (the KSim program), we'll provide you with the
following things:

1) A template for writing the controller source code file - you'll mostly need to "fill in the blanks”

2) Alist of things you can tell the robot to do, and how to ask it about what it senses - you'll use thase
commands (methods, really) when writing the controller source code file, and

3 Atutorial of how to use Java to do interesting things with these commands. (that's what this is...)

So let's take a look at this template. ..

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

Z21'6v. 0T obed

The template...

We Fro'u-ldﬁ |y:'_:u with the skeleton of a robot controller source code file. It's called Template java, and
you'll find it in the /source directory of the main KSim directory. First thing to do when writing a
controller is to open this file, and rename it to whatever name you choose for your controller.

For this tutorial, we'll be using the name SimpleController,

So here we go - open Template_java in your text editor. ..

Template.java

import edu.wsu.KheperaSimulator.RobotController
import edu.wsu.kKheperasimulator.KSGripperstates

?ulﬂ ic class Template extends RobotController

First, change these to your
public Template() controller name - in our case, we're
{

calling it SimpleController.
3

public void dowork() throws Exception

/f wour code goes here Once that's done, save your source
} code file as SimpleControiler java.

Note: VWhen you're creating vour own controller, you'll save the file as ControllerName. java, whare
ControllerName is the name you chose - again, in this tutorial, the name we're using is SimpleController

SimpleController. java

import edu.wsu.kKheperaSimulator.RobotController
import edu.wsu.kheperaSimulator.KSGripperStates

Euh1ic class SimpleController extends RobotController

E"""ﬂ ic Simplecontroller() Locate this section of the code E
}

The code you write to control the robot

%ulﬂic void dowork() throws Exception ﬂt iﬁabﬁ.'hgﬁﬁgme ourly braces here -

// vour code goes here

e

/{ your code goes here

which is a comment - comment lines

are ignored by the robot, and begin with
e two slashes.

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convricht © 2005 American Society for Fnoineerino Fducation

€T'6%/2°0T abed

This saction of code is a method (or function). Its name is doWork. Any commands between the curl

braces get repeated to the robot every so often (we'll look at exactly fiow often in a moment, and why
repetition is useful later).

A method starts with a line that states its name, as well as some other information about it. This line is
called the method signature. The method signature is then followed by a set of curly bracas. All the
staterments that make up the method are contained between these braces. Let's look at the doWork
method briefly. (we'll talk more about all of this when we start writing our own methods.)

We zoom in on the doWork methad...

Parameters...

There aren’t

any for this
Access madifier, hod, but

Den't worry about Method Wﬂ”:ft“ need the Seriously, don't wory about this part
this oo much, Refurn fype Name ~ parentheses. atall...

public void doWork () throws Exception
{

This line is a comment, because it starts

// your code goes here ‘i inos i tewa o

your code does, so that amyone reading
vour source code can make sense of it

The statements you write in the doWork method are repeated, by default, every 5 milliseconds. This is
something that the Khepera Simulator application does for this mnﬂmd and only this method.

(that is, the methods you write won't mmmaucallg repeat, unless you make them do it} You can change
this interval (as we'll sea on the following page), if you want to.

Now - let's make our SimpleController do something!

Remember that list of commands we mentionad earlier? Well, one of those commands is:
setMotorspeeds(x, ¥ J;

The Khepera has 2 wheels, and a motor to drive each one. The way you'll control the Khepera's movement

is to set the speads of the motors. x and #c re integers that represent a speed salting of the left and right

maotors, respectively. The settings range from 5 (forward fastest) to 0 (stopped) to -5 (backwards fastest).
So we'll usa the valuas 3 and -3 for x and ¥, giving us:

setMotorsSpeeds(3, -3);

Let's put this command into our doWork method...

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

vT'6%.°0T abed

Type the line into your text editor, as shown below...

SimpleController. java

public SimpleController()
setwaitTime(10);

Eulﬂic void dowork() throws Exception

/f wour code goes here —
Don't forget to end it with a semicolon.

setMotorsSpeedsC 3, -3); EVCHCHT RO ERTIEn E G E T
with one.

...and while you're at it, add this line, too.
setWailTime is another command in the
as-yat-unseen "list of commands you can
use." The number you put inside the
parentheses |s the amount of time tha
robot waits (in milliseconds) before it
repeats the commands in doWork.

Why are we putting this command here,
though? Curious..,

OK - here's why. That section of the code that starts with
public SimplecController()

sort of looks like a methed, too, right? Well, it's a special kind of method, called a constructor.
The code inside its curly braces gets run once, when the controller starts running. Usually,

though, we don't commands to the robot, other than setWaitTi here.
T s dered tnciaiteds ey

At this point, we have a controller that will do mmelhln% So let's save the source code file again
Cl

in the fsource directory of the main KSim directory. Make sure you've saved it as a file named
SimpleController.java.

We're now ready to compile our robot controller
source code file (SimpleControllerjava) using the
Java compiler...

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition
Convriocht © 2005 Amevican Society for Fnoineerino Fducation

GT'6%/2°0T abed

How to compile your source code...

1) Make sure your source code file exists in the /source directory of the main Khepera Simulator directory.
2) Start a command-prompt terminal { In Windows, Start = Run, then type cmd in the Run dialogue box)
3) Change your directory to the main directory of the Khepera Simulator Directory

4) Type the following line at the prompt:

javac -cp src source/SimpleController.java

(If you receive any errors, go back and make sure that you've followed the steps we've done so far.)

How to run a robot controller...

OK - we've compiled our source code file, SimpleControllerjava, and there should now exist in the same
directory, another file called SimpleController.class

Copy SimpleController class to the /controllers directory of the main Khepera Simulator Directory.

Start the Wright State University Khepera Simulator - you may double-click the icon of the JKSim.jar file
if you are running Windows. Otherwise, enter the following command at the command line:

java —jar JKSim.jar

Select Actions = Run Controller from the menubar at the top of the window, and then choose our
SimpleController from the dropdown menu of the Run Controller dialogue box that appears.

[WU khepera Robot Simulator ¥7.2 | WK
File |Actions | Tools Holp Select x|
Fam Controller Cidbf s I =3 Select a Controller to Rum
Hal Controller ' . ! T hasic_roacive -
Recarder 3 hasic_reaciive ‘
o = temeteControl
Chignt ¥ Ll khepg
i BN

(before you click Run, any guesses as to what our controller does?)

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition

Convriocht © 2005 Amevican Society for Fnoineerino Fducation

9T'6%/2°0T abed

