
Paper ID #20331

Infusing Software Security in Software Engineering

Dr. Sushil Acharya, Robert Morris University

Acharya joined Robert Morris University in Spring 2005 after serving 15 years in the Software Indus-
try. His teaching involvement and research interest are in the area of Software Engineering education,
Software Verification & Validation, Data Mining, Neural Networks, and Enterprise Resource Planning.
He also has interest in Learning Objectives based Education Material Design and Development. Acharya
is a co-author of ”Discrete Mathematics Applications for Information Systems Professionals- 2nd Ed.,
Prentice Hall”. He is a member of Nepal Engineering Association and is also a member of ASEE, and
ACM. Acharya was the Principal Investigator of the 2007 HP grant for Higher Education at RMU. In 2013
Acharya received a National Science Foundation (NSF) Grant for developing course materials through an
industry-academia partnership in the area of Software Verification and Validation. Acharya is also the
Director of Research and Grants at RMU.

Dr. Walter W Schilling Jr., Milwaukee School of Engineering

Walter Schilling is an Associate Professor in the Software Engineering program at the Milwaukee School
of Engineering in Milwaukee, Wisconsin. He received his B.S.E.E. from Ohio Northern University and
M.S. and Ph.D. from the University of Toledo. He worked for Ford Motor Company and Visteon as
an Embedded Software Engineer for several years prior to returning for doctoral work. He has spent
time at NASA Glenn Research Center in Cleveland, Ohio, and consulted for multiple embedded systems
companies in the Midwest. In addition to one U.S. patent, Schilling has numerous publications in refereed
international conferences and other journals. He received the Ohio Space Grant Consortium Doctoral
Fellowship and has received awards from the IEEE Southeastern Michigan and IEEE Toledo Sections. He
is a member of IEEE, IEEE Computer Society and ASEE. At MSOE, he coordinates courses in software
quality assurance, software verification, software engineering practices, real time systems, secure software
development, network security, and operating systems.

c©American Society for Engineering Education, 2017

Infusing Software Security in Software Engineering

Abstract

Software is now ubiquitous and software security is now realized as a growing threat. It is

important for software developers to fix software security problems, however more imperative is

for software developers to understand that security features are not to be introduced as patchwork

when a security situation arises but are to be addressed and handled very early in the software

development lifecycle. Industry’s general lack of ignorance of software security benefits and

more importantly the shortage of software practitioners possessing software security

understanding creates multitude of problems in the software industry. Imparting real world

experiences in the academia as well as the industry is a challenge due to lack of effective active

learning tools (ALT). Riding on the success of developing and disseminating, 42 delivery hours

of active learning tools in the area of software verification and validation the authors propose to

partner with industry to develop 14 delivery hours of course modules developing ALTs in the

form of class exercises, case studies, and case study videos and delivering them using a flipped

classroom model.

Through a gap analysis exercise jointly carried out with industry partners a draft requirements

list has being identified. Specific exercises are being developed using an iterative development

methodology. Student understanding is proposed to be assessed through quizzes, exams,

assignment, and a learning survey. Once developed the ALTs will be made publicly available

through a website. This paper discusses continuing work on the gap analysis in software security

education, presents proposed contents areas for ALT, shares structures of three

developed/proposed ALTs, presents a sample of a survey instrument, and presents a sample ALT

on case study video.

1. Introduction and Rationale

Software is now ubiquitous and software security is now realized as a growing threat. Execution

of insecure codes causes software security problems that lead to undesired consequences.

Insecure Software Requirements Specifications (SRS) leads to insecure Software Design which

eventually leads to insecure codes. Currently the industry focus is on fixing security flaws as

they appear. In fact flaws arising from insecure code in released software products are now the

highest unnecessary cost in software development. A report by Bank of America Merrill Lynch

reckons that the cybersecurity market was $75 billion a year in 2015 and will be $170 billion by

2020. [1] It is important for software developers to fix software security problems, however more

imperative is for software developers to understand that security features are not to be introduced

as patchwork after a security situation arises but are to be addressed and handled very early in

the software development lifecycle (SDLC).

In September 2014 a malware was inserted into Home Depot’s computer network resulting in the

siphoning of payment-card data and email addresses of 56 million customers. In 2015 the home-

improvement chain had already spent $232 million as a result of this hacking [2]. In 2013 hackers

broke into Target’s network and accessed credit card information and other customer data of 70

million customers. The company said that in 2015 it booked $162 million in expenses across

2013 and 2014 related to this data breach [3]. Nortel, a Canadian telecoms giant, went bust in part

because hackers stole its intellectual property and TalkTalk, one of the biggest phone and

internet companies in Britain, is floundering after an attack which leaked customer information -

which was apparently stored unencrypted, on a computer accessible through a public website. [1]

This clearly shows a flaw in the design of the system and more important the ignorance of the

practitioners. In the past five years these are simply examples of instances of private information

being public because software developers were not able to do what the public had entrusted them

to do. As we move into the era of Internet of Things (IoT) and edge computing the importance of

developing secure software is even more pressing.

According to the 2004 Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering [4] Graduates of an undergraduate SE program must be able to meet 7 outcomes.

Outcome 4 states “Design appropriate solutions in one or more application domains using

software engineering approaches that integrate ethical, social, legal, and economic concerns”. It

is through this outcome we expect students to design solutions that address ethical, social, legal,

security, and economic concerns. The importance of security in the curriculum guidelines can be

noted from the change in SE education Knowledge Areas. In the 2004 Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering [4] security was listed as an area of

study. However in the 2014 Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering [5] there is now an increase in the visibility of software requirements and

security. Security is now one of the 10 knowledge areas that make up the SEEK: computing

essentials (CMP), mathematical and engineering fundamentals (FND), professional practice

(PRF), software modeling and analysis (MAA), requirements analysis and specification (REQ),

software design (DES), software verification & validation (VAV), software process (PRO),

software quality (QUA), and security (SEC). The question now is are software engineering

courses housed in Software Engineering, Computer Science or Information Systems programs

reflective of this increased interest and concern on security.

In their paper “Software Engineering Education Needs More Engineering” [6] the authors point

out that the 2004 Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering [4] for Undergraduate Degree Programs in Software Engineering appears not to be

widely known or actively used. If that is the trend then the 2014 Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering [5] may also be not widely known or

actively used. If that is the case the significance of software security is questionable.

The fundamental challenge towards a solution that will improve software security lies in the

people and processes that develop and produce software. Industry’s general lack of ignorance of

software security benefits and more importantly the shortage of software practitioners possessing

software security understanding creates multitude of problems in the software industry.

Imparting real world experiences in the academia as well as the industry is a challenge due to

lack of effective active learning tools (ALT). At the author’s institution, this educational resource

gap is being addressed by developing ALTs in the form of class exercises, case studies, and case

study videos and delivering them using a flipped classroom model. Riding on the success of

developing and disseminating, 44 delivery hours of active learning tools in the area of software

verification and validation the authors propose to partner with industry to develop 14 delivery

hours of course modules in the form of active learning tools that can be incorporated in existing

software degree courses. 6 delivery hours of case studies, 6 delivery hours of exercises, and 2

delivery hours of case study videos are being designed and developed. Through a gap analysis

exercise jointly carried out with industry partners a requirements list is being identified. This

process is on-going. Specific exercises are then being developed using an iterative development

methodology depicting industry-academic partnership. Student understanding is proposed to be

assessed through quizzes, exams, assignment, and a learning survey. Once developed the ALT’s

will be made publicly available.

This paper discusses developed and continuing work on software security ALTs. In section 2 gap

analysis in software security education from industry and academia perspectives is presented. In

section 3 proposed contents areas for the ALTs is discussed with emphasis on security

touchpoints. In Section 4 three ALTs are described in detail. In section 5 ALT delivery strategy

is briefly discussed followed by section 6 where students learning assessment is described.

Finally in section 7 we present a sample case study video ALT.

2. The Gap in Software Security Education

2.1. Industry Survey

A detail survey is planned for the summer of 2017 however a preliminary survey consisting of 12

mostly “Yes” and “No” questions on the state software security knowledge in the context of new

hires was conducted with 4 companies. The results of the survey are depicted in Table 1. In

addition the response to two other questions pertaining to industry expectations from new hires

in the software security field is depicted in Table 2.

From Table 1 and Table 2 we see that the industry expects new hires to have knowledge on

software security. Some have been very specific on what they want in new hires and have

specified security touch points (described later). Only one company said it found the person they

needed. Two of the companies said there is demand for software individuals with security

knowledge and they had a hard time finding the right person; one is still searching. From the

tables it is observed that there is a gap between what the industry expects to see in new hires and

what the students learn and retain coming out of school. The development and dissemination of

ALTs and the incorporation of these in applicable software courses is expected to fill this void.

Table 1: Industry Survey Response (4 responses)
Questions Yes No

1. Are new hires aware of common types of security vulnerabilities? Yes or No? 20% 80%

2. Are new hires able to document security requirements? Yes or No? 20% 80%

3. Are new hires able to apply secure design principles to the creation of secure

software? Yes or No?
20% 80%

4. Are new hires able to verify the security mechanisms implemented in their system? Yes or

No?
20% 80%

5. Are new hires able to use misuse cases to document cases system should not allow? Yes or

No?
20% 80%

6. In your view should new hires have knowledge of specific processes? Yes or No? 20% 80%

7. In your view should new hires have knowledge of specific tools? Yes or No? 100% 0%

8. Does your company set aside budget for training/mentoring for new hires that do not have

basic knowledge on secure software development? Yes or No?
100% 0%

9. Do you think your company will benefit if new hires were taught the basics of secure

software development as part of their undergraduate curriculum? Yes or No?
100% 0%

10. Does your company have a separate security organization? Yes or No? 100% 0%

Table 2: Industry Survey Response (4 responses)
11. In terms of Software Security what do you expect new hires to have knowledge of when they join your

company? Processes? Methods? Tools?
 It is important for new hires to have general understanding of what secure coding is and how to prevent standard

vulnerabilities.

 New hires also need to have knowledge of processes, methods, and tools. Their understanding of industry

standard best practices for security in the Software Development Life Cycle is critical. The importance of it as it

relates to business risk, common use cases (Web Application, Software Applications, etc.) and exposure to the

common tools or tool types and where they should be applied (e.g. DAST, SAST, IAST).

 New hires need to understand technical capabilities to so that they understand why we care and how we prevent

the vulnerabilities/threat associated with it.

 It is surprising that even seasoned software and application developers don’t understand the basics of

vulnerabilities, false positives and how to clean their code. This is a serious problem.

12. What security touchpoints does your company use to ensure security in developed products?
 Proper project management and security milestones in the SDLC is very important. Best practices and industry

standards are available however most developers don’t know they should have the proper tools to scan their own

code for vulnerabilities and make repairs, what proper configuration security means, etc. Most think security is

just using proper passwords and that’s all.

 We use Microsoft Secure Development Lifecycle.

 We have security reviews of designs, architecture and coding. We also incorporate security testing of our

applications.

 Technical design review, Code review, All codes now go through static code analysis prior to production, Ethical

Hacking team analyze and scan for vulnerability in lower environment prior to production

As the format of this survey did not enable participants to answer a “weak yes” for the detail

survey planned for the summer of 2017 the questionnaire will be redesigned to make this option

available. In addition questions asked to the industry will be mapped to the questions asked to

the academia.

2.2. Academia Survey

A detail survey is planned for the summer of 2017 however a preliminary survey consisting of

seven questions was conducted with 11 academic institutions on teaching software security in the

academia. These institutions offer a degree or track in Software Engineering (SE), Computer

Science (CS) and Information Systems (IS). The questions focused on teaching requirements and

the lack of teaching modules. The results of the survey are depicted in Table 3.

Table 3: Academia Survey Response (11 responses)
Questions Yes No

1. Do you think it is important to impart knowledge on so Yes or No? 82% 18%

2. Is Software Security discussed in any core course at your university? Yes or No? 55% 45%

3. Do you think it is important to impart knowledge on Software Security to undergraduate

students pursuing a degree in the Software field? Yes or No?
100% 0%

4. Is Software Security discussed in the software courses you teach? Yes or No? 46% 54%

5. Is it easy for you to find course materials or course modules related to software security?

Yes or No?
0% 100%

6. Should course materials or course modules be engaging to students? Yes or No? 100% 0%

7. If course modules are available in the form of case studies, class exercises and videos would

you incorporate one or more of these in your software course? Yes or No?
100% 0%

All faculty members from the institutions who participated in this survey say they are able to

incorporate engaging materials in their current courses. All of them also agree that students

pursuing a degree in a software field should have knowledge on software security. Not all of

them agree that every major needs to have knowledge of software security. The authors however

feel that imparting knowledge on security to all majors is necessary but feel the knowledge level

should differ in comparison to those pursuing CS, SE and IS degrees. The survey also indicates

that there is a need for engaging course modules. The development and dissemination of ALTs is

expected to fill this void.

As the format of this survey did not enable participants to answer a “weak yes” for the detail

survey planned for the summer of 2017 the questionnaire will be redesigned to make this option

available. In addition questions asked to the mapped will be mapped to the questions asked to the

industry.

3. Contents Coverage

Software security is not security software. According to McGraw [7] Software security rests on

three pillars: applied risk management, software security touchpoints, and knowledge. Applied

risk management deals with identifying, ranking, tracking, and understanding software security

risks. Software security touchpoints deals with 7 software security best practices (see figure 1).

And knowledge deals with gathering, encapsulating, and sharing security knowledge. By

applying the three pillars in a gradual, evolutionary manner and in equal measure we can realize

a reasonable cost effective software security program.

Software security is a vast topic that involves many processes, methods, and tools. Not all

aspects can be taught in an undergraduate program. However the academia should be able to

teach the basics so that the industry can easily pick up from where the academia left off resulting

in graduates/professionals developing software with a security focus.

Figure 1: Security Touchpoints [7]

The authors are using the 7 security touchpoint depicted in Figure 1 to identify software security

focus topic areas for our ALTs. They have also spoken to two companies, Eaton Corporation

and ANSYS, and both have concurred with the authors and have expressed interest in partnering

in identifying, developing, and verifying appropriate ALTs. Based on research and the authors

conversation with Eaton Corporation and ANSYS the authors are confident that the ALTs will be

on a subset of the following software security focus topics:

 Confidentiality, Integrity, and Availability

 Software Security Touchpoints

 Risk Management Frameworks

 Security Goals versus Security Functions

 Abuse and Misuse Cases

 Design Principles for security

 Threat Modeling

 Architectural Risk Analysis

 Identity Management

 Static Analysis of source code

 Defensive coding

 Security Testing

- Penetration testing

- Fuzz testing

4. Active Learning Tools

Active learning is “embodied in a learning environment where the teachers and students are

actively engaged with the content through discussions, problem-solving, critical thinking, debate

or a host of other activities that promote interaction among learners, instructors and the material”
[8]. Specifically, active learning helps students develop problem-solving, critical-reasoning, and

analytical skills, all of which are valuable tools that prepare students to make better decisions and

become better students and, ultimately, better employees [9]. Active learning is achievable by

complementing lecture materials with case studies, class exercises, and case study videos. The

templates for the ALTs have been developed and are described below. The authors have already

developed one ALT, a case study video, which is currently incorporated in a software

engineering course at one of the author’s institution.

4.1. Case Studies

Case studies can serve as useful tools to teach applications of science and engineering principles.

In a study at Middlesex Community College [10], case studies were used in teaching General

Biology - I where 88.2% of the students surveyed found the cases to be useful or better for

learning the course content. 90.9% of the students surveyed thought the cases were useful or

better in making the course more interesting. Case studies were applied in six courses to help

students (1) understand complex and complicated issues and describe interrelated processes; (2)

discuss policy- and decision-making ideologies that either are politically or socially charged; and

(3) engage in informative and focused classroom discussion. The results indicated that use of the

case study method as an active learning tool provides students with a variety of important skills

necessary for success both in and out of the classroom. Acharya et. al. have successfully

disseminated sixteen case studies in the area of software V&V [11]. The authors are developing 6

delivery hours of case studies with each case study module being 25 delivery minutes or multiple

of 25 delivery minutes. Once completed each case study will consist of the following

components:

a. Case Study Description: This document provides complete information of this active

learning tool. It has four categories of information. The first part provides general

information about the case study and includes details like the software security focus

topic area, module name, prerequisite knowledge, learning outcomes, keywords, expected

delivery duration, description of the scenes, and student exercise. The second part

describes the instruction and assessment procedure. The third part has a list of possible

discussion questions by scene. The final part of this document depicts the survey

instrument.

b. Student Handout: Student Handout includes everything that the students need to

participate in the class discussion. This handout explains the scenes, the objectives of the

exercise, step-by-step what the student should do and a set of sample question for Scene

1.

c. Discussion Questions: For each video, suggested discussion questions for each scene is

available as a power point slides. Instructors are welcome to modify these questions or

use their own questions.

d. Assessment Instrument: The assessment instrument is a simple survey primarily for

indirect assessment of student learning outcome, and also for student feedback. This is a

survey that assesses students on communication and content knowledge. It is designed for

generic use in every exercise, to be completed quickly at the conclusion of the class

exercise.

4.2. Class Exercises

Class exercises provide class time to explicitly raise questions that invite student participation.

When well designed for the context and presented in the right setting, class exercises raise

questions for the students to exercise their thinking. Woods and Howard [12] effectively used class

exercises for Information Technology students to study ethical issues. Day and Foley [13] used

class time exclusively for exercises, having their students prepare for class with materials

provided online. Frydenberg [14] primarily used hands-on exercises to foster student

understanding in data analytics. Well designed, class exercises become very effective learning

tools and can be versatile in various classroom settings. Acharya et. al. have successfully

disseminated sixteen exercises in the area of software V&V [15]. The authors are developing 6

delivery hours of class exercises with each class exercise module being 25 delivery minutes or

multiple of 25 delivery minutes. Once completed each exercise will consist of the following

components:

a. Class Exercises Description: This document provides complete information of this

active learning tool. It has four categories of information. The first part provides general

information about the class exercise and includes details like the software security focus

topic area, module name, prerequisite knowledge, learning outcomes, keywords, expected

delivery duration, description of the scenes, and student exercise. The second part

describes the instruction and assessment procedure. The third part has a list of possible

discussion questions by scene. The final part of this document depicts the survey

instrument.

b. Student Handout: Student Handout includes everything that the students need to

participate in the class discussion. This handout explains the scenes, the objectives of the

exercise, step-by-step what the student should do and a set of sample question for Scene

1.

c. Discussion Questions: For each video, suggested discussion questions for each scene is

available as a power point slides. Instructors are welcome to modify these questions or

use their own questions.

d. Assessment Instrument: The assessment instrument is a simple survey primarily for

indirect assessment of student learning outcome, and also for student feedback. This is a

survey that assesses students on communication and content knowledge. It is designed for

generic use in every exercise, to be completed quickly at the conclusion of the class

exercise.

4.3. Case Study Videos

One commonly used technique to enhance the classroom learning experience is the use of

video. Videos are viewed as an effective method of presenting standard material while

addressing students of different learning styles. A video engages visual learners with its images

and motions, while auditory learners can listen carefully to the narration to gain an understanding

of the topic. Videos are an essential part of the flipped classroom model, in which the

preponderance of lecture material is presented before class [16]. Watching videos can reinforce

reading and lecture material, help to develop common knowledge, enhance the quality of

discussion and overall student comprehension, accommodate students of different learning

styles, increase student motivation, and increase teacher effectiveness [17]. Videos can aid in

showcasing highly complex concepts and ideas in a short period of time, provoking meaningful

discussion and analysis. Acharya et. al. have successfully disseminated 4 case study videos in the

area of software V&V [18]. One of these videos titled “Security Inspection Scenes” is currently

being used as a software security ALT. The authors are proposing producing 1 more case study

video. Combined both videos will be suitable for 2 plus delivery hours. Each case study video

consists of the following components. The description below is based on the “Security Inspection

Scenes” video. The authors expect the second video to follow the same format.

a. Video: Videos have appropriate narrations and pause points between scenes for

incorporating class discussions.

b. Case Study Video Description: This document provides complete information of this

active learning tool. It has four categories of information. The first part provides general

information about the video and includes details like the software security focus topic

area, module name, prerequisite knowledge, learning outcomes, keywords, expected

delivery duration, description of the scenes, and student exercise. The second part

describes the instruction and assessment procedure. The third part has a list of possible

discussion questions by scene. The final part of this document depicts the survey

instrument.

c. Discussion Questions: For each video, suggested discussion questions for each scene is

available as a power point slides. Instructors are welcome to modify these questions or

use their own questions.

d. Student Handout: Student Handout includes everything that the students need to

participate in the class discussion. This handout explains the scenes, the objectives of the

exercise, step-by-step what the student should do, and a set of sample question for the

first scene of the video.

e. Assessment Instrument: The assessment instrument is a simple survey primarily for

indirect assessment of student learning outcome, and also for student feedback. This is a

survey that assesses students on communication and content knowledge. It is designed for

generic use in every exercise, to be completed quickly at the conclusion of the class

exercise.

5. Delivery Strategy

With the active learning tools designed to impart practical knowledge into theoretical

understanding, the authors encourage a flipped classroom model [19] in which class time for

active learning tools can be maximized so as to engage the students for further digestion of the

knowledge in the context of industry practices. Students are expected to be prepared outside of

the classroom beforehand, with assigned textbook readings or reviewing of online materials. The

class time is then spent on discussion and teamwork, reinforcing the material from the previous

session. For effective delivery it is also recommended that students work in small teams. Overall,

the flipped classroom model has proven highly effective at increasing student engagement and

enhancing the preparation of students for class sessions [20]. The flipped classroom also has been

shown to allow the instructor to cover more material and results in higher student performance
[21].

6. Assessing student learning

While exams, quizzes will be used to understand student learning the survey is depicted in Figure

2 below will be used to understand student perception of the delivered active learning tools

delivered. A survey will be conducted after delivery of each ALT.

Figure 2: Student survey

7. Sample ALT: Security Inspection Scenes

While this is paper is work in progress the authors have already started working on a few ALTs.

Below we present sample components of an ALT on Security Inspection Scenes.

Introduction: The scenes in this case study video portray brief dramatizations in a Security

Inspection case study. The scenes present industry best practices and problems that can occur

during the process. The objectives of this ALT are:

1. Explain the potential impacts of a security violation on a deployed system.

2. Explain the impacts of improper risk assessment on security.

3. Explain the importance of a system architecture in the design of a software system.

4. Understand the importance of using proper protocols to secure a system.

5. Understand how threat modeling can be applied.

The components of this ALT are depicted below.

 Component 1: Description Document

This document provides detail information of this ALT. Figure 3 illustrates the

“Instructional notes” of this document.

Figure 3: Instruction Notes

 Component 2: Discussion Questions

Figure 4 depicts a scene description and discussion questions for this case study video.

Figure 4: Scene and Discussion Questions

 Component 3: Student Handout
Figure 5 illustrates a portion of the student handout.

 Component 4: Assessment Instrument
Figure 6 illustrates the assessment instrument for this ALT.

8. Conclusion and Recommendation

Overall, the need for security education within the software engineering real is paramount.

Having good, relevant materials is also essential. In developing relevant materials, it is important

that the academic community solicit input from industry stakeholders. Industry stakeholders

have a unique perspective into the needs of graduating students as well as the risks faced by

deployed systems. To accomplish this, a set of industry partners has been surveyed and their

responses categorized, focusing the development effort into the relevant areas. The team has also

developed a strategy to use active learning tools, including case studies, class exercises, and case

study videos, to help students understand the aspects of security. Preliminary assessment plans

and general topical organizations have also been developed and a sample case study video is

already incorporated in a software engineering course.

Figure 5: Student Handout

Figure 6: Case study video assessment instrument

References

[1]. The Cost of Immaturity, [Web Page], Retrieved January 11, 2017 from URL

http://www.economist.com/news/business/21677639-business-protecting-against-

computer-hacking-booming-cost-immaturity

[2]. Home Depot Breach Cost Expected to Reach Billions, [Web Page], Retrieved January

11, 2017 from URL https://www.scmagazine.com/home-depot-breach-costs-expected-

to-reach-billions/article/533722/

[3]. Target Says Credit Card Data Breach Cost it $162 Million in 2013-14, [Web Page],

Retrieved January 11, 2017 from URL https://techcrunch.com/2015/02/25/target-says-

credit-card-data-breach-cost-it-162m-in-2013-14/

[4]. The Joint Task Force on Computing Curricula: IEEE-CS and ACM, (2004), Software

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering, [Webpage], Retrieved January 29, 2017 from URL

http://sites.computer.org/ccse/SE2004Volume.pdf

[5]. The Joint Task Force on Computing Curricula: IEEE-CS and ACM, (2015), Software

Engineering 2014 Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering, [Webpage], Retrieved January 29, 2017 from URL

https://www.acm.org/education/se2014.pdf

[6]. Acharya, S., Ackerman, A. (2012), Software Engineering Education Needs more

Engineering, ASEE Annual Conference & Exposition – Software Engineering

Constituent Committee, June 10 – 13 – San Antonio, TX

http://www.economist.com/news/business/21677639-business-protecting-against-computer-hacking-booming-cost-immaturity
http://www.economist.com/news/business/21677639-business-protecting-against-computer-hacking-booming-cost-immaturity
https://www.scmagazine.com/home-depot-breach-costs-expected-to-reach-billions/article/533722/
https://www.scmagazine.com/home-depot-breach-costs-expected-to-reach-billions/article/533722/
https://techcrunch.com/2015/02/25/target-says-credit-card-data-breach-cost-it-162m-in-2013-14/
https://techcrunch.com/2015/02/25/target-says-credit-card-data-breach-cost-it-162m-in-2013-14/
http://sites.computer.org/ccse/SE2004Volume.pdf
https://www.acm.org/education/se2014.pdf

[7]. McGraw, G. Software Security - Building Security In, Addition-Wesley Software

Security Series, ISBN: 0-321-35670-5, 2006

[8]. Promoting Active Learning, [Web Page], Retrieved January 21, 2017 from URL

https://utah.instructure.com/courses/148446/pages/active-learning

[9]. Kunselman, J.C. and Johnson, K.A., Using the Case Method to Facilitate learning,

College Teaching, Vol. 52. No. 3 (Summer 2004).

[10]. [Web Page], Retrieved December 2, 2016 from URL

https://www.middlesex.mass.edu/sotl/downloads/klein.pdf

[11]. Manohar, P., Acharya S., Wu P.Y., Hansen M, Ansari A.A. & Schilling Jr W.W.

(2015), Case Studies for Enhancing Student Engagement and Active Learning in

Software V&V Education, Journal of Education and Learning, Vol 4, No. 4, December

2015, Page, 39-52

[12]. Woods, D., and Howard, E (2014) An Active Learning Activity for an IT Ethics

Course. Information Systems Education Journal, 12(1) pp.73-77. http://isedj.org/2014-

12/ ISSN: 1545-679X.

[13]. Day, J.A. and Foley, J.D. (2006) Evaluating a web lecture intervention in a human–

computer interaction course. IEEE Transactions on Education, 49(4):420–431, 2006.

[14]. Frydenberg, M. (2013) Flipping Excel, Information Systems Education Journal, 11(1)

pp.63-73. http://isedj.org/2013-11/ ISSN: 1545-679X.

[15]. Wu, P., Manohar, P. A., & Acharya, S. (2016). The Design and Evaluation of Class

Exercises for Active Learning in Software Verification and Validation. Information

Systems and Education Journal, 14(4), 4-12.

[16]. Bergmann, J. and Aaron S. (2012) Flip Your Classroom: Reach Every Student in Every

Class Every Day, Eugene: International Society for Technology in Education, 2012.

Print.

[17]. Corporation for Public Broadcasting. (2004). Television goes to school: The impact of

video on student learning in formal education

[18]. Acharya, S., Manohar, P. A., & Wu, P. (2016). Using Case Study Videos to Effectively

Teach Software Development Best Practices (pp. 230-235). The 20th World Multi-

Conference on Systemics, Cybernetics, and Informatics (WMSCI) Conference,

Orlando, FL, Organized by International Institute of Informatics and Systemics (IIIS).

[19]. Bonwell, C. C., & Eison, J. A. (1991). Active Learning; Creating Excitement in the

Classroom. ASHE-ERIC Higher Education Report No. 1., Washington, D.C.: School of

Education and Human Development, The George Washington University. Retrieved

from http://files.eric.ed.gov/fulltext/ED336049.pdf

[20]. Day, J.A. and Foley, J.D. (2006) Evaluating a web lecture intervention in a human–

computer interaction course. IEEE Transactions on Education, 49(4):420–431, 2006.

[21]. Mason, G.S.; Shuman, T.R.; Cook, K.E. (2013), "Comparing the Effectiveness of an

Inverted Classroom to a Traditional Classroom in an Upper-Division Engineering

Course," Education, IEEE Transactions on , vol.56, no.4, pp.430,435, Nov. 2013

https://utah.instructure.com/courses/148446/pages/active-learning
https://www.middlesex.mass.edu/sotl/downloads/klein.pdf
http://files.eric.ed.gov/fulltext/ED336049.pdf

