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Work-in-Progress: Integrated Project Platform for Student Research and 

Curriculum Development 

 
Abstract 

This paper describes the setup of an integrated project platform to support student research and 

curriculum development in the burgeoning topics of artificial intelligence and machine learning. 

The platform comprises modules for object classification and collision avoidance which are used 

in the design of intelligent and autonomous vehicles. Object classification consists of the 

appropriate neural network architecture for training and learning object characteristics from data 

sets. Collision avoidance utilizes a single camera to estimate the distance of the vehicle from the 

object. The hardware and software requirements of the integrated project platform are met by 

cost-effective resources.  In addition to serving as a testbed for student research in the design and 

operation of intelligent and autonomous vehicles, project activities on this platform will enable 

students to gain valuable laboratory and project experiences. This can be accomplished through 

the inclusion of exercises on this platform in graduate and undergraduate courses offered as part 

of the electrical and computer engineering (ECE) curriculum. Graduate ECE courses, such as 

image processing, neural networks, and embedded system design would be choices for project 

activities on this platform. Typical courses in the undergraduate ECE program are digital logic 

design and programming in C/C++/Python. The platform will promote student participation 

across the ECE program in competitive design events for the next generation of intelligent and 

autonomous vehicles. Evidence of the use of the platform and the assessment of learning 

outcomes will be documented in future papers. 

 

Introduction 

The engineering programs at universities across the world must adapt to the rapidly changing 

engineering technology and the needs of the global workforce.  The engineering students who 

enroll at these universities expect to be educated and trained with the latest industry-approved 

tools in order to function effectively in the engineering industry. In recent years, artificial 

intelligence (AI), machine learning (ML), and the internet-of-things (IoT) have been able to 

reduce or eliminate human interaction while yet processing large amounts of data. AI offers 

computational tools that replace the need for humans to perform certain repetitive tasks. The 

industries which already use AI include health care, retail, manufacturing, and banking.  

 

The adoption of an integrated project platform, henceforth labeled IPP, by the Electrical and 

Computer Engineering (ECE) program at Gannon University, Erie, PA is viewed as an effective 

approach to strengthen and broaden the education of the ECE student [1]. Specifically, the 

appropriate choice of the platform can accomplish the following. 

 

 Broad goals  

• Train the student to think and work like an engineer 

    - emphasize concept to design across the curriculum  

    - create the environment for goal-oriented and self-directed learning 

• Shape the student into a ‘successful engineering entrepreneur’ 

     - equip the student with the skills to function in a global business with economic  

       uncertainties 



Specific objectives   

• Use cost-effective resources to create the IPP 

• Unify the content across the set of courses which advance the preparation of the student 

toward skill sets in AI, ML, and IoT 

• Deliver laboratory exercises and team projects on the IPP which emphasize the problem-

based and project-enhanced pedagogy in each course 

 

The motivation behind the choice of IPP is as follows:  

 

The Intelligent Ground Vehicle (IGV) Competition (IGVC) [2] requires the competitors to 

design and assemble a fully autonomous and unmanned ground vehicle capable of navigating a 

prescribed course with obstacles. The vehicle must also perform specific tasks assigned during 

the competition. The team of students in the ECE department have competed in the IGVC [3] in 

previous years. However, due to the limited time available to prepare for the competition, the 

vehicle presented by the team could not successfully complete all the tasks assigned in the 

competition. The IPP was conceived by one of the authors to resolve design issues and to create 

the environment for student teams to engage in the test and validation of proposed design 

changes. In this paper, the IPP setup comprises modules to implement the neural network, object 

classification, and collision avoidance.   

 

Section 1 overviews the setup of the IPP with the top-level system description of the modules. 

Section 2 provides details of the operations in each module and the overall current status of the 

IPP. Section 3 discusses the application of the outcomes from the IPP to the IGV. Section 4 

outlines the engineering course and curriculum development, engineering research activities, as 

well as co-curricular activities supported by the IPP.  Section 5 comprises conclusions. Section 6 

lists recommendations for future work. 

 

Section 1: IPP set up 

Figure 1 illustrates the modules for the top-level block diagram of the IPP. The first module is 

the Neural Network (NN) and comprises the steps taken to process the images of the obstacle. 

The images could be from a database of pictures of the obstacle identified as the training dataset 

or real-time streaming video (Webcam feed) of the obstacle. The NN used in our setup is the 

deep convolution neural network (DCNN) [4]-[6]. The DCNN performs a series of nonlinear 

transformations on the input image used for object detection or recognition. The final 

transformation outputs a vector of category probability values, one for each object category.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Top-level block diagram of the IPP  
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The early layers of these networks are not fully connected as in classical neural networks. 

Instead, convolutional windows are used to preserve the spatial information in the image [7]. In 

recent designs of the DCNN, the early layers tend to operate on very local regions of the image, 

while deeper into the network, each node receives input from filters over a larger area of the 

image. This allows the network to access relations between more distant regions [8]. This 

network architecture has some obvious similarities with biological vision.  

 

The second module is labeled Object Classification (OC) and comprises the steps of detecting or 

locating and then labeling the object in each image. The objects are labeled by rectangular 

bounding boxes to show the confidences of existence. The IPP requires objects be identified in 

categories and locations. The regression or classification-based methods of object detection such 

as MultiBox [9], YOLO [10], YOLOv2 [12]-[14], Yolov3 [15]-[19], AttentionNet [20] are better 

suited than the region proposal-based methods such as R-CNN [21], Faster R-CNN [22], Mask 

R-CNN [23].   

 

The third module labeled Collision Avoidance (CA) estimates the distance of the obstacle from 

the moving vehicle. Typically, the distance is calculated using a combination of proximity 

sensors or multiple camera feeds. However, in this paper the distance is accurately estimated 

using a single camera. The algorithm is implemented in Python to provide real-time 

measurements of the distance.  

 

Section 2: Current status of the IPP 

The traffic barrel has been identified as the obstacle to be classified and avoided. First, the IPP 

setup was trained to images of the traffic barrel as shown in Figure 2.   

 

Training data set  

Figure 2(a) depicts typical images of the use of the traffic barrel on roadways and highways. 

Figure 2(b) illustrates the use of the traffic barrels as obstacles along the course of the IGVC. 

 

 
                                    (a)                                                                    (b) 

Figure 2: Traffic barrel (a) highway uses (b) obstacle course 

 

The IGV, which requires video in real-time, captures the feed using a single camera. The IGV 

can operate using visual acuity and data information as seen in Figure 3.  

 

Test data – Webcam feed 

Figure 3(a) exhibits the single camera utilized for obtaining the real-time webcam feed. Figure 

3(b) features the complete IGV testing setup, which contains the secured webcam. 



 
Figure 3: (a) Camera (b) Camera mounted on the IGV 

 

Neural Network 

The DCNN in the IPP is organized in five layers which are described as follows: 

 

Convolutional layers 

Seventy percent of the DCNN layers perform the convolution filter or kernel operation on the 

image of the obstacle. The filter or kernel operation is linear and involves multiplications of the 

image intensities with a set of filter or kernel coefficients (also known as filter weights). The 

filter, whose size (row and column dimension) is smaller than the size of the input image (e.g. 

8x8 filter for a 256x256 input image), is applied repeatedly across the entire image. Different 

filters or kernels are used to create multiple feature maps [24]. Convolution layers are formed by 

applying filters not just to the raw image pixel values but also to the output of other layers. 

Stacking the convolution layers yield a hierarchical decomposition of the input image. 

 

Short-cut layers 

The short-cut layers (21.5% of the number of layers) represent layers that are bypassed or 

skipped so as to overcome the problem of gradient divergence and difficulty in training DCNN 

[25].  

 

Route layers 

The route layers (4% of the DCNN layer count) bring finer grained features in from the previous 

stages of the network. The route layers recover output from previous layers in the network and 

bring them forward to form the feature maps. 

  

YOLO layers 

In the YOLO layers (3% of the DCNN layer count), the coordinates of the bounding boxes, the 

class label and class confidence values are determined using the feature maps from the preceding 

convolutional layers. 

 

Upsample layers 

The Upsample layers (1.5% of the DCNN layer count) perform interpolation to recover the 

original size of the image.  

 

Object Classification 

The object classification module must recognize predetermined objects and generate bounding 

boxes around those objects. The bounding boxes must fit neatly around the specified objects, and 

not falsely classify objects. Also, the object classification must separately classify multiples of 



objects, not just a singular instance. This information will be obtained by the single camera 

[Figure 3(a)] and sent to the processing computer.  

 

The Darknet framework [24] is adopted for object classification. Darknet is an open source 

neural network framework that was developed by the same individuals who pioneered the YOLO 

algorithm. For that reason alone, Darknet was the premier neural network choice for use in this 

project. In addition, Darknet does incorporate several additional advantages. Darknet is written 

completely in a combination of C and CUDA.  

 

Training and testing the DCNN and Object Classification modules  

The DCNN and Object Classification modules of the IPP are first tested with examples which 

consisted of identifying common everyday objects such as humans and cars. At this point, the 

network was able to receive input images or video, utilize the default weight classes, and 

establish bounding boxes around the humans and cars.  

 

Once the examples were successfully implemented, the next step was to create a custom dataset 

and have the network identify custom objects. For this undertaking, it was decided to use playing 

cards as identifiable objects. The goal was to specify three unique playing cards within the 

network, which equates to three unique classes representing the three cards. This required the 

author to obtain three cards, and then take a few dozen pictures of each individual card. In order 

to provide the widest range of detection familiarity, the pictures had to portray different angles 

and degrees of lighting. In theory, the more pictures correctly classified, the better the accuracy 

of the neural network. Yet, the intention of this experiment was centered on the creation and 

detection from a custom dataset, using a reduced number of samples of each image. 

 

Upon completion of the training of the neural network, the output custom weights can be used 

for testing. In order to do this, the configuration file must be slightly altered in a manner that 

initiates testing instead of training. Testing is essentially “running” the neural network with the 

weights found from training. In this scenario, the author could verify validity of the trained 

weights by testing the network and holding up individual playing cards to the camera. Therefore, 

the first attempt at custom dataset creation and implementation was a success. Figure 4(a) shows 

the correct identification of “Ah” for the ace of hearts. Figure 4(b) correctly displays the “6c” for 

the six of clubs. 

 

      
                                                       (a)                                    (b) 

Figure 4: Playing cards identified (a) Ace of Hearts (b) Six of Clubs 

 



Project dataset for the IPP 

As mentioned previously, the primary motivation was to create the IPP as the testbed which is 

intended to be a successful marriage between deep learning methods and the IGV design for 

unmanned navigation. With this in mind, several choices and decisions have been made with 

both sides of the project in mind. One of those decisions was the fact to utilize standard traffic 

barrels as the primary dataset for training and testing the neural network. This required the author 

to obtain as many images of traffic barrels as possible. Therefore, the first method that the author 

performed was to collect traffic barrel images from the internet. Unfortunately, however, traffic 

barrel images are not as plentiful as traffic cones. In fact, there were only a few dozen clear 

traffic barrel pictures that could be found on internet browsers.   

 

Due to the low number of traffic barrel images available on the internet, the author knew that 

personal pictures had to be included in the dataset. With that being said, one of the first tasks the 

author completed was obtaining physical traffic barrels. The Department of Transportation was 

contacted and five traffic barrels for research and educational purposes were granted. The author 

could use these barrels initially for dataset augmentation, and eventually, testing the network.  

An image of one of the traffic barrels collected can be seen below in Figure 5. 

 

 
Figure 5: Standard Traffic Barrel 

 

Labeling the traffic barrel 

There are several prerequisite ingredients prior to actually labeling the dataset. First, the author 

sorted through all the images to make sure that they were of usable quality. Images that are too 

small or distorted will not offer much benefit. While encountering such low-quality images may 

not be an issue when capturing photos firsthand, it can be relatively common when pulling 

images from the internet. Second, the author removed any duplicates that were within the 

dataset. Duplicate images offer little, if any, benefit to the learning aspect of neural networks. 

Also, a large number of duplicate images can skew performance metrics. Lastly, it was essential 

for the author to scan the images for any irrelevant images. Once again, any personal pictures 

utilized would be relevant, but outside images may not be. After the images were scoured for 

quality control, it was then time to label the images. 

 

While some scripts may manage automating a portion of the labeling process, the author did not 

search or use any scripts. Therefore, the author completed all labeling manually. Doing so 

involves looking at each individual image and setting a type of boundary box around the object 

in question. In the case of this project, the boundary boxes were placed around the traffic barrels 



in each image. As this is done, there are associated text files that document the coordinates of the 

chosen boundary boxes. This tells the machine that the area within those coordinates contains an 

item of interest. 

 

This project is only concerned with traffic barrels, which means that only one class has been 

outfitted in the neural network. If the project were concerned with detecting other objects, the 

classes added into the network would correlate with the object types. Still, it is important to note 

that this is not the same as object number per each image. If a single image contains four 

different traffic barrels, the author had to align individual label boxes around each of the four 

traffic barrels. With that being said, often images had traffic barrels that were partially visible or 

overlapping other barrels. It was still important to fit the label boxes around the parts of the 

traffic barrels that were visible. Likewise, it is important to set the label boxes as close to the 

image as possible. A labeled image together with the annotation of a traffic barrel is shown in 

Figure 6. The labeling tool used is called “LabelImg.” 

 

 
 

Figure 6: Traffic barrel – labeled and annotated 

 

Classification results 

Upon labeling all of the traffic barrels, training the dataset, and configuring all of the proper 

files, the final version of the object classification system was created. Anaconda script was used 

to navigate to the proper directory and launch the testing of the neural network. As soon as the 

Anaconda script is running and the camera has been turned on, it is possible to verify that the 

neural network is classifying objects correctly. It is important to note that the network is only 

going to classify images that were input into the system. Figure 7 shows two traffic barrels being 

correctly classified at the same time.   

 

 
Figure 7: Classification of two traffic barrels 



As mentioned previously, when labeling, it is also important to label objects that may be 

somewhat hidden from view. Since objects will not always be fully visible in real life, this trains 

the network for those instances. Figure 8 shows three traffic barrels being correctly classified, 

although there is overlap between two barrels. 

 

 
Figure 8: Classification of overlapping traffic barrels 

 

Collision Avoidance 

In the context of the IGV, the detection and classification of the obstacle is made more useful if 

followed by collision avoidance. Collision avoidance is performed with a series of spatial and 

distance awareness calculations made on the output from the object classification module. The 

distinguishing feature of this project is that collision avoidance is achieved using data from a 

single camera and no external sensors. Only the visual camera information has been used for the 

distance algorithm.   

 

Single-Camera Distance Algorithm 

The measurements would have to be done through pixel counts. The height and width could be 

measured for an object at a known distance, and then calculated for other distances. This concept 

is essentially triangle similarity, only the author would use variables such as pixels of an object 

and the focal length of the camera as described in the following equation.  

                                                    

                                                     F = ((P × D))/H                                                                         (1) 

 

where, 

 

F = “Focal length, in pixels”  

P = “Total pixel number of object width” 

D = “Actual distance of the object, in centimeters” 

H = “Real height of the object, in centimeters” 

 

Since the author is using standardized traffic barrels, the height, H of all of the objects will be the 

same. The total pixel number of the object, P was determined by taking a picture of a traffic 

barrel from a known distance. The pixel width was then found by opening the picture and finding 

the range of pixels for the width of the traffic barrel. Meanwhile, since the picture of the traffic 

barrel was captured from a known distance, all of the variables are accounted for. This allowed 

one to solve for the focal length, F.  

 



The calculated focal length is static and only applies for that particular distance of the traffic 

barrel from the camera. However, this is when the algorithm can be utilized in a converse 

manner. Now that the focal length, F had been established for a known distance, D, the equation 

(1) is used to estimate the distance, D using the calculated value of the focal length, F.  

 

Validation of the Algorithm 

In order to ensure that the object classification and obstacle avoidance components would 

connect in terms of code, it was decided to essentially recreate the project in Python [25], 

without a neural network. In light of this, developing a Python version of the project served two 

separate objectives. First, it allowed one to test the algorithm and determine if the pixels served 

as a feasible approach to calculating distance. Second, it allowed for continued productivity 

while rationalizing how the neural network version would culminate in the object classification 

and obstacle avoidance phases. Noting that Python is a popular programming language, there are 

an abundance of packages and documentation. This proved to be very convenient to create a 

Python script for image processing. With this in mind, OpenCV [26] proved to be exactly what 

worked. OpenCV is a library of mainly computer vision and image processing functions. Upon 

installing OpenCV to the machine, it was possible to incorporate the power of OpenCV image 

processing into a Python script through the command “import cv2.” 

 

In intentionally avoiding a non-neural network approach for the preliminary Python program, a 

different method of classification would be required. The simplest method proved to be color 

recognition. The Hue/Saturation/Value (HSV) representation for color discernment was used. 

Additionally, setting limits constrains the color recognition to occur only for the orange of the 

traffic barrels. It is also important to note that the Python program will detect the orange color 

that is in the greatest single area. In other words, if there are multiple orange features in the 

camera view, the largest one will be the one detected. Figure 9 demonstrates how the largest 

continuous orange area of the traffic barrel is bounded. 

 

 
Figure 9: Color detection by the Python program 

 

The Python program detects the largest orange area within the camera feed.  The entire cone is 

not detected or accounted for, as seen in Figure 10. The camera input is continuously refreshed to 

provide estimates of the pixel width, P. the only variable that would change in the case of solving 

for distance, D. Figure 10 shows the traffic barrel at a distance of 143 centimeters from the 

camera. When measured alongside a tape measure, the actual result was only a few centimeters 

off. The blue boundary box and the yellow text with the real-time distance value is all part of the 

OpenCV library. The green lines are placed to facilitate the identification of pixel quadrants.  



 
 

Figure 10: Detection and Distance Estimation by the Python program  

 

Object Classification and Collision Avoidance 

The success of the Python-based test program for color detection and obstacle avoidance enables 

one to consider a method to incorporate the same concepts in the actual neural network version. 

The goal is to determine how to logistically combine the object classification and object 

avoidance in one program. The approach to use purely Darknet C files was unsuccessful because 

of the difficulty to identify and edit the file for the placement of the bounding box. The DCNN 

weights and configuration files are accessed by the Python-based execution program. The 

boundary boxes are then created for the entire traffic barrel because these would be based on the 

training of the neural network and not on the color of the largest subregion of the image (see the 

blue box in Figure 10). Therefore, one would have to apply the distance algorithm for an entire 

barrel, and then once again obtain the pixel data. The system which includes the object 

classification and obstacle avoidance has been successfully developed. Figure 11 shows the 

traffic barrel with a bounding box and the distance value, measured in centimeters, from the web 

camera. The real-time rate of the program is about 12 frames per second (FPS). While this is 

slow for high-speed detection, most projects would find this detection rate serviceable. 

 

 
Figure 11:  Object Classification and Obstacle Avoidance  

 

Section 3:  Impact of IPP on the IGV design 

The major incentive for this project was to aid the IGVC efforts. The IGV team at Gannon 

needed a reliable method to navigate autonomously through an obstacle course crowded with 

traffic barrels. This project aimed to serve as a graduate thesis, as well as a solution for those 

IGV navigation needs.  

 

One key aspect of the IGV competition is that the autonomous vehicles must meet restrictions on 

the size. The team from Gannon, like most teams at the competition, have opted to use the 

chassis and base of an electric wheelchair. An electric wheelchair base fits comfortably within 

the vehicle dimension rules and also allows for adequate room for electronics. Obviously, the 

compilation of electronics aboard the robot must include navigation, and therefore the navigation 



electronics must be compact. The IGV team decided to utilize the NVIDIA Jetson TX2 module, 

shown in Figure 12(a) and the NVIDIA Jetson Xavier module, shown in Figure 12(b). These 

modules are compact AI computers that provide GPU performance with minimal power 

consumption. With that in mind, one had to ensure that the project is portable and able to be 

executed on the NVIDIA Jetson modules. 

 

        
                                                           (a)                            (b)   

Figure 12: (a) NVIDIA Jetson TX2 (b) NVIDIA Jetson Xavier   

 

Testing the distance algorithm with the IGV 

Figure 13 shows the testing arrangement. In order to test the distance algorithm in a more 

interactive setting, the Python program is ported onto a wheelchair-based platform. The 

wheelchair motors are programmed for the vehicle to follow the traffic barrel. The camera 

equipped vehicle follows the barrels and stops when the threshold distance setting is reached. 

Although it is impossible to show those results within a document, the testing was successful.  

 

 
Figure 13: Python program test with a camera-equipped vehicle 

 

Section 4: Engineering Project Activities supported by the IPP/IGV 

The following are envisioned to benefit from the creation of the IPP/IGV. 

• Courses with engineering project activities on the IPP/IGV  

• Engineering curriculum development 

• Engineering research activities 

• Co-curricular activities  

 

Courses with engineering project activities on the IPP 

Table 1 lists some of the laboratory-based and project-based undergraduate, graduate, and 

technical elective (TE) courses offered across the Electrical Engineering (EE) or Embedded 

Systems (ES) programs at Gannon University. The TE courses are cross-listed with the graduate 

program (Master’s degree in EE or ES). These courses can be adapted to include laboratory and 

project activities on the IPP. The theme of one or more laboratory and/or project experience is 

indicated. The details of each project activity will be determined by the instructor of the course 

in consultation with the technical documentation to be prepared. 



Table 1: Courses with project activities on the IPP 

 

Course Year 
Theme of the project activity on the 

IPP/IGV 
Introduction to C/C++ Freshman Programming the distance calculator  

Digital Logic Design Lab Freshman PWM logic for motor speed control  

Circuits I Freshman Powering electric vehicles with DC batteries 

Circuits II Sophomore Understanding peripheral power management 

Introduction to Microcontrollers Sophomore  Cost/performance for various microcontrollers 

Test and Measurement Sophomore Design interfaces to run diagnostics on the data  

Electronics Sophomore Observing sensor/camera-based differences 

Automatic Control Lab Junior Feedback control experiment 

Project Experience Junior Project and team management skills to meet 

design specifications 

Professional Seminar Junior Highlighting cross-discipline teamwork 

Electric Drives Lab Senior Hardware-in-the-loop IGV controller design  

Digital Image Processing (TE) Graduate Set up the IPP modules for different objects  

Artificial Neural Networks (TE) Graduate Train and test different NN architectures   

Applied Artificial Intelligence (TE) Graduate Design and test NN, OC and CA modules for a 

variety of objects 

Python/MicroPython (TE) Graduate Integrate algorithms into Python architectures 

 

Engineering curriculum development 

The concepts required to understand the modules of the IPP span a set of EE and ES courses 

offered across the four year ABET accredited EE program at Gannon University. Therefore, for 

the student to gain a more comprehensive understanding of the laboratory and project 

experiences in the courses using the IPP, the EE program would have to align the curriculum to 

enable the students to see the integration of course content across a set of undergraduate courses, 

such as those listed in Table 1, each of which utilizes the IPP/IGV. This unification around the 

common theme helps build and strengthen student learning and retention of concepts.   

 

Engineering research activities    

The cross-listed and graduate level courses listed in Table 1 are suitable candidates for student 

research into alternate NN, OC, and CA designs for deep learning.  

  

Co-curricular activities  

This work in progress paper has been inspired by the motivation to enable the engineering 

students across our engineering disciplines to participate and compete in the IGVC. For instance, 

mechanical engineering students work on the design of the braking system of the IGV. 

 

Section 5: Conclusions  

The IPP is one of several possible engineering project platforms capable of supporting the 

vertical integration of courses through project activities in the courses taught across the four-year 

engineering curriculum. This will promote student retention of concepts as well as prepare them 

to be engineers with the breadth and depth of knowledge necessary to be effective and 

competitive in the workforce. The successful modular design and demonstration of the IPP, 



together with its effective application to the redesign of the IGV, promises to deliver the 

following outcomes in the future. 

 

• Active student participation in engineering projects over a wide range of complexity 

• Encourages and instills just-in-time, self-motivated, and self-directed student learning 

• Promotes team building 

• Strengthens the communication and leadership skills in each student 

• Gives each student goal-oriented and purposeful experiences 

 

Section 6: Recommendations for Future Work 

The IPP was designed and tested during the Fall 2020 semester. Future work, comprising the 

tasks and the expected timeline for completion, are shown in Table 2. During the Spring 2021 

semester (January through May), the technical documentation of the IPP, which consists of the 

three modules (DCNN, OC, and CA), will serve as the reference manual for the operation of the 

IPP. In the Summer of 2021 (May through August), the laboratory experiments and project 

activities to be performed on the IPP in each of the courses listed in Table 1 will be identified, 

written, and tested. Specifically, the experiments and projects in each of the modules will be 

related to the course content. For instance, in the freshman course on Introduction to C/C++, the 

students will be tasked with writing and testing the program to compute the distance using the 

camera feed. In the course on micro-controllers, the students will evaluate, based on performance 

and cost, microcontrollers and sensors used to design the IGV. The course on neural networks 

(NN) will focus on deep learning models. During the Fall 2021 semester, the experiments and 

projects will be included in each course syllabus and mapped to the specific course outcome 

(CO) using the performance indicator (PI) for each ABET student outcome (SO). 

 

Table 2: Tasks and timeline 
Semester (Months) Task Details 

Spring 2021 (Jan.-May) Technical documentation of IPP DCNN, OC, and CA modules 

Summer 2021 (May-Aug.) Prepare laboratory experiments 

and project activities on the IPP 

for the courses listed in Table 1 

Redesign and test the IGV   

Participate in the IGVC 

Develop and test the software, 

determine the hardware 

components required to interface 

with the courses and the IGV  

Fall 2021 (Sept. – Dec.) Include the experiments and 

projects in the courses and assess 

the learning outcomes   

Map COs to the ABET SOs 

through the PIs for the 

undergraduate courses 
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