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Introducing High-Level Synthesis in Computer Engineering Curricula 
 

Abstract 
In this paper, the introduction of High-Level Synthesis (HLS) concepts and hands-on activities into an 
undergraduate computer engineering program is presented.  Students are provided instruction on the 
basics of digital hardware design using VHDL (VHSIC Hardware Description Language). That 
instruction is followed by modules on HLS. Students are tasked with putting what they learned to 
practice via a project in which they must implement 2D image convolution on a Field-Programmable 
Gate Array (FPGA), using HLS tools. The impact of the instruction on students is assessed via surveys 
and the results show that students find the material to be challenging, yet interesting. The results also 
show that there is ample room to provide additional instruction to students on topics that are core to 
modern hardware design, such as Direct-Memory Access (DMA). 

1. Introduction 
Courses on digital design are essential components of all computer engineering curricula [1].  Most 
programs have an introductory digital design course, where students learn the basics of logic gates, 
hardware description languages, and FPGA design. This introduction is typically followed up by an 
advanced course where students delve deep into digital design flows, Register Transfer Level (RTL) 
design, and FPGA synthesis. While these advanced topics are still essential for computer engineering 
students to learn, the professional practice has taken leaps forward in their use of FPGAs by adopting 
newer technologies. Specifically, the incorporation of FPGAs that support HLS (Fig. 1), the automatic 
creation of register-transfer level descriptions from abstract, high-level programming languages (such 
as C++), is now the most prolific use-case for FPGAs in cutting-edge, real-world applications [2-4]. 
Furthermore, modern FPGAs have more than just programmable logic, they also contain integrated 
CPUs that can be leveraged for additional functionality. In a recent article published in 2019 [5], the 
authors surveyed more than 40 papers published since 2010 about the Quality of Results (QoR) and 
productivity of HLS, compared to RTL design flows. The results showed that using HLS tools, the 
design time can be cut down to third and the designer productivity can be increased to 4 times, while 
the QoR of HLS being slightly below that of the RTL design flow [5]. 

Computer engineering programs have been slow to adopt these technological changes and as a result, 
examples of the use of HLS in the undergraduate classroom are few and far between. Recently published 
studies have been exploring the advantages of including HLS in undergraduate computer engineering 
programs [5-7], yet many questions need to be answered. Some of the research questions that we are 
going to answer in this work are: 1) How and when should HLS be introduced in computer engineering 
curricula 2) What preparation do students need to understand HLS? 3) In what context/application area 
should HLS be introduced and 4) What is the impact on students and their future prospects?   

In this work, we address these research questions via the revamping of an Advanced Digital Design 
course, offered by the Electrical and Computer Engineering Department at the school hosting this study. 
The instructors incorporated the use of state-of-the-art FPGA kits and deployed hands-on, HLS modules. 
Additionally, students were taught how to leverage the integrated CPUs to automate testing throughout 
the course.  



 
Figure 1: High-level Synthesis Design Flow. 

The rest of the paper is organized as follows: Section II briefly mentions previous work in this area. 
Section III introduces the course under investigation and the details of the implement HLS lab module. 
Section IV provides the assessment methos used and a discussion on the obtained results, while section 
V concludes the paper. 

2. Background, Previous Work, and Motivation 
Examples of incorporating HLS in engineering curricula, and in computer engineering curricula 
specifically have been scarce to find. However, recent published studies show that universities around 
the world have been noticing the urgent need to start incorporating HLS in different engineering 
curricula. Navarro et al [8] introduced the use of HLS tools in digital electronics course to implement a 
BUCK closed-loop controller for power converters. Comparing the performance of the HLS generated 
HDL code, with previous implementations in fixed and floating point VHDL, students were able to 
recognize the benefits of using HLS tools to quickly explore and optimize the design space [8]. 

Nelson et al [6] designed an experiment where they had a sophomore student implement a RISC-V 
processor in a simple looped design in both HDL and using an HLS design flow in C. the discussion 
revealed the student was very pleased with the experiment, but still needed more time to fully understand 
and unlock the potential of using HLS tools. 

Additionally, Skliarova et al explored the use of HLS in reconfigurable digital systems course [9]. The 
students implemented a system to sort N M-bit data items using an iterative even-odd transition network 
[9]. Students were asked to implement this system in both RTL and HLS design flow and were asked to 
compare the trade-offs between both methods in terms of design footprints and required design time. 

Last but not least, Huang et al designed a four-hours mini-course to teach computer engineering students 
about leveraging HLS to implement neural networks hardware accelerator on FPGAs [7]. Students were 



only required to know programing language concepts, without prior exposure to digital or hardware 
design [7]. 

While all the previous examples are valuable and show a move in the right direction, they lack the 
research aspect of how well Computer Engineering (CoE) students will perceive this new knowledge. 
This simple fact was the main motivation behind this work. Not only do we introduce HLS modules in 
the current Advanced Digital Design course, but we also assess students’ needs and comprehensibility 
of the materials and adapt the modules accordingly. This will be discussed later in the coming sections. 

3. Course Format 
Before the newly revamped course was rolled out, the older version of this course focused only on 
advanced RTL design and used obsolete FPGA boards with limited in/out peripherals. Although students 
were designing complex RTL blocks, they were only limited by the FPGA in/out peripherals for testing 
purposes. These limitations forced the students to design very primitive testbenches that did not 
thoroughly test their design and left it full of bugs. This was one of the main reasons the authors decided 
to completely revamp it. The revamped course in which this study is conducted has two distinct 
segments. First, students receive basic education on digital design flows, with a focus on design for 
synthesis. Afterwards, students learn about HLS. 

3.1. Digital Hardware Design 

The course presented in this work is a semester-long undergraduate course. At the University where this 
study took place, the course is required for computer engineering majors and elective for electrical 
engineering majors. The course is typically taken by students in their junior or senior year, after they 
have completed an introductory course in digital logic. In the introductory course, students are taught 
the basics of VHDL, FPGAs, and typical digital hardware design flows.  

Although in the preceding introductory course students are taught VHDL, the emphasis is on logic 
design. Thus, the details of logic synthesis and writing efficient or high-performance HDL is not 
discussed extensively. The follow-on course begins by reintroducing students to VHDL and FPGA 
design flows via a series of projects. In the first project, students are taught concepts that revolve around 
combinational logic and design an arithmetic logic unit. The focus is placed on the design of hardware 
synthesizable VHDL. 

After the design of the arithmetic logic unit, students are tasked with the design of a hardware multiplier. 
The students are asked to construct a multiplier using registers, combinational logic, and a finite state 
machine (Fig. 2). The primary goal is to introduce students to concepts behind (RTL) design where a 
datapath is controlled via a finite state machine. This is the level of hardware design that is typically 
emphasized in undergraduate programs and is still a vital part of their education in digital hardware 
design. This project also serves as a great introduction to the concept of converting an algorithm to 
synthesizable hardware, which is vital background for HLS. 

After students implement the multiplication algorithm in hardware, they are tasked with a large-scale 
project, the design of RISC MIPS CPU that supports several instructions. This project is included so 
that students can develop into proficient digital hardware designers having to exercise their knowledge 



 
Figure 2: Register-Transfer Level (RTL) design of the multiplication algorithm. 

of RTL design and design for synthesis at a large scale. After the completion of this project, students 
move on to learning about HLS. 

3.2. High Level Synthesis 

The training and modules delivered to the students up until the introduction of HLS is typical for most 
undergraduate computer engineering programs. Although typical, it is a prerequisite to teaching HLS. 
Without a proper background in RTL design, students may incorrectly view HLS design flows as if it 
were traditional software development. 

The first key to designing the educational modules and project is to provide a problem that is situated in 
a context for which HLS is desirable. For this reason, a project centered on image processing was 
selected. Specifically, the students implemented an edge detection filter, which requires 2D convolution 
of a kernel over an image. This project topic has several appealing features. First, the solution can be 
easily implemented in software and hardware. Thus, students are afforded the opportunity to directly 
compare the two realizations. Second, image processing is a domain for which industry stakeholders 
have a keen interest, especially the convolution process of a kernel over an image, which is heart of 
Convolutional Neural Networks CNNs [10].  Finally, the results are visual, and students are highly 
motivated to “see” their algorithm in action. 

Instructions begin by providing students with a primer on convolution of a kernel over an image. In the 
explanation, the math and theory are secondary to the software implementation. What is of most interest 
is that the naïve software approach leads to two nested loops (Fig. 3). Students are shown how these 
loops lead to inefficient memory accesses, with several image pixels having to be repeatedly fetched in 
memory, even when not being acted upon.  

This leads directly to a discussion that teaches how to rewrite software in such a way that lends itself to 
hardware realizations. The students are instructed on a “Stream Approach” by which the image is 
interpreted as a 1D vector, eliminating the inefficient memory access issues (Fig. 4). This stream 
approach requires the addition of temporary storage buffers so that pixels that are not yet being acted 
upon can be stored for future use without the need for additional memory accesses. 

 



                                   
  
 

One of the primary outcomes from seeing how to process the image via the “Stream Approach” is the 
students see the reduction of the software implementation go from two nested loops to a single loop with 
ROW*HEIGHT iterations (Fig. 4). This reformation of the code primes it for HLS and takes advantage 
of its features for high-performance computation, namely loop unrolling, pipelining, and direct memory 
access. An explanation and subsequent analysis of the dataflow graph reveals to the students where loop 
unrolling and pipelining can be applied to increase performance. For many students this serves as their 
first introduction to the concept of “unrolling” a loop or breaking it up into parallel computations and 
pipelining outside of the context of CPU instruction fetches. 

Figure 5 shows an example image that has been correctly processed by a student’s FPGA 
implementation. The final piece of instruction provided to the students is on the concept of Direct 
Memory Access (DMA) and how to stream data to accelerate computation. Figure 6 shows the 
acceleration framework used in this course and the basis for the student project. Students are tasked with 
the design of a hardware image processing “accelerator” (ACCEL). This unit is the only scope for which 
students must write their own code, all the other modules are provided. In the accelerator, students are 
tasked with implementing the convolution. They are first asked to implement it as they would with a 
pure software approach, and then later asked to redesign their implementation such that it streams input 
from DMA and takes advantage of unrolling and pipelining. 

The DMA unit utilizes the industry standard AXIS bus that fetches images direct from DDR memory. 
The FPGA chip used for this course also contains a host ARM microprocessor that is used to host the 
user application and testbench. 

4. Assessment Methods and Results 
For assessment, students were surveyed over the recent four offerings of this course to capture their 
perspectives and opinions on the impact of the new components on their learning. The very first two 
offerings of the revamped course were during Fall 2020 and Spring 2021, during the COVID-19 
pandemic, and were delivered remotely. In Spring and Fall of 2022, a more comprehensive assessment 
of the impact and effectiveness of the HLS instruction was conducted. 

Figure 4: Memory efficient 
streaming approach to image 

 

 

Figure 3: Depiction of basic 
approach to 2D Image 

 

 

 



 
(a)                                                                               (b) 

Figure 5: Example image processed by a student’s FPGA implementation. (a) shows the test image [11] and (b) 
shows the convoluted image after applying the edge detection filer. 

 
Figure 6: Data Flow Graph illustrating the unrolled and pipelined computations. 



4.1. Assessment of High-Level Synthesis Instruction (Spring 2022) 

To assess the effectiveness of the instruction specific to HLS and its impact on students, a survey was 
conducted in the Spring semester of 2022 (n = 14). It is worth mentioning here that the HLS lab 
component constituted about 15% of the time allocated for this class. The results displayed in Table 1 
show that students overwhelmingly feel that the subject matter is interesting and engaging (Q1) even 
though they also perceived the lab as challenging (Q2). Students felt that they had a strong understanding 
of HLS in general and how to unroll loops (Q3 and Q4). However, the results showed that the students 
struggled the most with understanding how DMA fit into the overall acceleration framework. 

Table 1. Assessment of HLS Instruction (Spring 2022) 

Question (n=14) Strongly 
Disagree 

Disagree Neutral Agree Strongly 
Agree 

I thought Lab #5 was interesting  0% 0% 7% 79% 14% 
I thought Lab #5 was challenging  0% 7% 29% 50% 14% 
I have a good understanding of the 
capabilities and goals of HLS 0% 0% 21% 71% 7% 

I have a good understanding of how 
to apply the concept of loop-
unrolling in the context of HLS 

0% 0% 14% 57% 29% 

I have a good understanding of how 
to apply the concept of pipelining in 
the context of HLS 

0% 0% 36% 50% 14% 

I have a good understanding of how 
Direct-Memory Access (DMA) was 
used in this lab 

7% 29% 29% 36% 0% 

I am interested in learning more 
about the topics covered in Lab #5 0% 7% 29% 50% 14% 

 

4.2. Assessment of High-Level Synthesis Instruction (Fall 2022) 

In order to address the students’ concern about DMA, in particular, and to give them a better 
understanding of HLS, in general, we introduced a new intermediate lab before the 2D image 
convolution lab discussed in section 3.2. This lab acts as a soft transition into the 2D image convolution 
lab, where the students get introduced into HLS via designing a simple 2D matrices multiplier. Matrix 
multiplication is simple enough for the students to implement in C/C++, with very simple three nested 
loops, so they can focus more on HLS concepts. In addition, students get to implement different 
optimization techniques, like loop unrolling and pipelining, and see the difference in the utilized 
resources on the FPGA board.  

With the new lab introduced, the HLS labs compromised about 23% of the time allocated for this class 
and the different HLS concepts are divided between the two labs as follows: 

1) Lab #5 2D Matrix Multiplication: HLS introduction, loop unrolling, pipelining, and reading 
utilization reports.  



2) Lab #6 2D Image Convolution: array partitioning, DMAs, and AXI Stream Interface. 

The same assessment was conducted during Fall 2022 (n = 34). Table 2 depicts the individual results of 
the survey questions and Fig. 7 shows a comparison between the results of the two semesters. The 
horizontal axis shows the results categorized into: Disagree (strongly disagree and disagree together), 
Neutral, and Agree (agree and strongly agree together). While the students still think that Lab #6 is still 
challenging (Q2), they now have better understanding for loop unrolling (Q4), pipelining (Q5), and 
DMA (Q6), as indicated by the increase in the percentage of the students under the “Agree” category.  

Table 2. Assessment of HLS Instruction (Fall 2022) 

Question (n=34) Strongly 
Disagree 

Disagree Neutral Agree Strongly 
Agree 

I thought Lab #6 was interesting  0% 3% 3% 50% 44% 
I thought Lab #6 was challenging  0% 0% 9% 68% 23% 
I have a good understanding of the 
capabilities and goals of HLS 0% 9% 17% 53% 21% 

I have a good understanding of how to 
apply the concept of loop-unrolling in 
the context of HLS 

0% 0% 9% 56% 35% 

I have a good understanding of how to 
apply the concept of pipelining in the 
context of HLS 

0% 9% 23% 44% 24% 

I have a good understanding of how 
Direct-Memory Access (DMA) was 
used in this lab 

0% 26% 24% 38% 12% 

I am interested in learning more about 
the topics covered in Lab #6 3% 6% 21% 44% 26% 

 

4.3. Qualitative Assessment of Students Employability 

While it is hard to track down every student who took this class and see how this course affected their 
potential employability in the field of hardware digital design, the instructors received some very 
promising feedback from three students regarding this matter. Two of the two students were having a 
co-op at a big tech company doing RTL design with the Integrated Design Environment (IDE) that we 
use in class. When they saw who skilled they are with the IDE and HLS, they offered them a full-time 
position just after a month into their co-op. One of the students said, and we quote, “The job is exactly 
like your course, but easier!” The third student reached out saying that she was able to secure an 
internship during summer 2023 at a company doing image processing using FPGAs. She said, and we 
quote, “The internship is basically a derivative from Lab 6!” 

5. Summary and Conclusions 
In summary, an introduction of HLS into an undergraduate course was presented. This subject matter, 
which is normally reserved for graduate level courses, was introduced by first, instructing students on 
the basics of digital design and RTL methodologies. After that foundation was laid, students are taught 
HLS in the context of accelerating image processing applications. 



The results show that the instructions were effective, as most students found the material to be engaging. 
The assessment reveals that students became confused when DMA was introduced. Thus, the instructors 
introduced a new intermediate lab to ease the transition into HLS and to decouple the basics of HLS 
from advanced concepts like DMA and AXI. This modification had led to students better understanding 
the advanced topics. Yet, they still find HLS labs challenging.  

As per the results obtained and students feedback mentioned in section 4.3, the instructors believe the 
answer to research question 1 is that HLS should be introduced during junior/senior year for computer 
engineering students. This is when the students have had enough exposure to basic HDL in previous 
courses, and ready to receive leverage HLS for more complex designs. As per question 3, the instructors 
believe that using HLS to build image processing accelerator is an excellent application for the students 
at this level, but it needs to be even more optimized. In future iterations, the instructors will allocate 
even more time for HLS labs divide the labs into different milestones to target the different challenges 
the students face. 

 
Figure 7: Comparison between survey results in Spring and Fall of 2022. 
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