
Paper ID #11460

Introducing Kinematics with Robot Operating System (ROS)

Dr. Asad Yousuf, Savannah State University
Mr. William Lehman, Bill’s Robotic Solution

William Lehman is President of Bill’s Robotic Solutions which he started in July of 2013. He has had
over twenty years of experience in software and hardware development. He has worked on numerous
projects in digital communication systems, robotics, and aerospace applications. Mr. Lehman received
his Bachelor of Science degree in Electrical Engineering in 1979 from Catholic University of America.

Dr. Mohamad A. Mustafa, Savannah State University
Dr. Mir M Hayder, Savannah State University

Dr. Hayder is an Assistant Professor in the Department of Engineering Technology at savannah State
University, GA. He received PhD in Mechanical Engineering from McGill University, Canada in 2009.
His research interest lies in the areas of fluid-structure interaction, flow-induced vibrations, syngas and
blended fuel combustion, nanofluids, concentrating solar power technologies, and flow and structural
simulations.

c©American Society for Engineering Education, 2015

P
age 26.1024.1



Introducing Kinematics with Robot Operating System (ROS) 

 

Abstract 

The study of Kinematics is essential to Robotics. A robot, to perform most applications needs to 

process positional data and transform data from one frame of reference to another. Robots have 

sensors, links and actuators each with its own frame of reference, so transformations between 

reference frames can be quite tedious. Traditionally Kinematics for robots is introduced to 

students with MatLab and the Robotic Toolbox. In this paper we examine the introduction of 

Kinematics for robotics with the features and tools available in the open source Robot Operating 

System (ROS). ROS implements tools for Kinematics transforms (tf) as a key part of the ROS 

Core Libraries. ROS defines robots with the Unified Robot Description Format (URDF) standard 

based upon Extensible Markup Language (XML). URDF is in many respects similar to Denavit-

Hartenberg (D-H) Convention, but with significant additional enhancements.  

We choose to introduce the Electronic Engineering Technology (EET) students to Kinematics 

and ROS so they would have greater insight into engineering projects involving robotics. We 

also found that using ROS in robotics projects not only makes the projects more interesting to 

students but, gives students an authentic experience with distributive systems and odometry 

sensors. Kinematics for robots uses Linear Algebra, Matrices, Natural logarithms (Euler’s 

equation), Imaginary numbers and Trigonometry. The areas of mathematics we used to introduce 

kinematics for robotics to EET students are very similar to the mathematics to understand 

electricity, electric fields and circuit theory. We emphasize matrix operations, operations 

involving Triaminic functions and imaginary numbers. This paper summarizes the result of this 

approach. 

Introduction 

The study and understanding of Kinematics is a tool in both industrial and mobile Robotics.  A 

robot, to perform most applications needs to process positional data and transform data from one 

frame of reference to another.  Robots have sensors, links and actuators each with its own frame 

of reference, so transformations between reference frames can be quite tedious.  Software makes 

transforms easy to perform and automatic, but the student needs to understand Kinematics to use 

the software [1]. 

We designed the labs for EET students to give them basic kinematic concepts while gaining 

experience with ROS. We have added additional material for advanced students interested in 

robotics.  In this paper we present enough kinematic theory to give the reader a good idea of 

what kinematic concepts are presented in the lab.  In the detailed descriptions of the labs we also P
age 26.1024.2



covered how we used ROS to learn kinematics.  The pre-lab materials and labs are available as 

free open source for readers who wish to know more. 

The topics covered for the Kinematic Labs are depicted in Figure 1. Euler angles tend to be 

intuitive to describe robot motion but have issues when angles approach 90.  Quaternions are an 

alternative to using Euler angles but are not intuitive to use.   We will treat Quaternions as black 

boxes and use Euler angles for our inputs to the robot model to have the best of both descriptions 

of rotation [2]. 

Joints used in our labs were Revolute or Prismatic.  We can approximate other joint types in 

ROS using combinations of Revolute and Prismatic joints.  We limited our joint types to keep 

the introduction to kinematics simple. 

Joints in robots are usually combined in a series to form chains.  Our Robot modeling software 

allows for chains to also be combined into tree like structures.  A good example of a Kinematic 

tree would be a robot with two or more arms.  

Forward Kinematics determines the position of the Robot given the joint rotations or distance for 

Prismatic sliding joints.  Inverse Kinematics is more difficult than Forward Kinematics since we 

need to find one or more ways to move a Robot to a given point in space.  Where there is usually 

a solution in Forward Kinematic problems there may be multiple or no solutions in an Inverse 

Kinematic problem. 

 

 

Figure 1 Robotic Kinematic Topic’s for Labs 

Robotic Operating System 

We will explore Kinematics using software packages. ROS has a number of software packages 

that deal with Kinematics (see Figure 2).  To demonstrate the Kinematic concepts from Figure 1, 

we needed to use more than one software package from Figure 2.  RVIZ is a robot simulator that 

Robotic 
Kinematics

Prismatic 
and 

Revolute 
Joints

Euler Angles

Kinematic 
Chains and 

Trees

Quaternions

URDF & D-H

Inverse 
Kinematics

P
age 26.1024.3



can display a URDF robot model in 3D along with data from other sensors such as cameras.  All 

the labs take advantage of RVIZ to demonstrate the six Kinematic concepts in Figure 1. 

The tf software package provides a library of Kinematic routines that provides all the 

mathematical functions we need to transform Kinematic data from one frame of reference to 

another in our robot manipulators.   

Transforms in ROS are made on positional data in both space and time.  There are good tutorials 

in ROS on how data is transformed in the temporal domain.  In this paper, we use examples and 

labs where the positional data is constant so we can ignore extrapolation in time.  Time is 

important but we ignore it to “keep it simple” for students [3].  URDF is a XML modeling 

language capable of modeling most robots.  Python is a programming language with interfaces to 

the ROS system.   

Software packages in ROS are written mainly in Python, Lisp and C++.  We will use Python 

interpreter much like a calculator.  RVIZ GUI will display robot information and we will confirm 

the results using calculations made in Python. 

 

         Figure 2 – Software Packages in ROS for Lab 

MOVEIT is a fascinating software package for controlling robot arms and manipulator’s. 

Each of the labs developed to introduce students to Robot Kinematics is listed in Table 1. 

Lab Title 

1 RVIZ and PYTHON with Simple Robot Manipulator Model 

2 RVIZ, TF and PYTHON with Aircraft Robot Model 

3 URDF and Hydra Robot Models 

3 

EXTENT   

Converting D-H Table to URDF Model 

4 MOVEIT and Inverse Kinematics 

Table 1 – Titles of Labs 

Lab 1 deals with analyzing views of robot from different Frames of Reference and converting 

Quaternions to and from axis angle representation.  

ROS

RVIZ

tf

URDFPython

Moveit

P
age 26.1024.4



In Lab 2 the student converts Quaternions to and from Euler angles using the Python 

Programming Language.  

In Lab3 students learn to read and write URDF files with the Linux Ubuntu screen editor gedit.  

The extension to Lab 3 exposes students to converting D-H tables to URDF files. Finally, 

students confirm there URDF model is correct with the RVIZ robot simulator.  

Lab 4 gives the opportunity to run a number of inverse algorithms from OMPL using both the 

Willow Garage PR2 and 6R robot [4]. 

Please note Labs 1 – 3 deals with concepts in Forward Kinematics and Labs 4 in Inverse 

Kinematics. 

Lab 1 RVIZ and PYTHON with Simple Robot Manipulator Model 

In this Lab we will learn how to use the RVIZ Robot Simulator and convert Quaternions to/from 

axis angle representation.  We will use the Python programming language to make our manual 

calculations and confirm ROS is working as expected (see Figure 1).  Python is an interpreted 

language and supported by the Robotic Operation System (ROS).   

 

        Figure 3 – Lab Setup 

There are four sections to this lab: 

a) Setup and RVIZ features 

b) Converting from Quaternion to Axis Angle Representation 

c) Frames of Reference 

d) Robot Arm Movement Sequence 

 

Setup will guide you through startup of RVIZ, Robot State Publisher and terminals.  Features of 

the RVIZ display will be explored.  We will convert Quaternions to Axis Angle representation to 

get useful information from the Quaternion.  We will also change the Frames of Reference in the 

chain of links to take different measurements.  Finally we will explore Sequences of moving arm 

joints to set the robot to different positions in 3D space. 

ROS Python 
and tf

P
age 26.1024.5



Next is a screen shot of the RVIZ Robot Simulator showing the robot arm. The position is shown 

on the RVIZ screen along with relative position using Quaternions for the orientation.  The 

Robot State Publisher screen is also displayed with sliders to control the robot arm [5]. 

 

Figure 4 RVIZ Simulator and State Publisher Window 

The second screen shot of the RVIS Robot Simulator shows the robot arm visuals turned off to 

reveal the axis systems of each frame. 

 

Figure 5 Joint Conventions and 3D Axis 

Quaterions 

Axis angle is somewhat intuitive and similar to Quaternions but in 3D.  Axis angle can be 

converted to/from Euler angles to and from Quaternions.  Eq. 20 through Eq. 30 converts the 

axis angle vector to a Quaternion [6]. 

 𝑞1 =  sin (
𝛼

2
) cos( 𝛽𝑥)   (Eq. 1)   

 𝑞2 =  sin (
𝛼

2
) cos( 𝛽𝑦)   (Eq. 2) 

  𝑞3 =  sin (
𝛼

2
) cos( 𝛽𝑧)   (Eq. 3) 

P
age 26.1024.6



  𝑞4 =  cos (
𝛼

2
)    (Eq. 4) 

The Quaternion is normalized so equation Eq. 5 is applies. 

 𝑞12 +  𝑞22 + 𝑞32 +  𝑞42 = 1  (Eq. 5) 

Equations 6 through 9 convert a Quaternion to axis angle vector. 

   = 2 cos−1(𝑞4)    (Eq. 6) 

   𝑥 =  
𝑞1

√1−𝑞42
     (Eq. 7) 

   𝑦 =  
𝑞2

√1−𝑞42
     (Eq. 8) 

   𝑧 =  
𝑞3

√1−𝑞42
     (Eq. 9) 

The direction cosine angles can be found with the following equations: 

   
𝑥

=  cos−1 𝑥    (Eq. 10) 

   
𝑦

=  cos−1 𝑦    (Eq. 11) 

   
𝑧

=  cos−1 𝑧    (Eq. 12) 

EXAMPLE 

Given the Quaternion: 

q1 = 0.293802, q2 = -0.0957684, q3 = -0.294745 , q4 = 0.904231 

Note the Quaternion is normalized: 

1 =  𝑞12 +  𝑞22 +  𝑞32 +  𝑞42 = 0.999999518 

 

a = 0.427043673 

 = 2 cos−1(𝑞4) = 0.8824416 = 50.56 

𝑥 = 0.6829905, 𝑦 = -0.2242590, 𝑧 = -0.6901987 

Note that 𝑥2 +  𝑦2 +  𝑧2 = 1 and is thus normalized. 

 
𝑥

=  cos−1 𝑥 = 46.5 

P
age 26.1024.7




𝑦

=  cos−1 𝑦 = 77.4 


𝑧

=  cos−1 𝑧 = 133.6 

Lab 2 RVIZ, TF and PYTHON with Aircraft Robot Model 

In this Lab we will learn how to use the RVIZ Robot Simulator, Python Programming Interpreter 

and ROS tf library to study Euler angles.  The Robot State Publisher allows for the Robot model 

in RVIZ to be controlled with sliders. 

 

        Figure 6 – Lab Setup 

There are three sections to this lab: 

a) Euler Angles and Gimbal Lock 

b) Converting Quaterions to/from Euler Angles 

c) Frames of Reference and the tf Transform 

 

Euler angles are expressed in terms of roll, pitch and yaw to specify the orientation of an aircraft.  

In ROS roll is a rotation about the x axis, pitch is a rotation about the y axis and yaw is a rotation 

about the z axis.  All rotations in ROS follow the Right Hand Rule for direction of rotation [7]. 

                        

                ROLL                                            PITCH                                               YAW 

Figure 7 Roll, pitch and yaw of aircraft 

Euler Angle Rotation Combinations 

RVIZ & 
Robot 
State 
Publisher

Python 
and tf

P
age 26.1024.8



 

 

Proper Euler 

Angles 

Tait-Bray 

Angles 

RYR RYP 

RPR RPY 

PRP PRY 

PYP PYR 

YPY YPR 

YRY YRP 

Table 2 Euler Angle Combinations 

Table 2 shows the combinations of Euler angles possible.  Note, that Tait-Bray angles are also 

referred to as Euler angles. 

The tf library provides two ways to convert Euler angles to Quaternions with any of the 

combinations in Table 2.  The tf library can also provide a convenient conversion from 

Quaternions to Euler angles [8]. 

Euler angles are intuitive to use except there are issues with Gimbal Lock. Quaternions avoid the 

issues of Euler angles, but are difficult to visualize.  We solve this dilemma by converting to and 

from Euler angles [9]. 

Using multiple Frames of Reference for a Robot makes it easy to calculate angles and distances 

from one point in the environment to another.  We use the tf library in ROS to perform this task.  

We also learn some of the underlying concepts behind the magic of tf Transforms. 

Lab 3 URDF and Hydra Robot Models 

In this Lab we will learn how Unified Robot Description Format (URDF) describes robots and 

use it to design our own Robot.  We will use the Ubuntu Linux editor gedit to modify and create 

URDF text files.  We will use RVIZ a Robot Simulator and the Robot State Publisher in ROS to 

display and control our Robot Models [10]. 

There are five sections to this lab: 

a) URDF format and Simple Robot Model 

b) Ubuntu Linux Graphical Screen Editor gedit 

c) Hydra Robot Example 

d) Hydra Robots URDF models 

e) Design a Robot URDF model 

 

P
age 26.1024.9



URDF can be used to model a robot with links (members) connected by joints in a chain or tree.  

Most Industrial Robots can be modeled by chains of joints offset by links.  Multi-arm robots can 

be modeled with a tree data structure of joints connected by links to a base link.   We do not 

cover the transmission element at this point since all the robots we need are created by chains or 

trees.   Other elements of URDF such as sensors are also not used. 

There are two main types of URDF XML elements we need to create our robots links and joints.  

Link elements (or blocks) can contain elements for inertial properties, visual properties, and 

collision properties. Joint elements can also contain elements for origin, parent link name, child 

link name, axis of rotation/translation, calibration, dynamics, limit, mimic another joint and 

safety controller information. 

 

         Figure 8 Kinematic Tree 

The Kinematic Chain or Tree can be represented by a graph of links connected though joints 

between each Link and other links. 

Link 1A is moved by the joint between the Base Link and Link 1A.  Link 1A is connected to a 

joint between Link 1A and Link 2A that moves Link 2A.  Link 1A is also connected to a joint 

between Link 1A and Link 3A which moves Link 3A.  Each Link is moved by a single joint but 

may be connected to a number of joints that move other links.  In URDF terminology multiple 

joints can be connected to one link, but the link can only be a Child in one of  the joints 

connected to it and must be a Parent to all the other joints connected to it.              

The Base Link is the first link in the tree and is special.  The origin of the axis system to World 

coordinates x, y and z is determined from the Odometry Frame (/odom) and Map.  In the 

example to follow our robot arm axis origin is located at World Coordinate 0,0,0. 

It should be noted the students can get a graph of the Kinematic Tree or Chain with 

urdf_graphviz command typed in the terminal [11]. 

Link elements must have the “name” attributes for the link.  The inertial and collision properties 

for the link are not included, except where it will be connected to a prismatic type joint.  The 

visual information can be provided by specifying a rectangle, sphere or cylinder shape for the 

link or a mesh.  Although the mesh produced by a Computer Aided Design (CAD) program can 

be very pleasing to the eye, we keep it simple with a rectangle or cylinder shape.  As a 

Base Link

Link 1A

Link 2A Link 3A

Link 1B

Link 2B

P
age 26.1024.10



convention in the design of our robots for the labs we group together all the link elements to and 

then all the joint elements for readability of the URDF file [12]. 

 

 

 

 

 

 

 

 

 

 

Figure 9 Types of URDF XML Blocks 

The joint element has a name and an attribute for the type of joint.  We only select a revolute, 

continuous or prismatic type for the joint.  The ROS Continuous joint type  in actuality is a 

revolute.  In URDF a continuous joint is a revolute joint where the angle of rotation is 360, 

where the revolute joint limits of rotation must be specified.  The joint attaches a parent link to a 

child link.  The child link can be a parent link to one or more other links in a chain or tree.  The 

child link however can never be connected through a series of joints and links back to its parent 

link making a loop [13]. 

An example link element can be found in figure 10.  We could have named the link anything we 

felt useful to identify it, since it was the second link in the chain we named it “link2”.  We skip 

the inertial and collision information, not because it’s not useful but to keep the example simple.  

The visual element contains the geometry element which sets the type of display using the 

geometry element. The box element is inside the geometry element.  The box element sets the x, 

y, z sizes of the rectangle.  The visual also contains the material element which sets the color of 

the rectangle link.  We set it to an arbitrary color to distinguish this link from other links in the 

RVIS simulator display. 

  

ROBOT NAME 

Link Elements 1-N 

Joint Elements 1-N 

END ROBOT 

P
age 26.1024.11



 

 

 

 

 

 

 

 

Figure 10 URDF XML Element Link Block 

The visual also has the origin element inside it.  The origin rotates the linkage visual display 

using roll, pitch and yaw angles.  Roll is about the x axis, pitch is rotation about the y axis and 

yaw is rotation about the z axis.  In the above example the  rectangle is rotated 90 from the long 

side on the x axis to now point along the z axis.  The link is offset ½ meter above the origin of 

the base link.  The robot is actually buried in the floor in a hole ½ meter deep.  

Syntax of  the XML elements have the form  “<label parameters>” followed by other elements 

and a “/>” or “</label>”  [14].  

Next, we examine a joint XML element in Figure 11.  The joint must have some name which 

should make sense to identify where on the robot it resides.  We choose in this example to use 

the label link1_link2, since we connect our link named link1 to our link named link2.  The joint 

is a revolute type with no limits on rotation angle so we choose a continuous type. The parent 

link is link1 and the child link is link2.   

The axis element specifies the axis the joint will revolve around which in this case is x.  The 

origin  xyz attribute is a offset of the joint from the parent joint origin  to the child’s joint origin.  

The origin rpy parameter is a roll, pitch and yaw rotation on the child’s joint Frame of reference. 

  

  <link name="link2"> 
    <visual> 
      <geometry> 
        <box size="1 0.25 0.25"/> 
      </geometry> 
      <origin rpy="0 1.571 0" xyz="0 0 0.5"/> 
      <material name="linkc2"> 
        <color rgba="1 0 1 1"/> 
      </material> 
    </visual> 
  </link> 
 

P
age 26.1024.12



 

 

 

 

 

 

Figure 11 URDF XML Joint Element Example 

The following command in the terminal window can be used in ROS to check the syntax of the 

URDF file: 

 rosrun urdfdom check_urdf filename.urdf 

Our robot URDF examples with prismatic joints are slightly more complex since prismatic joints 

require limits parameters and safety parameters not required for continuous joint type. 

 

 

Lab 3 Extension – Converting D-H Table to URDF Model 

 

Denivit-Hartenberg (D-H) Conventions ease the process of calculating the position and orientation 

of Frames in a Kinematic Chain [15]. As seen in the last section URDF can be used to model 

Robots that are Kinematic Trees.  URDF does not require axis systems for Frames to only rotate 

about the Z axis.  URDF actually uses arbitrary axis for Revolute or Prismatic Joints. However, 

we can tabulate the parameters of our URDF joint variables in a table analogous to D-H 

parameters. 

 

To demonstrate we will use the axis system in Figure 12 to make the D-H table for the 3R robot 

similar to the 3R robot we saw earlier. The Ɵ variable represents rotation about the z axis of the 

joint.  The d parameter is the distance along the z axis to the next joint.  The d is a variable in the 

case of Prismatic joints. The a parameter is the distance of each common normal or the offset 

between joints. Finally the  parameter is the angle between the current joint i and the next joint 

i+1. The parameters in the D-H table can be translated to parameters in the URDF Joint element 

[16]. 

 

 
  <joint name="link1_link2" 
type="continuous"> 
    <parent link="link1"/> 
    <child link="link2"/> 
    <axis xyz="1 0 0" /> 
    <origin rpy="0 0 0" xyz="0 0 1.0"/> 
  </joint> 
 
 

P
age 26.1024.13



 
          Figure 12 Axis 3R Robot 

 

Note in Figure 12 has the y axis into the page for Joint 1 and z axis out of the page for Joint 2 and 

3.  

 

Link Ɵ𝑖 𝑑𝑖 𝑎𝑖 𝑖 

1 Ɵ1 𝑑1 0 90 

2 Ɵ2 0 𝑎2 0 

3 Ɵ3 0 𝑎3 0 

          Table 3 D-H Parameters for 3R Robot 

 

The parameters of the URDF Joint Elements can be enumerated in a Table similar in concept to 

the D-H table.  For a simple Kinematic Chain there would be a single corresponding table to model 

the joints in the Robot.  For a Kinematic Tree we could use multiple Joint Element Parameter 

tables to represent each Kinematic Chain in the Tree. 

 

The 𝑑𝑖 parameters will always be placed in the corresponding Joint + 1 z axis offset between Joint 

i and Joint i+1.  The 𝑎𝑖 parameter is the offset between Joint i and Joint i+1 along the x axis of 

Joint I and joint i+1.  

 

We have to place the robot in World coordinates in ROS, so we will select a convenient orientation 

and origin to simplify calculations.  We put the 3R robot at the origin of the World axis system 

and aligned with that axis system.  This means instead of rotating Joint 2 by 90 we will rotate 

Joint 2 so the z axis will be out of the page. Joint 3 and 4 will also be rotated since 2 is attached to 

3 and 3 is attached to Joint 4. Joint 4 is a Fixed type Joint and does not move.  Joint 4 is included 

to show a3 parameter in the D-H table. 

  

P
age 26.1024.14



 

 

# Joint 

Type 

Joint 

Link # 

Joint+1 

Link # 

x y z Joint+1 

Roll 

Joint+1 

Pitch 

Joint+1 

Yaw 

Joint+1 

Axis X 

Joint+1 

Axis y 

Joint+1 

Axis z 

1 R Base 1 0 0 𝑑1 0 0 0 0 0 1 

2 R 1 2 𝑎2 0 0 90 0 0 0 0 1 

3 R 2 3 𝑎3 0 0 0 0 0 0 0 1 

4 Fixed 3 4 0 0 0 0 0 0 - - - 

 Table 4 URDF Joint Element Parameters 

 

Dummy URDF Link elements are set up with simple names such as Link_1, Link_2 etc.  No 

information is needed in the URDF Link Element since we are not displaying visual elements of 

the Robot model in the Lab. We need a Base Link not included in D-H table to attach our robot 

model to the World Coordinates. 

 

The parameters from the table to the URDF Joint Element are also straight forward.  The x,y,z 

parameters corresponds to the origin xyz parameter in the URDF Joint element.  The roll, pitch 

and yaw parameters corresponds to the origin rpy parameter in the URDF Joint element.  Finally 

the axis parameters define a unit vector pointing along the z axis.  Since this is a Revolute joint, 

the joint will rotate around the z axis. 

 

 
Figure 13 D-H 3R Robot Displayed in RVIZ 

 

After students create the URDF Joint Element Parameter given the D-H table they perform, they 

convert it to URDF and display the results in RVIZ to confirm it matches the Fig. 12 axis system 

P
age 26.1024.15



orientation. The a3 parameter is between Joint 3 and Joint 4.  The Red axis is x, the Green axis is 

y and the Blue axis is z in Fig. 13. 

 

Lab 4 MOVEIT and Inverse Kinematics 

There are two sections to this lab: 

a) Setup Moveit 

b) Using Different Planning Algorithms to move robot 

 

In this Lab we took advantage of existing demonstration software that uses the PR2 and 6R Robot. 

Students set the robots to different start and end states for the PR2 and 6R robots. Students can 

watch the robot perform the motion using the planning algorithm from the OMPL library and 

record the time it took to calculate a solution.  There is an excellent tutorial that walks the students 

through the setup and use of the demo software [17]. 

 

 

Figure 14 Demo Software Screen with 6R Robot 

In the Lab students can select among the following planners to perform the path selected for the 

PR2 or 6R Robot [18]: 

1) Bi-directional Kinematics Planning by Interior-Exterior Cell Exploration (BKPIECE) 

2) Kinematics Planning by Interior-Exterior Cell Exploration (KPIECE) 

3) Lazy Bi-directional Kinematics Planning by Interior-Exterior Cell Exploration 

(LBKPIECE) 

4) Expansion Space Trees (EST) 

5) Probabilistic Roadmap Method (PRM) 

6) Transition-based Rapidly-exploring Random Trees (TRRT) P
age 26.1024.16



Building upon the RVIZ Plugin tutorial the student is presented with a problem requiring 

building a table for the selected algorithm using different Planning Groups and other Planning 

parameters. The student then records the results of the test in a table of planning parameters vs 

time and evaluate the results.  The goal of the Lab is to give them some insight into the 

complexity of Inverse Kinematics. 

Conclusion 

We have presented the major features of the five labs developed to introduce our students to 

Kinematics using ROS.  We are developing labs where students use accelerometers, and gyros to 

track real robots using ROS.  The Introduction to Robotic Kinematics should provide the 

background to understanding Kinematic aspects of these labs. 

The Robot Toolbox provides a powerful system for introducing students to Robotic Kinematics 

[19]. However for EET students teaching kinematics on ROS is more efficient, since students use 

ROS on other projects. 

Information to obtain the free Open Source labs outlined in this paper can be found at reference 

[20].  

 

 

 

 

References 

[1] Foote Tully,  “Technologies for Practical Robot Applications (TePRA), 2013 IEEE International Conference on 

Open-Source Software workshop in Proceedings 6556373 tf: The transform library”, April 2013, Pages 1-6. Doi 

10.1109/TePRA.2013.6556373,  ISSN 2325-0526 

[2] Diebel James, “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors”, Stanford, 

California 94301–9010 “, 20 October 2006 from http://www.astro.rug.nl/software/kapteyn/_downloads/attitude.pdf 

[3] www.wiki.ros.org/tf  

[4] “ Open Motion Planning Library: A Primer”,  http://ompl.kavrakilab.org 

[5] Siciliano Bruno, Khatib Oussama , “Handbook of Robotics” , DIGITAL DESIGN page 11 

[6] www.euclideanspace.com/maths/geometry/rotations/conversions/ 

[7] “Coordinate Frames for Mobile Platforms”,   http://www.ros.org/reps/rep-0105.html 

[8] “Standard Units Measure and  Coordinate Conventions”,  http://www.ros.org/reps/rep-0103.html Section 2.5 

Visualization wiki.ros.org/urdf 

P
age 26.1024.17



[9] wiki.ros.org/geometry/CoordinateFrameConventions 

[10] http://wiki.ros.org/urdf/Tutorials 

[11] “5.2 Visualization”,  wiki.ros.org/urdfoveit.ros.org/urdf 

[12] wiki.ros.org/urdf/XML/link 

[13] wiki.ros.org/urdf/XML/joint 

[14] en.wikipedia.org/wiki/XML 

[15] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, “Robot Dynamics and Control Second Edition”, Chapter 

3 Forward Kinematics: The Denivit-Hartenberg Convention”, Jan 28, 2004 

[16]  Thomas Federico , “Universitat Politecnica DE Catalunya BarcelonaTECH Solved Problems in Robot 

Kinematics Using the Robotic Toolbox”, fthomas@iri.upc.edu April 2, 2012 

[17] http://moveit.ros.org/documentation/tutorials/ 

[18] Ioan, A. Sucan, Member, IEEE, Mark Moll, Member, IEEE, and Lydia E. Kavraki, Senior Member, IEEE ]  

“The Open Motion Planning Library”,http://ompl.kavrakilab.org/ieee-ram-2012-ompl.pdf 

[19]  Corke  Peter, “Robotic Toolbox for Matlab Release  9”, Release 9.9”,  April 2014, 

http://www.petercorke.com/robot  

[20] http://www.brazenbot.com   

P
age 26.1024.18


