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Abstract  

The field of chemical engineering is replete with systems that exhibit multidimensional 
dependence. Common developments of these include position-dependent velocity distributions in 
viscous flow, transient thermal conduction, and diffusive mass transfer within multiphase or 
reacting conditions. These types of systems are typically introduced to undergraduate students in 
junior-level core courses – these are the “transfer” (or transport) lecture classes: fluid mechanics 
(also known as momentum transfer), heat transfer, and mass transfer. Undergraduate programs in 
the field of chemical engineering typically require the completion of a differential equations 
course by the end of the sophomore year. These courses focus on the delivery of classical 
techniques for the analytical solution of singular (or systems of) ordinary differential equations 
(ODEs), but do not provide more than the general definition of partial differential equations 
(PDEs). In this paper, the methods for introducing sophomore-level students to PDEs and their 
computer-aided solution are described with respect to learning objectives and a detailed example 
of a student exercise. The impact of the instruction is presented in the context of student pre- and 
post-instruction self-evaluation, and performance on junior-level laboratory work that involves 
the analysis of a transient system. 
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1. Introduction 

Individual and combined transport courses make up the instructional core of most Chemical 
Engineering B.S. programs in the United States today1-3, a pedagogical focus within the 
discipline that remains unchanged since at least the middle of the 20th century4-6. These courses 
deliver the principles of unit operations theory, the laboratory practices of which are usually 
employed as a program capstone7. While a foundational Material and Energy Balance (MEB) 
course is typically the first to introduce students in these programs to the techniques of applying 
transient matter and energy balances, those systems are most commonly treated as spatially 
homogeneous8,9. Limiting system analysis to a strictly temporal variation ensures that the only a 
single ordinary differential equation (ODE), or a system thereof, will arise. 

The transport courses following MEB focus on fluid mechanics, heat transfer, and mass 
transfer/separations. The material delivered in transport instruction presents additional 
complexity in the form of spatial system variations, which may occur in either steady-state or 
transient conditions10-12. The mathematic description of system aspects such as a velocity, 
temperature, or concentration gradients with position in more than one direction (or in unsteady 
conditions) will necessarily give rise to partial differential equations (PDEs). The student is 
provided with a more complete and realistic explanation of a chemical process system versus 



simpler, homogeneous descriptions, but she or he is simultaneously presented with a significant 
challenge for the solution or analysis of the system13,14. Chemical process systems that give rise 
to PDEs with complete analytical solutions may be unrealistic or impractical, and those PDEs 
that adequately describe real-world systems usually have no analytical solution readily within the 
grasp of a typical undergraduate student. This is particularly true if a student is provided with 
only a very cursory exposure to PDEs in the mathematics core of the curriculum15. 

The complexity of PDEs and their solution has therefore long provided an excellent opportunity 
to provide chemical engineering students with an introduction to their numeric solution and the 
techniques associated therewith. The following presentation is an illustration of efforts by the 
Department of Chemical and Biological Engineering (CBE) at the Colorado School of Mines 
(CSM) to both increase student understanding of multivariant chemical processes, as well as to 
provide them with a flexible computational tool for their analysis. 

2. Institutional Setting and Program Illustration 

Following a 2016 curriculum revision, the CBE Department at CSM has provided a new required 
sophomore-level course: Computational Methods in Chemical Engineering (CMCE), which is 
offered simultaneously with MEB as a corequisite. The main instructional goals of the CMCE 
course are to provide students with exposure to the computational tools used throughout the later 
curriculum in course projects and assignment calculations, as well as to provide limited 
instruction on programming techniques (flowsheet generation and coding), a dedicated course for 
which had been absent in the curriculum since 2002. An introduction to process simulation 
software (ASPEN Plus, Aspen Technology Inc.) is also included, making the course rather 
unique among those computation-based courses offered by our peer institutions.  

The primary mathematical modeling and analysis software package used in CMCE is MATLAB 
(MathWorks, Inc.), which is provided to all students at no cost via a University-funded site 
license. The mid-semester MEB modules which focus on time-dependent mass and energy 
balances coincide with the introduction of methods for the numeric solution of ODEs in the 
CMCE course. In CMCE, such examples are examined following discussions of the temporal 
ODE systems which arise from chemical reaction kinetics, such as those encountered by students 
in general chemistry lecture and laboratory courses in the freshman year.  

The solution of ODE systems is used as a natural starting point for the recasting of PDEs as 
systems of ODEs within MATLAB using the Numeric Method of Lines16,17. Following this, its 
built-in PDE solver (pdepe) is used to provide students with direct instruction on dimensional 
discretization and solution of parabolic or elliptic PDEs. Parabolic PDEs make up the plurality of 
those arising from transport problems (e.g., Navier-Stokes, one-dimensional transient diffusion, 
unsteady heat conduction), although simpler elliptic equations are also encountered (e.g., steady-
state heat conduction or diffusion). In the CMCE course, students construct a customizable script 
(MATLAB m-file) for the solution of parabolic or elliptic PDEs in various geometries. The 
program output includes a solution matrix for the supplied dimensions, as well as a detailed 
surface plot covering the discretized coordinate ranges. 

While the creation of the script is carried out cooperatively during a specific segment of lecture 
instruction, the particular nature of each section of the script is explained in detail as it is created, 



so that the student may immediately know which sections of it must be modified from one 
application to another. The script itself is divided into distinct functional segments: 

 Specification of the coordinate system of interest (slab/rectangular, cylindrical, or 
spherical) 

 Assignment of spatial or temporal coordinates, their overall ranges, and 
sectioning/discretization to create a solution mesh 

 Customization of the solution surface plot 
 Sub-function 1 (pdefun): Parameters for the PDE in standard form 
 Sub-function 2 (icfun): Initial condition specification 
 Sub-function 3 (bcfun): Parameters for boundary conditions in standard form 

 
When the script file is correctly outfitted with specifications for each of these segments and 
executed, a numeric solution and accompanying surface plot is generated. The task of identifying 
and supplying the necessary input to the script requires only a thorough inspection of the 
problem statement and appropriate organization of the information given. 

For example, in the Spring semester of 2019, students were presented with the following 
homework problem: 

 

A tube with circular cross section is fashioned from compacted dark chocolate 
powder (inner wall radius R = 2 cm, total length L = 20 cm). Warm milk is 
flowing slowly (v = 6 cm s-1) in laminar fashion (no chaotic mixing) through it. 

The milk entering the tube is chocolate-free (0.0 g cm-3). Chocolate dissolving in 
the milk is carried downstream by convection and is also spreading radially 
inward by diffusion. The diffusion coefficient of the chocolate in the milk is        
D = 0.35 cm2 s-1. 

You realize that the system may be described with the following PDE (z is the 
length down the tube, r is the radius, c is the local concentration of chocolate in 
the milk): 
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You also identify the following boundary conditions: 

(BC #1) At the center of the tube, the concentration of chocolate is continuous 
and is at its minimum.  

∂c
∂r

ൌ 0 



(BC #2) At the tube wall, the chocolate is always at a saturation concentration in 
the milk.  

cሺr ൌ Rሻ ൌ 0.2  g  cmିଷ 

Use an m-file function to invoke pdepe in MATLAB: solve for the concentration 
distribution of chocolate in milk within the tube over the entire radius and length 
of the tube.  

(a) Plot this concentration distribution against z and r in a properly labeled surface 
plot. 

(b) What are the following chocolate concentration values, to four significant 
digits? 

- Midpoint of the tube length, and at r = 1 cm 

- End of the tube length (z = 20 cm), and at center of tube 

(c) What is the average concentration of chocolate in the milk exiting the tube? 
 

Each of the questions (a) through (c) are answered by solution of the PDE provided, and 
according to the initial and boundary conditions described. The first steps of specifying problem 
geometry and dimensional assignment/spacing are straightforward (Fig. 1). 

 

Figure 1: Excerpt from pdepe script illustrating geometry 
selection, dimension definition, and mesh resolution.  

This segment of code is followed with a standard call of the pdepe function (and sub-functions), 
the generated solution of which is used to generate a customizable surface plot (Fig. 2). 



 

Figure 2: Excerpt from pdepe script illustrating the pdepe function 
call, solution matrix generation, and surface plot details.  

Most of the effort required to solve the problem lies ahead. First, the student must write the PDE 
in the proper form, so that input parameters for the script may be determined and entered. The 
pdepe program requires the form 

c డ୳

డ୲
ൌ xି୫ డ

డ୶
ሺx୫fሻ ൅ s   (1) 

Here, the value of the coefficient m is determined by the geometry selected (0 for 
slab/rectangular, 1 for cylindrical, and 2 for spherical). The student must still determine values 
for c, f, and s. Each of these three values may be functions of the dimensions t or x, the partial 
derivative of u with respect to x, or of the function u itself.  

In this example, the provided PDE is: 
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After making the problem-specific dimensional and function substitutions of t → z, x → r, c → u, 
and with m = 1 for a cylindrical geometry, inspection and comparison of (1) with (2) allows the 
student to assign: 

c ൌ ୴

ୈ
ቀ1 െ ୰మ

ୖమቁ    (3) 

f ൌ ப୳

ப୰
      (4) 

s ൌ 0      (5) 

Additionally, the physical parameters for diffusion, convection, and tube radius are supplied 
(Fig. 3). 



 

Figure 3: Excerpt from pdepe script illustrating pdfun sub-
function call with physical and function parameter designations.  

The sub-function icfun is usually applied as an initial condition, that is, when the partial 
derivative on the left side of the standard PDE form refers to variation in time. In this example, 
the usual time-based partial derivative is replaced with a spatial derivative with respect to 
distance down the tube (z). Hence, the condition described by icfun in this instance is the 
chocolate concentration at z = 0 for all radii (Fig.4). 

 

Figure 4: Excerpt from pdepe script illustrating icfun sub-function 
call.  

The final and perhaps most time-intensive task for completing modifications to the script 
requires the arrangement of the “left” and “right” boundary conditions into the proper form. The 
pdepe function and its sub-function bcfun require boundary conditions to be in the form of: 

p ൅ qf ൌ 0     (6) 

Here, f is obtained first from the examination of the PDE as detailed above (Eqn. 4). The first 
boundary condition given above (the “left” side condition), with substitution c → u is: 

ப୳

ப୰
ൌ 0      (7) 

With f defined as in (4), inspection of (7) by the form of (6) yields: 

p୪ୣ୤୲ ൌ 0     (8a) 

q୪ୣ୤୲ ൌ 1     (8b) 

The saturation condition of chocolate at the tube’s inner wall (the “right” side 
condition), again with c → u is given as:  



u୰୧୥୦୲ ൌ 0.2     (9) 

Which, in the form of (6), becomes: 

u୰୧୥୦୲ െ 0.2 ൌ 0    (9´) 

Inspection gives: 

p୰୧୥୦୲ ൌ u୰୧୥୦୲ െ 0.2    (10a) 

q୰୧୥୦୲ ൌ 0     (10b) 

These values are shown as incorporated into the bcfun call below (Fig. 5). 

 

Figure 5: Excerpt from pdepe script illustrating bcfun sub-function 
call.  

Executing the script immediately generates the correct response to question (a). The plot 
provides students with visual feedback about the quality of the solution and therefore the setup 
of the script – illustrating the saturated condition at the wall, the absence of chocolate at the 
entry, and the increasing centerline concentration as the end of the tube is approached (Fig. 6). 



 

Figure 6: Surface plot from problem solution. Here, the reported 
mesh density refers to the radial spacing. 

Question (b) is resolved by inspection of the resulting solution (u) matrix, and reporting the 
value of u at the z, r points of (10 cm, 1 cm) and (20 cm, 0 cm) as scaled to the corresponding 
mesh locations:  

uሺ25,10ሻ ൌ 0.1327 g cmିଷ   (11a) 

uሺ50,1ሻ ൌ 0.1651 g cmିଷ   (11b) 

Question (c) requires the selection of all u values at z = 20 and evaluating the arithmetic mean: 

mean൫uሺ50, : ሻ൯ ൌ 0.1800 g cmିଷ  (12) 

The plot may be examined once more to verify that the correct matrix values have been obtained. 

3. Application by Students to Future Coursework 

The instructional focus of the CMCE course is to introduce students to certain computational 
tools and techniques to solve chemical engineering problems, including those described by 
PDEs. The students solve problems such as the one illustrated in the previous section prior to 
their completion of any of the required junior-level transport courses; they are directly provided 
with the appropriate equation to solve, rather than being required to develop the equation in 
following with theory as introduced in those succeeding courses. However, it is evident that 
students recall and take advantage of pdepe in future coursework. The best example of this is the 
modeling and simulation work carried out by students in the junior-level Unit Operations 
Laboratory (UOL)18 on an experiment involving unsteady heat transfer. 



This experiment, titled “Transient Thermal Conduction in Solids” (TTCS), was constructed and 
first deployed to the UOL in the Summer of 2017. The experiment is of simple design; students 
are provided with a large heated water bath, into which cylinders (both metallic and nonmetallic) 
of various dimensions may be immersed. The centerline temperature is measured and recorded 
over time using an embedded thermocouple sensor and a computer-based data acquisition 
system. Students are instructed to use a cylinder of known composition (alloy C110, 99.9% 
copper), for which the intrinsic thermal conductivity (k) is extremely high, to determine ranges 
of heat transfer coefficients (h). These estimated h values required for estimating the unknown 
thermal conductivities of all other materials (aluminum, titanium, and brass alloys, stainless and 
carbon steels, and various plastics). The cylinders provided have a sufficiently high length-to-
diameter ratios such that heat transfer is considered to be one-dimensional. For a material of 
constant thermal diffusivity (αሻ, the unsteady radial temperature distribution within the cylinder 
reduces to: 
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In the Heat and Mass Transfer course, a UOL prerequisite, transient problems such as these are 
approached through the application of dimensionless groups, specifically the Fourier and Biot 
numbers alongside tabulated Bessel function solutions19,20 for the scenario above. Students have 
access to plots or tables of the various dimensionless groups, the use of which requires an 
iterative/guess-and-check solution approach for the unknown thermal conductivities. In contrast, 
Eqn. 13 is easily recognized by those students experienced with the translation of PDEs into 
MATLAB for numeric solution with pdepe. 

The inaugural offering of the CMCE course was the Spring semester of 2018; juniors having 
formal training in MATLAB and the pdepe utility did not appear in the UOL until the Summer 
of 2019. At the time of the present communication, two UOL student cohorts (2017, 2018) had 
received no formal PDE modeling instruction. These were followed by two others (2019, 2020) 
comprised of students which had practiced both the Method of Lines and pdepe in the CMCE 
course as sophomores. A summary evaluation of the primary calculation approach used in all 
student reports, which represent the 3-student team report submissions with the TTCS laboratory 
module, appears in Table 1 below. 

Table 1: Characteristics of Primary Solution Techniques Appearing in 
Experimental Reports, TTCS Laboratory Module (2017 – 2020). 

Summer 
UOL Session 

Graphical or Tabulated 
Solution Approach 

Numeric Method 
of Lines* 

MATLAB pdepe 
Solution 

2017 (n = 30) 96.7 % 3.3 % 0.0 % 
2018 (n = 33) 100.0 % 0.0 % 0.0 % 
2019 (n = 30) 36.7 % 10.0 % 53.3 % 
2020 (n = 31) 32.3 % 3.2 % 64.5 % 

* Count includes all software-based approaches, MATLAB or otherwise  

The impact introducing MATLAB for the numeric solution of PDEs is both clear and striking. 
Students enrolled in the UOL course in the years prior to those receiving instruction in CMCE 



did not explore the use of non-tabular/non-graphical approaches at all, with one exception – a 
team that included a student working towards a second major in Computational and Applied 
Mathematics. For those students having completed the CMCE course, selection rate of pdepe 
was very strong. For the Summer of 2020, the author of the present communication was the sole 
supervisor of the TTCS experiment. Conversations with student groups (following reporting) 
regarding the choice of solution/calculation approach may be generally categorized as follows. 

 Those selecting the graphical/tabulated solution approach did not enjoy using MATLAB 
and felt that iterative solution using charts was not overly problematic. 

 Those choosing the Numeric Method of Lines felt comfortable with setting up and 
solving systems of ODEs in either MATLAB or Polymath (Polymath Software), also 
choosing to avoid iterative solution. 

 Those favoring the use of pdepe in MATLAB found incorporating Eqn. 13 to a student’s 
saved copy of the m-file script (generated for the CMCE course) to require little effort. 

As students do not know the identities of the alloys or plastic compositions of the samples tested, 
it is worth noting that none of the three methods outlined above appears to provide a predictably 
superior identification rate of the unknown materials, nor of their thermal properties. The quality 
of laboratory data acquired by the student teams, which depends heavily on the experimental 
design and its execution, was the dominant factor with respect to the accuracy of reported results.  

3. Student Self-evaluations 

PDEs and the systems described by them are often quite complex. Sophomores, even those 
enrolled in technical programs, will have limited or no exposure to them or to their solution. This 
is naturally a cause for concern for an instructor of a course such as CMCE, especially when 
considered in the context of introducing the students to unfamiliar software packages such as 
MATLAB. In order to properly focus instructional techniques and topic priorities, a voluntary, 
informal pair of surveys were administered to students from 2019 – 2021 (three course 
offerings). The survey includes a visual example of a simple PDE and requests a first and last 
name so that personal responses to only one half of the survey and duplicate responses may be 
screened out. Responses were organized on a 5-point Likert scale (excellent, good, fair, poor, 
and none). A condensed result summary appears below in Table 2. 

   



Table 2: Student Self-assessment of Evolving Familiarity with PDEs and Their 
Numeric Solution, Before and After PDE Instruction (2019 – 2021). 

 Spring CMCE Session 
Rate your own ability to… 2019 (n = 73) 2020 (n = 95) 2021 (n = 119) 
(a) recognize a system that may be 
described with a PDE. 

   

Good or better, before instruction 25 % 29 % 33 % 
Good or better, after instruction 97 % 96 % 97 % 
(b) explain to a peer how a PDE may 
describe a system. 

   

Good or better, before instruction 12 % 9 % 15 % 
Good or better, after instruction 85 % 81 % 88 % 
(c) qualitatively diagram the solution 
of a PDE. 

   

Good or better, before instruction 6 % 5 % 9 % 
Good or better, after instruction 58 % 63 % 71 % 
(d) solve a PDE numerically using 
the Method of Lines. 

   

Good or better, before instruction 6 % 4 % 4 % 
Good or better, after instruction 82 % 88 % 85 % 
(e) solve a PDE numerically using 
specialized software, e.g., MATLAB. 

   

Good or better, before instruction 2 % 2 % 4 % 
Good or better, after instruction 79 % 85 % 88 % 

 

The results displayed in Table 2 appear to indicate that students have at least received a cursory 
introduction to PDEs in previous mathematics classes. Unsurprisingly, almost none of the 
students appear to have any familiarity with qualitative characteristics of multivariant systems, 
nor with numeric PDE solution theory or techniques. The increase in self-confidence regarding 
these techniques following instruction in CMCE implies at least perceived mastery of the 
material, although student confidence in qualitative diagramming appears to be less improved. 
This suggests a possible disconnect between using the computational software and understanding 
the overall significance of the calculated results within the context of a given system. 

5. Conclusions and Recommendations 

The prevalence of systems which may be described with PDEs in chemical engineering courses 
at the junior level and above provides an impetus for introducing students to the characteristics 
and solution of PDEs in advance. Chemical engineering, even at the undergraduate level, is 
distinct from other engineering disciplines in that its programmatic core not only requires the 
consideration of systems with spatial and/or temporal variation, but also their modeling and 
simulation in order to foster a more complete understanding of how they work. However, 
students will typically receive no more than a passing mention of them in advanced calculus or 



introductory differential equations courses. It is reasonable to expect that this instructional deficit 
should be resolved directly via the chemical engineering program curriculum. 

In the discussion presented here, the provided example is of a standalone course offered at the 
sophomore level, alongside the near-universal and foundational course of MEB. This course, 
while operating with the broad goals of introducing students to software, general calculation 
strategies, and structured programming, may provide students with a series of opportunities to 
practice and become familiar with certain aspects of PDEs through the creation and use of a 
customizable script (pdepe). This is accomplished alongside building student proficiency with 
the powerful and flexible MATLAB computational toolset overall. 

Should the creation of a similar course not be feasible for a given chemical engineering program, 
it is suggested to include end-of-semester ODE- or PDE-centric modules to many of the courses 
that are mainstays for most departments in the United States. Examples include: 

 The analysis of unsteady material and energy balances to create and solve systems of 
ODEs (MEB) 

 The descriptions of unsteady flow (ODE) and multidirectional shear (PDE) in a laminar 
flow system (Fluid Mechanics) 

 Heat generating/consuming systems (ODE) and unsteady conduction (PDE) in one 
dimension (Heat Transfer) 

 The conservation of mass (ODE) or unsteady diffusion (PDE) in one dimension (Mass 
Transfer) 

Additionally, with the aid of data acquisition systems, a department may achieve a great deal of 
success in implementing experimental platforms or modules which exhibit transient behavior - 
allowing students to study systems at conditions other than steady state. In any of these cases, 
modern computational tools such as MATLAB and its component pdepe lend themselves well to 
enriching the student experience - building confidence and expanding familiarity with complex, 
yet realistic, chemical process systems. 
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