
Paper ID #13557

Introducing Software Specifications to an Undergraduate Software Engineer-
ing Program

Dr. Anna Koufakou, Florida Gulf Coast University

Dr. Koufakou is an Assistant Professor in Software Engineering in the U.A. Whitaker College of Engi-
neering at Florida Gulf Coast University. Dr. Koufakou received a B.Sc. in Computer Informatics at the
Athens University of Economics and Business in Athens, Greece, and a M.Sc. and a Ph.D. in Computer
Engineering at the University of Central Florida. Her research interests include mining of large datasets,
outlier detection, and frequent itemset mining. Educational areas of interest are promoting student en-
gagement via techniques such as hybrid teaching, flipped classroom and problem-based learning.

c©American Society for Engineering Education, 2015

P
age 26.1026.1

Introducing Software Specifications to an Undergraduate Software
Engineering Program

Introduction

The complexities of developing clear and well-defined specifications and their important role in
the success of a software project are widely recognized. This recently led to increased attention
in corresponding courses in the Software Engineering curriculum. One of the challenges for such
courses is that related topics are typically perceived by students especially at the undergraduate
level as uninteresting and irrelevant, while it is difficult to bring the “real-world” experience to
the classroom.

This paper summarizes the author’s experiences in developing and teaching for the first time a
Software Specifications course to the newly established Software Engineering (SE) degree
program at Florida Gulf Coast University (FGCU) in Spring 2014. The SE program belongs in
an Engineering College which emphasizes undergraduate education (there is no graduate degree
offered). The Software Specifications course is a required course for all SE students at FGCU. It
includes topics such as Eliciting, Writing, and Testing Requirements, and Requirement
Engineering Tools, as well as Unified Modeling Language (UML), Agile Methodologies, and SE
Ethics. The SE student population consists mostly of traditional college students typically from
the surrounding regions. As the school does not offer a graduate degree in any related majors,
teaching assistants are also undergraduate students. In this setting, it is especially important to
capture the interest of the students and engage them in the class, as well as offer students
practical knowledge and tools that they can apply in their projects and potentially in their future
career.

With this in mind, the course employed a variety of techniques including hybrid (blended) course
delivery, and client interaction for student group projects. The first implementation of this course
achieved positive student feedback and performance in the class. Results and lessons learned are
also discussed in the paper.

Literature Review

Despite the importance of Requirements Engineering (RE) in Software Engineering, RE is not
emphasized in computing education. In fact, most computer science and software engineering
programs do not include RE courses and tend to cover this area using a few class periods1,2.
Additionally, topics and careers related to RE, and subsequently a related course, are perceived
as uninteresting and not relevant to future career prospects3, 4. This is described very well by
(Lethbridge et al.)5 as follows:

“Anyone who has tried to teach topics such as ethics, quality, process, configuration
management, maintenance and requirements will recognize the glassy-eyed appearance
in the eyes of some (or most) students. These are critical topics for industrial practice,
yet it is a particular challenge to motivate students to feel passionate in these areas, and
hence learn what they need to know”.

Given the limited resources in many undergraduate programs, it becomes a challenge to develop
a course that would provide students the skills needed to successfully conduct RE activities.

P
age 26.1026.2

A variety of methods and ideas are presented in the literature regarding teaching RE and
development of RE-related courses. Callele and Makaroff 6 introduce the teaching of RE to
students of an introductory programming course (an “unsuspecting audience”). They also argue
that students are not able to effectively simulate stakeholders due to their lack of domain
knowledge. Suri4 describes two offerings of an RE course, where the students work towards
producing a Software Requirements Specification (SRS) document. There has also been effort to
introduce role-playing in order to involve students actively in requirements elicitation7, 8. Mohan
and Chenoweth9 present a three-tier learning system where students produce use cases,
supplemental specifications, and a user interface, among other deliverables. More recently,
Kilcay-Ergin and Laplante10 describe an asynchronous online RE course geared towards
graduate students. These students are described as professionals who are mature and responsible
to “self-direct their learning according to their individual learning style and pace” 10.

Course Description

The Software Specifications course (CEN 3073) presented in this paper is a 3-credit hour
undergraduate course without a laboratory component. The CEN 3073 course is taught in the
second semester of the junior year, after an ‘SE Fundamentals’ course in the previous semester,
and before ‘Software Architecture & Design’ and ‘Software Testing’ courses in the following
semesters. Students arrive at this course with intermediate knowledge of programming and
experience developing a group software project (from the SE Fundamentals course in the
previous semester). The course objectives are listed below:
 Learn techniques, processes, and challenges involved in requirements elicitation, analysis,

validation and management;
 Be able to work in a group environment to perform activities and provide documentation

related to all phases of software development, focusing on requirements analysis, while also
carrying out design, implementation, and testing;

 Be able to construct UML diagrams (e.g. Sequence Diagram, State Diagram);
 Conduct an oral presentation and demonstration of a software project developed by a group.
Table 1 shows a general outline of course topics. For example, “Writing Requirements” includes
Formal/Informal/Semi-Formal techniques, SRS standards and recommended practices, and Use
Cases, while “Testing Requirements” includes Requirements Validation/Verification (V&V)
techniques, NASA Requirements Testing, and deriving test cases from requirements/use cases.

Table 1. List of Course Topics
Topic Timeline
1 Introduction to Requirements Engineering (RE) Week 1
2 Preparing for Requirement Elicitation: Stakeholders, Project Scheduling Week 2
3 Eliciting Requirements Week 3
4 Unified Modeling Language (UML) Week 4-5
5 Writing Requirements Week 6
6 Testing Requirements Week 7-8
7 RE Tools Week 10-11
8 Risk Analysis Week 11
9 RE & Agile Methodologies Week 12
10 SE Ethics and Professionalism Week 14-15

P
age 26.1026.3

Team Project: An important part of the course is that it incorporates a collaborative learning
component, in the form of a semester-long team project. In particular, student teams with 3-4
members interact with a client to develop software according to the client’s specifications.
During the semester, teams report on client meetings and present their progress, including
prototypes, to the class. Additionally, each student submits their individual meeting preparation,
including text, mockups, etc. Final team deliverables include fully developed application code
plus documentation, such as SRS (Software Requirement Specification) and user manual,
followed by a team presentation of the final product.

Delivering a full software product is in contrast to similar courses found in the literature where
student teams produce an SRS or similar deliverable4. Even though this presents possible extra
work for the students, the goal is to increase student motivation: students in the software field are
most interested in working towards a functioning end-product rather than documentation or
prototypes. Furthermore, this gives them the experience of how prototypes and client feedback
translate into the finished product. This was also observed by Mohan and Chenoweth 9: it is
important that students “carry their requirements projects forward into design and development,
sufficiently that they can see the importance of the time spent learning to do requirements” 9.
Nevertheless, it is important to note that student teams spend the larger part of the semester
(about 70%) interacting with the client, building mockup/prototype(s) and obtaining client
feedback, which they then use to create their SRS (specific tasks and deliverables are discussed
in the next paragraphs). Therefore, teams carry out design, implementation, and testing in a much
smaller scale than requirements analysis, as design, implementation, and testing are the focus of
other courses.

The team project deliverables are shown in Table 2. Student teams receive fewer points for
completing early deliverables such as finding a client and submitting their proposal (3%), and
more points for advance deliverables such as SRS and Test Plan (9%). A large part of the project
grade (60%) comes from the final deliverables and presentation at the end of the semester.

Table 2. Project Deliverables and timeline
Deliverable Timeline

Project Proposal (group) Week 2

Meeting #1 summary (group), Signed client form (individual) Week 4

Meeting #2 summary (group),
Signed client form, Peer review form (individual)

Week 6

Meeting #3 summary (group),
Signed client form, Peer review form (individual)

Week 8

Software Requirements Specification (SRS), Test Plan (group),
Peer review form #3 (individual)

Week 11

Presentations (group) Weeks 10 and 16

Source Code, Test Results, User Manual (group),
Peer review form #4 (individual)

Week 16-17

P
age 26.1026.4

As seen in Table 2, the course requires three meetings with the client: the first meeting is focused
on the team understanding the client needs, while the second meeting’s goal is to conduct a
detailed interview. Students are required to prepare diagrams and/or mockups prior to the
meeting. The third meeting is for the team to present their prototype to their client and obtain
their detailed feedback. Each client has to sign an individual form for each student at each
meeting where the student details the student’s preparation before the meeting and notes taken by
the student during the meeting. This is besides answering student questions and providing
feedback on mockups and prototypes.

After this, the first presentation is for the teams to demonstrate their prototype and present their
client feedback, and show their plan for the rest of the semester. The final presentation is to
demonstrate their working product and summarize their results. Students also complete four peer
review forms in order to formally review their teammates. The final peer review has an overall
review and rating for each student, which results in influencing the individual student project
grade.

Clients: Two potential clients (other faculty) and projects were proposed by the instructor. In the
end, student teams picked their own clients and not the suggested ones by the instructor. Clients
ranged from Faculty at the University, to University organizations, to local business owners or
employees. Even though not all clients were “real clients” from industry, most of the clients had
a personal and/or professional interest in the application developed by the students. For example,
one team developed a scoreboard system for a relay race and other track events with the
Intramural Sports & Special Events Coordinator as client.

Hybrid Course Delivery: The course was developed to include an online (off-classroom)
component that replaced some of the in-class lecture-based meetings (about a third of the
lectures were off-classroom). On one hand, the motivation behind this was to add time and
flexibility for project-related activities including client meetings. This avoids scheduling
problems often observed in project-based courses4. According to the literature11, 12, as well as
discussions with other faculty, a blended or hybrid course would take advantage of technology to
remove the space and time class-meeting constraint and thus offer more flexibility: in such a
course, “students can get on with their everyday life, without having to adapt systematically to a
specific space and time, as they are obliged to do in face-to-face […] All this motivates the
students' interest in the subject, which encourages learning and leads to better outcomes” 12. In
the case of our course for example, the project teams could collaborate via online meeting
mechanisms and work on shared online documents or code.

At the same time, the course employed an inverted classroom model: in lieu of traditional
lecture-based class meetings, students had tasks to complete before class meetings, such as
readings and exercise activities; face-to-face class meetings incorporated discussion and hands-
on application of the material studied off-class, in order to promote student engagement and
active learning, as well as project-related activities. In summary, a partially hybrid course was
selected for CEN 3073 as it still includes face-to-face time for lectures on complex concepts,
hands-on activities, and guided project time, while it allows students the flexibility for
organizing their project meetings and individual studying.

P
age 26.1026.5

Student Assessment and Example Activities: In addition to the team project described earlier, the
course included quizzes, activities, and one in-class comprehensive exam. The role of the quizzes
was to assess student completing the assigned reading and exercises before face-to-face meetings
in class. The in-class component was enhanced and assessed with in-class activities.

In-class activities were designed in multiple ways to introduce variety and further engage
students. One type of activity was Think-Pair-Share: for example, a module on Requirements
Elicitation posted before class included a few questions comparing different elicitation
techniques. During class, each student was paired with another student to discuss the questions;
some of the times the students were asked to submit their answers in writing. After the allotted
time had passed, selected students shared their answer with the class allowing other groups to
comment.

For the module related to SE Ethics and Professionalism, students were given assigned reading
(such as the ACM Code of Ethicsa, and the article “Professional and ethical dilemmas in
software engineering”13) along with a quiz to assess the reading before class. During class, the
students worked in groups to discuss selected case-studies from “An Introduction to Software
Engineering Ethics” b, a curriculum module available from the Markkula Center for Applied
Ethics at Santa Clara University. The student teams were given various questions such as “Who
were the stakeholders involved?” and “Let’s say you were employed in this project. How would
you have reacted/behaved?” and they were instructed to discuss and submit their results in
writing.

Another type of activity was a lab-type activity. For example, students were given introductory
material for UML and State Diagrams (or statecharts) before class (note that students were
introduced to UML diagrams and concepts in the SE Fundamentals course in the previous
semester). During class, students were asked to generate a statechart given the problem statement
below:

“The hypothetical system is an online system for buying tickets for events such as concerts:
• The system has 2 types of users: Customer & Administrator.
• The customer first searches for an event based on event type, performer, date, and/or

location. They are able to click on an event and see more information, as well as available
ticket prices, then select ticket(s).

• After the customer makes their ticket selection, they are able to view assigned seats and
the seating chart. They are now given the option to accept the assigned seats or start
another search.

• If the customer accepts the seats, the system starts the checkout process; otherwise the
ticket selection starts again.

• The administrator is able to create/cancel events, and to view customer orders. They can
also add content to events such as pictures or links, as well as change event location, date,
time, etc.”

Students were instructed to use an open-source tool, StarUMLc, although they were free to
choose another tool. During class, the instructor and undergraduate TAs provided assistance with

a http://www.acm.org/about/se-code
b http://www.scu.edu/ethics/practicing/focusareas/technology/software-engineering-ethics.html
c http://staruml.sourceforge.net/v1/about.php

P
age 26.1026.6

the UML tool as well as guidance for the notation and concepts related to statecharts. Students
had additional time after class to work and submit their diagram for grading by the instructor.

Assessment

The CEN 3073 class presented in this paper had an enrollment of 36 SE majors, forming nine
teams with 3-4 students per team (one student withdrew from the class). The overall course
average was 89.2%.

Software Engineering at FGCU has set achievement standards in junior level courses to target
that 40% of students in a course are at 85% or above, 70% of students are at 70% or above, and
80% of students are at 65% or above. Table 3 displays the performance achieved by the students
in the course for each target level for specific course objectives using different items e.g.
assignments or exam questions. For example, assessing the performance of the students on the
quiz which is related to the first course objective, it is shown in Table 3 (in first row, last
column) that 50% of the students scored 85% or more on the quiz, 85% of the students scored
70% or more, and 91% of students scored 65% or more. As shown in Table 3, all of the items
assessed for the different course objectives meet or surpass the target goals.

Table 3. Target Performance achieved by students on course objectives.

Course Objective Items Target Performance Level Results (n=35)

Learn techniques, processes, and
challenges involved in
requirements elicitation, analysis,
validation and management

Quiz;
Exam
Questions;
Assignment

Goal: 40% of the students
score 85% or above

50%; 65%; 74%

70% score 70% or above 85%; 97%; 94%

80% score 65% or above 91%; 97%; 94%

Work in a group to perform
activities and provide
documentation for all phases of
software development, focusing
on requirements analysis, while
also carrying out design,
implementation, and testing

Deliverable 1;
Deliverable 2;
Overall
Project Grade

Goal: 40% of the students
score 85% or above

88%; 89%; 88%

70% score 70% or above 100%; 100%; 100%

80% score 65% or above 100%; 100%; 100%

Construct UML diagrams
(e.g. Sequence Diagram, State
Diagram)

UML Lab
Activity;
Exam
Question

Goal: 40% of the students
score 85% or above

88%; 65%

70% score 70% or above 100%; 100%

80% score 65% or above 100%; 100%

Conduct an oral presentation and
demonstration of a software
project developed by a group

Final
Presentation

Goal: 40% of the students
score 85% or above

88%

70% score 70% or above 100%

80% score 65% or above 100%

P
age 26.1026.7

Student Evaluations and Instructor Observations

As in most institutions, our students evaluate course instruction by completing a University
survey at the end of semester. This survey includes both Likert scale questions as well as open-
ended questions. Specific statements from the survey were selected to gauge the student response
to the course. Table 4 shows the selected statements from the University survey, along with a
high-end rating/response for each statement, and the percentage of students from each course that
gave that rating for the statement. The scale on each of these statements ranged either from
Strongly Disagree to Strongly Agree. For example, 96% of students who took the survey for the
course in this paper agreed or strongly agreed that they learned a great deal about the subject.

Table 4. Student responses that “Agree or Strongly Agree” with selected statements on the
University end-of-semester student survey.

Survey Statement Responses (n=22)

“I was always prepared for class” 96%

“The assignments helped me understand the subject” 96%

“The instructor uses a variety of instructional materials/methods in the course” 84%

“I learned a great deal about the subject” 96%

Moreover, students were given an anonymous survey with additional course-related questions
and the results are shown in Table 5. As seen from the Table, a large number of students regard
the project as a very positive experience as well as the client interaction. Also, the vast majority
of the class felt that the hybrid course delivery included enough instructor interaction and in-
class hands-on exercises and/or explanations.

Table 5. Anonymous End-of-Semester Survey results
Survey Statement Responses (n=34)

Developing software for a client increased my motivation significantly 71%

I feel I gained some to a lot of experience and knowledge from my project 75%

There was enough time in class/after to interact with instructor about course
material/ project

97%

There were enough in-class hands-on exercises/explanations about concepts 97%

In the survey, students were also asked open-ended questions listed below along with comments
that serve as a representative selection of all comments entered by the class:
Question: “Which part/component of this course do you like the best? Briefly explain.”

 “I liked the project part of the course the most. With the addition of needing a client feel
like I learned a lot more this semester.”

 “It was nice having some meetings off-classroom. I think the in-classroom material was
just enough for the in-class time we had.”

 “The online component made it easier to focus.”
 “I liked the in-class group work (daily activity to turn in) learned about the topics easier.”
 “Early prototype requirement. Having this due early really helped out project get rolling

early on.”

P
age 26.1026.8

Question: “Which part/component of this course do you think could be improved? How?”
 “More in-class group activities”
 “I think more time spent on ethics section would be nice. Some extra emphasis on writing

and evaluating requirements would also be beneficial, especially outside of this course.”
 “I feel that RE tool should be towards the start of the class, so students can learn to use

them as they work on their projects.”
 “Have some kind of channel to find clients or provide project ideas to use as a jumping

off point.”
 “I think the topics from the modules could be more integrated into the project’s

assignments. Realistic applications make it easier to learn rather than just quizzes.”

Overall, based on the student feedback and the observations of the instructor, the students
responded well to the project, especially having the client interaction as well as using a mid-
semester prototype. Regarding the modules, students reported high interest in the topics related
to RE tools, and Agile and RE. In addition, several of the students communicated to the
instructor that they were very interested in the SE Ethics case studies and would have liked more
time to “go deeper”. Beyond these, the students stated that the course could expand on writing
and evaluating requirements as well as UML.

It was also the instructor’s observation that the in-class activities, as well as the group interaction
with the client and the instructor resulted in high class participation; overall, the students seemed
to be engaged and to have fun in the course. Based on student comments and instructor
observations, future offerings of the class would expand on Agile and RE, as well as on formal
methods, and include more real-world examples and RE in practice. Preparation of the course
material for the first time and especially the off-classroom components required effort. In
addition, monitoring the progress of the groups (reading meeting summaries, individual client
forms, etc.) can quickly become a burden on the instructor. Perhaps introducing an RE-course
alumni as student supervisor14 or project manager9 would alleviate this burden and allow more
frequent feedback for the groups.

Conclusions

This paper presents the experiences of the author developing and teaching a Software
Specifications course for the first time. The course was delivered in a hybrid (blended) way,
where a fraction of in-class lecture meetings were replaced by assigned readings and exercises
off-classroom. Some of the off-classroom time was intended for additional flexibility to aid with
student project scheduling. Additionally, student teams of conducted at least three client
meetings, and developed documentation, mockups, prototypes, and a final software product.
Overall, students seemed motivated by the structure of the course and of the project, and reported
that they learned a lot from their project. Improvements suggested by students and supported by
instructor observations include expanding on specific topics such as writing requirements, and
Agile and RE, as well as offering more suggested clients and project ideas.

P
age 26.1026.9

Acknowledgements

Support has been provided by grant SBAHQ-10-I-0250 from the U.S. Small Business
Administration (SBA). SBA’s funding should not be construed as an endorsement of any
products, opinions, or services.

References

1. Berenbach, B., “A Hole in the Curriculum”, International Workshop on Requirements Engineering
Education and Training (REET), 2005.

2. Macaulay, L., and Mylopoulos, J., “Requirements Engineering: an educational dilemma”, Automated
Software Engineering, 2(4), 1995, pp. 343–351.

3. Memon, R. N., Ahmad, R., & Salim, S. S. “Problems in Requirements Engineering Education: A
Survey”, Proceedings of the 8th International Conference on Frontiers of Information Technology,
2010, pp. 5.

4. Suri, D., “Introducing Requirements Engineering in an Undergraduate Engineering Curriculum:
Lessons Learnt,” ASEE Annual Conference and Exposition Proceedings, CD-ROM, Montreal,
Canada, 2002.

5. Lethbridge, T., Diaz-Herrera, J., Richard, J., and LeBlanc, J., “Improving software practice through
education: Challenges and future trends”, 2007.

6. Callele, D., and Makaroff, D., “Teaching requirements engineering to an unsuspecting audience”,
ACM SIGCSE Bulletin, 38(1), 2006, pp. 433-437.

7. Zowghi, D., and Paryani, S., “Teaching requirement engineering through role playing: Lessons
learnt,” International Conference Requirements Engineering, 2003, pp. 233–245.

8. Al-Ani, B., and Yusop, N., “Role-playing, group work and other ambitious teaching methods in a
large requirement engineering course,” IEEE International Conference Workshop Eng. Computer-
Based Systems, 2004, pp. 299–306.

9. Mohan, S., and Chenoweth, S., “Teaching requirements engineering to undergraduate students”,
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education SIGCSE, 2011,
pp. 141-146.

10. Kilcay-Ergin, N., and Laplante,P., “An Online Graduate requirements Engineering Course,” IEEE
Transactions on Education, 56(2), 2013, pp. 199-207.

11. Kaleta, R., Skibba, K., and Joosten, T. “Discovering, designing and delivering hybrid courses”. In A.
G. Picciano & C. D. Dziuban (Eds.), Blended learning: Research perspectives, Needam, MA: The
Sloan Consortium, 2007, pp. 111-143.

12. Alonso, F., Manrique, D., Martinez, L., and Vines, J.M., “How Blended Learning Reduces
Underachievement in Higher Education: An Experience in Teaching Computer Sciences,” IEEE
Transactions on Education, 54(3), 2011, pp.471-478.

13. Berenbach, B., and Manfred, B., “Professional and ethical dilemmas in software engineering,”
Computer, 2009, pp. 74-80.

14. Gabrysiak, G., Guentert, M., Hebig, R., and Giese, H., “Teaching Requirements Engineering with
Authentic Stakeholders: Towards a Scalable Course Setting”, First International Workshop on
Software Engineering Education Based on Real-Word Experiences, 2012.

P
age 26.1026.10

