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Introduction of modern problems into beginning mechanics curricula 
 
Abstract 

 
Nowadays, in the context of smart materials, spatially varying material properties (such as occurs 
in functionally graded materials) are being investigated. Also, structures with varying cross-
sectional areas have been studied with a view towards shape optimization. Up to now such 
problems have not been introduced into beginning and intermediate mechanics courses because 
they involve differential equations with variable coefficients which typically do not have analytic 
solutions. Also non-linear effects are precluded because of the lack of analytical solutions.  
However these problems can readily be handled using numerical ODE solvers, such as in 
MAPLE®. Students exposure to such problems could considerably enrich their knowledge and 
understanding. Moreover, the process aids in the goal of integrating computation throughout the 
curriculum. Here two classes of statics problems are presented, namely: (i) the effect of Young’s 
Modulus variation on the end deflection of an axially loaded rod and (ii) of all the rod shapes 
with exponentially varying cross-sectional areas, with all rods having the same volume, which 
one leads to the minimum end deflection under axial load. A more traditional case dealing with 
dynamics is also presented, namely: the solution of a non-linear problem involving the effects of 
friction on the velocity and reactions on a bead sliding on a rough circular vertical track. 
 

Introduction 

 

This work is a third in a series [1], [2] aimed at extending basic knowledge, and improving 
understanding, in introductory mechanical courses. Moreover, it aids in an ABET goal of 
integrating computer usage throughout the curricula. Several problems dealing with strength of 
materials are discussed. The first involves spatially varying material properties (such as occurs in 
functionally graded materials (FGM) [3]). The effect of Young’s Modulus variation on the end 
deflection of an axially loaded rod is given. The second problem involves structures with varying 
cross-sectional areas with a view towards shape optimization. The question posed is: of all the 
rod shapes with exponentially varying cross-sectional areas, with all rods having the same 
volume, which one leads to the minimum end deflection when the rod is axially loaded. Up to 
now such problems have not been introduced into introductory mechanics courses because they 
involve differential equations with variable coefficients which typically do not have analytic 
solutions. However these problems can readily be handled using a finite difference scheme such 
as in MAPLE® (MATLAB® or other packages could also be used). The students should be 
aware of the nature of finite difference schemes. A simple illustrative example is given in 
reference [1]. A final study deals with the solution of a dynamics non-linear problem involving a 
bead sliding on a rough vertical track. Non-linear problems typically do not have analytic 
solutions and numerical methods are used. The effects of friction on the velocity and normal 
reactions are given. 
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Physical Examples 

 
Functionally Graded Materials 
 
Applying Newton’s law and Hooke’s law to a differential element, the equation describing the 
longitudinal displacement ( )u x in a uniform rod, with a body force f per unit length, can be 

shown to be: 

( ( ) ( ) ) 0
d du

E x A x f
dx dx

+ =
 

( 1 ) 

where E  is Young’s Modulus and A  is the cross-section area, which is taken to be constant, 
0

A , 

in the following (see FIGURE 1). 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 1 – ROD WITH BODY FORCE 

 
A model given by Chiu and Erdogan [4] is: 
 

0( ) ( 1)mx
E x E a

L
= +

 

( 2 ) 

Where L  is the length of the rod and a  and m  are material properties. Here f is taken to be a 

constant, 
0

f . Then introducing the dimensionless variables:  

d

x
x

L
=

 ;    
2

0

0 0

d

u
u

f L
E A

=
 

( 3 ) 

 

 

 

 

f  
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equation ( 1 ) becomes: 
2

1

2
(1 ) (1 ) 1 0m md d

d d

d d

d u du
ax ma ax

dx dx

−+ + + + =
 

( 4 ) 

Taking 1m = , 1.15a =  (for aluminum / silicon carbide FGM, see reference [4]), as an example, 
gives: 

2

2
(1 1.15 ) 1.15 1 0d d

d

d d

d u du
x

dx dx
+ + + =

 

( 5 ) 

Consider now a fixed-free rod as seen in FIGURE 1: (0) 0
d

u = ,  (1) 0d

d

du

dx
= . 

Equation ( 5 ) is a linear differential equation with variable coefficients. Depending on the form 
of the variation, it may or may not have an analytic solution. It is more straightforward to solve 
the problem numerically using MAPLE®.  
 
For the uniform case, i.e., for constant Young’s Modulus, equation ( 4 ) becomes : 

2

2 1 0d

d

d u

dx
+ = . Direct integration, and use of the boundary conditions,  gives: 

2

2
d

d d

x
u x= − . A plot of this is shown in FIGURE 2. Note that the tip deflection is given by: 

(1) 0.50ud = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 – ROD DEFLECTION –       

UNIFORM CASE 

FIGURE 3 – ROD DEFLECTION –                

NON-UNIFORM CASE 
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For the non-uniform case the longitudinal deflection of the rod as a function of the position is 
given in FIGURE 3. Note that the Young’s Modulus at the left end of this rod is the same as that 
in the uniform case. In this case the deflection at the end tip of the rod is: (1) 0.37ud = . It is clear 

that increases in the value of Young’s Modulus would decrease the end deflection but to what 
degree was not obvious beforehand. A reduction on the tip deflection of about 26% was achieved 
by utilizing a functionally graded material. So an increase of Young’s Modulus of about 2.15 
times, when compared to the original one, leads to a significant reduction in the maximum 
deflection and further investigation on the use of FGM is warranted.   
 
Varying cross-sectional area 
 
Next an issue involving structures with varying cross-sectional area is investigated. With a view 
towards shape optimization, the following (restricted) question is posed: of all shapes with 
exponentially varying cross-sectional areas, with all rods having the same volume, which one 
leads to the minimum end deflection under an axial load? 
 

For E  constant, A  varying and 
0

f f=  equation ( 1 ) becomes:  

 

0( ( ) ) 0
fd du

A x
dx dx E

+ =
 

( 6 ) 

For the case of a solid rod the initial (original) area of the cross section is given by: 2

0 0
A Rπ=  

and the initial volume by:  2

0 0
V R Lπ= . For an increasing exponential variation: 2

1
[ exp( )]A R bxπ=  

and 2

1

0

[ exp( )]
L

V R bx dxπ= ∫ , where 
1

R  is the radius at 0x = . Since V  is constant, 
1

R  and A  can 

be written as (see FIGURE 4): 
 

2
2 0

1

2

exp(2 ) 1

bLR
R

bL
=

−
, 

2

02
( ) exp(2 )

exp(2 ) 1

bLR
A x bx

bL
π=

−
 

( 7 ) 

If a decreasing exponential variation is assumed, the expressions become: 
 

2
2 0

1

2

1 exp( 2 )

bLR
R

bL
=

− −
, 

2

02
( ) exp( 2 )

1 exp( 2 )

bLR
A x bx

bL
π= −

− −
 

( 8 ) 
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FIGURE 4 –CONSTANT AND EXPONENTIALLY VARYING SHAFTS 

 
Using the non-dimensional variables given in equations ( 3 ) and substituting into equation ( 6 ), 
the equations for increasing / decreasing  variations are, respectively: 

 
2

2

2
exp( ) 0d d

d

d d

d u du
x

dx dx
α β α+ + − =

 

( 9 ) 

2

2

2
exp( ) 0d d

d

d d

d u du
x

dx dx
α β α− + =

 

( 10 ) 

where 2bLα =  and 0

1

R
R

β = . Using equations ( 7 ) and ( 8 ), these can be written as: 

 
2

2

exp( ) 1
exp( ) 0d d

d

d d

d u du
x

dx dx

α
α α

α

−
+ + − =

 

( 11 ) 

2

2

1 exp( )
exp( ) 0d d

d

d d

d u du
x

dx dx

α
α α

α

−
− + =

 

( 12 ) 

0
R  

1R  

Exponentially increasing 

Constant 

x  
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for the increasing and decreasing cases, respectively.  
 
FIGURE 5 shows the dimensionless deflection as a function of 

d
x  for the increasing area case 

with 0.6α = . Note that the uniform rod is better in that the tip deflection is smaller. In fact 
allowing the area to increase leads to about 14% increase in deflection. The decreasing area case, 
with 0.6α =  is shown in FIGURE 6 and is seen to be better. The deflection is always less than in 
the uniform case. The tip difference being about  8%. For assessment purposes, the shape of the 
exponential decreasing rod, as a function of the length (dimensionless), is plotted together with 
the uniform shape in FIGURE 7. Note that the difference between the radii is about 30% for both 
the right and left ends. The variation in not too severe and is regarded as feasible from a 
manufacturing standpoint. To pay the extra cost involved is an engineering judgment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5 – ROD DEFLECTION – INCREASING AREA CASE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6 – ROD DEFLECTION – 

DECREASING AREA CASE 

FIGURE 7 – SHAPE COMPARISON 

CONSTANT VERSUS VARYING AREA 
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Sliding Bead 
 
The final example is one on dynamics and involves friction. Many texts on elementary 
mechanics have examples involving masses sliding on smooth surfaces. Because of non-
linearity, frictional effects have not been included. Here a numerical approach to the friction 
problem is presented. Shown in FIGURE 8 is a bead sliding on a rough circular vertical track, 
with the forces acting on it. In terms of polar coordinates, the vector equation of motion is 
(beginning students will need some guidance on this):  
 

 

( 13 ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8 – FREE BODY DIAGRAM OF BEAD SLIDING ON A CIRCULAR TRACK 

 

 

Equating components leads to:  
 
 

 

( 14 ) 

R 

eθ
r

 

R
e
r
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( 15 ) 

Assuming Coulomb friction, 
f

F Nµ=  and using equation ( 14 ), equation ( 15 ) becomes:  

 

 

( 16 ) 

Equation ( 16 ) is a non-linear equation and numerical methods must be used to obtain solutions. 

In anticipation of this, the following dimensionless time is introduced: ( )g
t

R
τ = . Then 

equation ( 16 )  becomes; 
 

2
2

2
( ) ( sin cos ) 0

d d

d d

θ θ
µ µ θ θ

τ τ
+ + − =

 

( 17 ) 

The bead is taken to start at 0θ = , with zero velocity. Equation ( 17 ) can be solved numerically 
using MAPLE® for various values of µ . N can be written in dimensionless form using equation 

( 14 ): 
 

2sin ( )
d

N d
N

mg d

θ
θ

τ
= = +  

( 18 ) 

The task of determining the normal reaction is difficult. One could try to use the principle: “work 
done by the friction force equals the change in mechanical energy”, but trying to extract N  from 
the work term is prohibitive. 
 

d
N  can be calculated numerically from equation ( 18 ). A complication is that d

d
θ

τ
 needs to be 

known as a function of θ . This can be achieved by having the code solve for the time it takes for 

the bead to travel a given θ  and then substitute this value of time into the ODE solution (this can 
be done in, for example, MAPLE® by the command “output=listprocedure” – see worksheet 
below). 
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FIGURE 9 shows the variation of the angular velocity of the bead d
d

θ
τ

 at  
2

πθ =  as a function 

of the coefficient of friction µ . Note that as µ  increases from 0 to 0.6, d
d

θ
τ

 decreases by 

approximately 95%. The velocity appears to approach 0 for 0.62µ ≈ .  

 
FIGURE 10 shows the non-dimensional normal force as a function θ , for two distinct values of 
µ , namely 0 and 0.5. The figure shows that the effect of friction on the normal force is complex. 

For 0µ =  the normal force increases monotonically with θ . However for 0.5µ =  the normal 

reaches a maximum at 1.04 radθ ≈ and decreases after that. This could be an indicator of 
incipient sticking. The maximum value of the actual normal force is about 1.5mg . In particular it 

is of interest to note that increasing µ  from 0 to 0.5 decreases the angle at which the normal 

force reaches a maximum. This implies that in the presence of friction the normal force becomes 
maximum before it reaches the bottom of the circular track.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9 – COEFFICIENT OF FRICTION VERSUS  

ANGULAR VELOCITY AT 
2

πθ =  
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FIGURE 10 – NON-DIMENSIONAL NORMAL  

FORCE VERSUS ,  0
2

πθ θ≤ ≤  
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Appendix A 
 

FGM problem worksheet: 
 
 restart:with(DEtools):with(linalg):with(plots): 
 eq:=diff(E(x)*diff(u(x),x),x)+force/area; 
 E(x):=E0*(1+a*(x/L))^m; 
 eq; 
 eq01:=(1+a*x)^m*diff(diff(u(x),x),x)+m*a*(1+a*x)^(m-1)*diff(u(x),x)+1; 
 #uniform case E = constant 
 m:=0;a:=0; 
 eq01; 
 ic:=u(0)=0,D(u)(1)=0; 
 sol01:=dsolve({eq01,ic},{u(x)},type=numeric); 

0µ =  

0.5µ =  
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 odeplot(sol01,0..1,view=[0..1,0..0.5],labels=["position along the rod (dimensionless)","dimensionless 
deflection"],labeldirections=[horizontal,vertical]); 
 sol01(1); 
 #non-uniform case E varies 
 m:='m';a:='a'; 
 eq01; 
 m:=1;a:=1.15; 
 eq01; 
 ic:=u(0)=0,D(u)(1)=0; 
 sol01:=dsolve({eq01,ic},{u(x)},type=numeric); 
 odeplot(sol01,0..1,view=[0..1,0..0.5],labels=["position along the rod (dimensionless)","dimensionless 
deflection"],labeldirections=[horizontal,vertical]); 
 sol01(1); 
 Delta_E:=(E0*(1+a*(x))^m)/E0; 
 plot(Delta_E,x=0..1); 
 evalf(subs(x=1,Delta_E)); 
 

Varying area problem worksheet:  
 
 #exponentially increasing area 
 restart:with(DEtools):with(linalg):with(plots): 
 eq01:=diff(diff(u(x),x),x)+2*F*diff(u(x),x)+(R0^2/R1^2)*exp(-2*F*x); 
 #uniform case F=0 
 F:=0;R0:=R1; 
 eq01; 
 ic:=u(0)=0,D(u)(1)=0; 
 sol01:=dsolve({eq01,ic},{u(x)},type=numeric); 
 odeplot(sol01,0..1,view=[0..1,0..0.5],labels=["position along the rod (dimensionless)","dimensionless 
deflection"],labeldirections=[horizontal,vertical]); 
 sol01(1); 
 #non-uniform case F varies 
 F:='F'; 
 F:=0.1; 
 for i from 1 to 10 do 
 R0:='R0';R1:='R1';R1:=sqrt((2*F*R0^2)/(exp(2*F)-1));funct(x):=((2*F)/(exp(2*F)-1))*exp(2*F*x); 
 eq01; 
 ic:=u(0)=0,D(u)(1)=0; 
 sol01:=dsolve({eq01,ic},{u(x)},type=numeric); 
 odeplot(sol01,0..1,view=[0..1,0..0.6],labels=["position along the rod (dimensionless)","dimensionless 
deflection"],labeldirections=[horizontal,vertical]);plot({1,funct(x)},x=0..1,labels=["position along the rod 
(dimensionless)","varying area / constant area"],labeldirections=[horizontal,vertical],view=[0..1,0.5..1.5]); 
 sol01(1); 
 F:=F+0.1; 
 end do; 
 #exponentially decreasing area 
 restart:with(DEtools):with(linalg):with(plots): 
 eq01:=diff(diff(u(x),x),x)-2*F*diff(u(x),x)+(R0^2/R1^2)*exp(2*F*x); 
 #uniform case F=0 
 F:=0;R0:=R1; 
 eq01; 
 ic:=u(0)=0,D(u)(1)=0; 
 sol01:=dsolve({eq01,ic},{u(x)},type=numeric); 
 odeplot(sol01,0..1,view=[0..1,0..0.5],labels=["position along the rod (dimensionless)","dimensionless 
deflection"],labeldirections=[horizontal,vertical]); 
 sol01(1); 
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 #non-uniform case F varies 
 F:='F'; 
 F:=0.1; 
 for i from 1 to 10 do 
 R0:='R0';R1:='R1';R1:=sqrt((2*F*R0^2)/(1-exp(-2*F)));funct(x):=((2*F)/(1-exp(-2*F)))*exp(-2*F*x); 
 eq01; 
 ic:=u(0)=0,D(u)(1)=0; 
 sol01:=dsolve({eq01,ic},{u(x)},type=numeric); 
 odeplot(sol01,0..1,view=[0..1,0..0.5],labels=["position along the rod (dimensionless)","dimensionless 
deflection"],labeldirections=[horizontal,vertical]);plot({1,funct(x)},x=0..1,labels=["position along the rod 
(dimensionless)","varying area / constant area"],labeldirections=[horizontal,vertical],view=[0..1,0.5..1.5]); 
 sol01(1); 
 F:=F+0.1; 
 end do; 

 
Bead friction problem worksheet: 
 
 ############################################################################################# 
 restart:with(linalg):with(DEtools):with(plots): 
 eq01:=diff(x(t),t$2)+mu*(sin(x(t))+diff(x(t),t)^2)-cos(x(t))=0; 
 ic:=x(0)=0,D(x)(0)=0; 
 number:=12; 
 mu:=0; 
 for i from 0 to number do 
 eq01; 
 sol01:=dsolve({eq01,ic},{x(t)},type=numeric,output=listprocedure); 
 fy1:=eval(diff(x(t),t),sol01[3]); 
 fy2:=eval(x(t),sol01[2]); 
 #odeplot(sol01,[t,x(t)],t=0..3);odeplot(sol01,[t,diff(x(t),t)],t=0..3); 
 yproc01[i]:=rhs(sol01[2]); 
 pt03:=fsolve(yproc01[i](x)=Pi/2,x=0..10); 
 sol01(evalf(pt03)); 
angular_velocity[i]:=[fy1(evalf(pt03)),evalf(pt03),mu];normal_force[i]:=[sin(fy2(evalf(pt03)))+fy1(evalf(pt03))^2,e
valf(pt03),mu];ang_vel[i]:=[mu,fy1(evalf(pt03))]; 
 mu:=mu+0.05; 
 end do; 
 ############################################################################################# 
 mat01 := array(0..number):mat001:=array(0..number): 
 for j from 0 to number do mat01[j] := angular_velocity[j]; mat001[j]:=ang_vel[j];end do: 
 print(mat01); print(mat001); 
 
with(plottools):pointplot3d(mat01,color=blue,symbol=circle,axes=box,labels=[velocity,time,friction]);fig01:=plot(
mat001,color=blue,style=line,axes=box,labels=["coefficient of friction","angular 
velocity"],labeldirections=[horizontal,vertical]):fig02:=pointplot(mat001,color=black,symbol=circle):display({fig01
,fig02},view=[0..0.7,0..1.5]);: 
 mat02 := array(1..number): 
 for j from 1 to number do mat02[j] := normal_force[j] end do: 
 print(mat02);  
 with(plottools):pointplot3d(mat02,color=blue,symbol=circle,axes=box,labels=[Normal_Force,time,friction]); 
 ############################################################################################# 
 restart:with(linalg):with(DEtools):with(plots): 
 eq01:=diff(x(t),t$2)+mu*(sin(x(t))+diff(x(t),t)^2)-cos(x(t))=0; 
 ic:=x(0)=0,D(x)(0)=0; 
 a:=1; 
 mu:=0.0; 
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 number:=30; 
 theta:=0; 
 for i from 0 to number do 
 eq01; 
 sol01:=dsolve({eq01,ic},{x(t)},type=numeric,output=listprocedure); 
 fy1:=eval(diff(x(t),t),sol01[3]); 
 fy2:=eval(x(t),sol01[2]); 
 #odeplot(sol01,[t,x(t)],t=0..3);odeplot(sol01,[t,diff(x(t),t)],t=0..3); 
 yproc01[i]:=rhs(sol01[2]); 
 pt03:=fsolve(yproc01[i](x)=theta,x=0..10); 
 sol01(evalf(pt03)); 
 normal_force[a,i]:=[evalf(theta),sin(fy2(evalf(pt03)))+fy1(evalf(pt03))^2]; 
 theta:=theta+evalf((Pi/2)/number);if (theta  evalf(Pi/2)) then `quit`(12) end if;theta; 
 end do; 
 mat01[a] := array(1..i): 
 for j from 1 to i do mat01[a][j] := normal_force[a,j] end do: 
 a:=2; 
 mu:=0.5; 
 number:=30; 
 theta:=evalf((Pi/2)/number); 
 for i from 0 to number do 
 eq01; 
 sol01:=dsolve({eq01,ic},{x(t)},type=numeric,output=listprocedure); 
 fy1:=eval(diff(x(t),t),sol01[3]); 
 fy2:=eval(x(t),sol01[2]); 
 #odeplot(sol01,[t,x(t)],t=0..3);odeplot(sol01,[t,diff(x(t),t)],t=0..3); 
 yproc01[i]:=rhs(sol01[2]); 
 pt03:=fsolve(yproc01[i](x)=theta,x=0..10); 
 sol01(evalf(pt03)); 
 normal_force[a,i]:=[evalf(theta),sin(fy2(evalf(pt03)))+fy1(evalf(pt03))^2]; 
 theta:=theta+evalf((Pi/2)/number);if (theta  evalf(Pi/2)) then `quit`(12) end if;theta; 
 end do; 
 mat01[a] := array(1..i): 
 for j from 1 to i do mat01[a][j] := normal_force[a,j] end do: 
 with(plottools):fig01:=plot(mat01[1],color=blue,axes=box,labels=["theta","Dimensionless Normal 
Force"],labeldirections=[horizontal,vertical]):fig02:=plot(mat01[2],color=red,axes=box,labels=["theta","Dimensionl
ess Normal 
Force"],labeldirections=[horizontal,vertical]):display({fig01,fig02},axes=box,labels=["theta","Dimensionless 
Normal Force"],labeldirections=[horizontal,vertical],view=[0..evalf(Pi/2),0..3]); 
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