
 Session 3620

Job Scheduling in Cluster Computing: A Student Project

Hassan Rajaei, Mohammad B. Dadfar

Department of Computer Science
Bowling Green State University

Bowling Green, Ohio 43403
Phone: (419)372-2337 Fax: (419)372-8061

{rajaei, dadfar}@cs.bgsu.edu

Abstract

Cluster computing has become widespread by utilizing COTS (Commercial-Off-The-Shelf) PCs,
a high-speed network, and Linux operating system. This simple configuration of multiprocessor
system can provide an excellent environment for student projects in courses such as Operating
Systems, Data Communication, Distributed Programming, just to name a few. In this paper we
describe an ongoing project focused on job scheduling for a cluster of processors.

Job scheduling on distributed-memory parallel systems has always been a challenge. Traditional
measurement factors such as job length to allocate the requested resources does not suffice.
Other factors such as communication delays and synchronization overhead which are normally
in the user domain, could turn out as key issues for multiprocessors' utilization. As a result,
utilization of each processor in a distributed-memory parallel system may end up comparatively
lower than a single processor system. Consequently, performance of the entire system may
degenerate and user jobs risk waiting long in the queue before getting the requested number of
processors. This project is divided into several phases. In each phase, one to three students
investigate how to minimize waiting time of the jobs in the queue while allowing other projects
have a scheduling policy that suits their experiment and research. This paper reports the results
of the first group which focuses on variable partitioning scheme. When resources for the highest
priority job are not available, then the lower priority jobs are allowed to acquire the available
resources. This paper investigates and evaluates variable partitioning schemes for job
scheduling on distributed-memory parallel systems.

1. Introduction

High Performance Computing (HPC) nowadays can easily be achieved with clusters of PCs
connected through a high-speed switch on a high-speed network. Such a tool provides excellent
opportunities to explore numerous projects for educational as well as research purposes in
computer science. For this reason, we have installed a Beowulf Cluster1, 2, 3, 4, 5 with 16 compute
nodes in our computing lab in order to engage our students with exciting projects in courses such

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.1

as Operating Systems, Data Communication, Parallel Programming, Distributed Simulation,
Algorithms, Data Base Management, and several others.

The Message-Passing Interface (MPI) library4, 6 and a fairly simple resource manager transform
the cluster into a distributed-memory parallel system. The job scheduler module of the parallel
machine has a vital roll on the utilization of the distributed resources. This project aims at
studying feasible approaches to job scheduling on the parallel system. Further, it targets
improving the overall performance of our Beowulf system by modifying the existing scheduler.
This paper reports the first phase of the project.

Scheduling of parallel applications on distributed-memory parallel system often occurs by
granting each job the requested number of processors for its entire run time. This approach is
referred to as variable partitioning which frequently utilizes non-preemptive batch scheduling7.
That is, once a job acquires the requested number of compute nodes, it continues until the job
completes or some error forces the system to abort the faulty job. Consequently, most parallel
programs restrict their I/O bursts to the beginning and to the end of the program in order to avoid
significant performance penalties.

Another scheduling approach is dynamic partitioning. This scheme suggests partial allocation of
requested nodes for a parallel job. Even though this approach could help some jobs to start
processing their task, the scheduling method is not widely used because of practical limitations.
For example, consider a job where it needs all its requested nodes in order to start processing the
parallel tasks. In this case, allocating fewer compute nodes than the requested numbers will
clearly contributes to the system deficiencies since the allocated nodes are not going to be used
until this job receives the rest of its requested nodes.

In this paper we focus on the variable partitioning schemes8, 9, 10. The simplest method is to
prioritize waiting jobs based on a preset policy, such as the arrival time, the job length, and the
estimated wall-clock time. When resources for the high priority job are not available or there are
no more higher priority jobs in the queue, then the lower priority jobs are allowed to acquire the
available computing nodes. This approach seems to have the advantage of better utilizing the
system resources. However, a closer look reveals several pitfalls of this method. Examples
include: jobs could starve; no guarantee can be made to the user as to when a job is likely to be
executed; and the high priority jobs may risk to starve.

The project aims at investigating potential deficiencies and tries to provide alternative solutions
for variable partitioning schemes. The goal is to improve our existing scheduler in our clustered-
base parallel system. To overcome some of the drawbacks mentioned above, this paper selects
approaches such as reservations for jobs and backfilling technique to increase system utilization.

The three scheduling algorithms in the framework of variable partitioning that we have focused
on are Non-FCFS, Aggressive Backfilling, and Conservative Backfilling8, 9. In Sections 2, 3, and
4 we briefly describe each of these algorithms. In Section 5 we discuss the implementation
issues. In Section 6 the simulation results are provided. Finally, the future work and the
concluding remarks are presented in Sections 7 and 8 respectively.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.2

2. Non-FCFS Scheduling Algorithm

One simple scheme in variable partitioning is to prioritize the jobs in the waiting queue based on
a preset policy such as the requested number of processors or the estimated wall-clock time in
addition to the arrival time. The resource manager then tries to allocate compute nodes to the
waiting jobs in the order inserted in the queue. When resources for the job at the head of the line
with the highest priority are not available then other jobs in the queue with the lower priority can
obtain the available resources. This approach has three pitfalls; jobs can starve; no guarantee is
made to the user as to when a job is likely to be executed; and there is no real priority since the
high priority jobs can starve. However, most schedulers that use this simple approach employ a
simple starvation prevention policy by enforcing an upper bound for waiting. These systems
normally use two priority levels and a certain time limit, for example 12 or 24 hours, for a job to
be in the Non-FCFS waiting queue. After this time limit the priority is increased and the FCFS
policy is enforced. Another way to prevent the starvation would be to allow only a certain
number of lower priority jobs to jump over a queued job. The OpenPBS Torque2, which is
incorporated in numerous clusters, employs such a policy. It is important to mention that
starvation can be prevented at the cost of utilization.

Example of Job Scheduling Using Non-FCFS Scheduling Algorithm

Consider a system with 16 nodes and a 24 hour wait limit to prevent starvation. Table 1
provides an example of a set of jobs in the system and Figure 1 illustrates a snapshot of the
scheduler.

Table 1: Status of current jobs in the system before 24 hours wait limit
Job ID Nodes Needed Time unit Status
Job1 6 3 running
Job2 6 2 running
Job3 12 1 queued less than 24 hours
Job4 5 3 new arrival – jumps over Job3
Job5 4 2 new arrival – jumps over Job3

Figure 1: Non-FCFS without wait limit

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.3

Selection of the jobs for execution are based on the number of requested processors. When there
is a tie between the requests, then the jobs' execution time is considered. As illustrated in Table
1, Job1 and Job2 are running. Job1 has 3 time units to complete and Job2 has 2 time units to
finish its task. Job3 is queued because there are not enough nodes available. Assume that Job4
and Job5 have just arrived in the system. Job5 gets immediate allocation since there are 4 free
nodes left idle in the system. When Job2 terminates, Job4 will be able to run. As illustrated, the
two new jobs move ahead of the waiting job3 and acquire the resources. The fairness is poor in
this scheme. Further, if more new small jobs arrive, then the large jobs will starve assuming
there was no upper bound for waiting.

Now, consider the same example, but assume that Job3 has been queued in the system more than
24 hours, as illustrated in Table 2. Figure 2 demonstrates the snapshot of the system when
waiting time exceeds the 24 hour limit.

Table 2: Status of current jobs in the system after 24 hours wait limit
Job ID Nodes Needed Time unit Status
Job1 6 3 running
Job2 6 2 running
Job3 12 1 queued more than 24 hours
Job4 5 3 new arrival – queued
Job5 4 2 new arrival – queued

 Figure 2: Illustration of waiting time limit on Non-FCFS

Figure 2 shows arrival of Job4 and Job5 in the system. Job3 has already been waiting for more
than 24 hours exceeding the wait time limit. The scheduler inserts Job4 and Job5 after Job3 in
the queue. Even though allocation of nodes for Job5 would not delay the execution of Job3, the
scheduler just queues all the incoming jobs in the arriving order until the starved job (i.e. Job3)
has acquired the requested resources. This simple technique would clearly lead to a low system
utilization, however, it will prevent starvation.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.4

3. Aggressive Backfilling Algorithm

This scheme requires the user to provide an estimated runtime in order to overcome the
deficiency problem of Non-FCFS algorithm. With the additional information this algorithm
makes a first reservation scheduled for the queued job. Then, it scans through the waiting queue
to find a smaller job which can be run ahead of the reserved job without imposing any further
delay for the reserved jobs. This algorithm solves the starvation problem as well as improving
system utilization by using backfilling technique. That is, a job that does not risk to delay the
reserved job is allowed to execute prior to the reserved job. The drawback of this technique is
that it cannot make any guarantee about the response time of the user job at the time of job
submission. Further, the user estimation may not be correct. Early terminations and exceeding
the estimated runtime have to be dealt with. Early termination may not cause serious problems
whereas exceeding the estimated runtime may generate numerous problems.

Another issue is how to handle high priority job arrival. If a new job has a higher priority than
the reserved job in the queue, then the system has two choices: either preempt the existing
reservation and reschedule for the new job, or make another reservation for the new job
immediately after the current reservation without preempting it. There is no simple solution for
this case. Choosing the former may result in starvation again as the higher priority jobs may
continue to arrive. Choosing the latter approach is not fair for the high priority jobs as their
requests could be delayed and hence risking not be scheduled on time.

Example of Job Scheduling using Aggressive Backfilling Algorithm

Consider again the system of 16 nodes. Table 3 shows a set of jobs in the system ordered based
on their arrival.

Table 3: Status of current jobs in the system for a backfilled queue
Job ID Nodes Needed Time unit Status
Job1 6 3 running
Job2 6 1 running
Job3 12 1 queued
Job4 14 1 queued
Job5 4 2 new arrival – backfilled
Job6 4 3 new arrival – backfilled

Job3 is the first queued job so it has a reservation in the system. Job4 is queued behind Job3.
When Job5 and Job6 arrive, the system attempts to backfill the jobs. Job5 can be backfilled and
scheduled immediately. Job6 is queued. This case is shown in Figure 3a for the system after
arrival of Job4 and Job5. When Job2 has terminated, its 6 nodes become available for 2 time
units before Job1 terminates. Since Job6 requires 3 time units the system cannot schedule it.
Job6 is scheduled after the termination of Job5. This case is demonstrated in Figure 3b, after
Job5 has terminated. At time 3, Job3 starts its execution. Now that Job3 has been removed from
the ready queue, Job4 becomes the first job in the queue so the system makes a reservation for it.
Figure 3c shows snapshot of the system after Job3 starts execution. Figure 3d illustrates the
overall snapshot. This example also demonstrates that the queued jobs (except the first one)

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.5

(a): System after the arrival of Job4 & Job5 (b): System after Job5 terminated

(c): System after Job3 starts execution

(d): Overall job scheduling order

 Figure 3: Illustration of the Aggressive Backfilling algorithm based on their arrival

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.6

can be delayed because of backfilling. This is a drawback which needs to be further analyzed
when such a scheme is used.

4. Conservative Backfilling Algorithm

In Aggressive Backfilling algorithm only one reservation is made for the job in front of the
queue. This could delay unnecessarily execution of a job even though enough resources may
exist to allocate for that job. The situation can be improved by allowing the scheduler to take a
further step in backfilling. In Conservative Backfilling all jobs get their own reservations when
they are submitted. Therefore this algorithm can guarantee execution time when a new job is
submitted. However, the algorithm works only for the First-Come First-Served (FCFS) priority
policy. As jobs arrive in the system, the scheduler makes reservation for them and provides a
guaranteed execution time for each arriving job based on the estimated times provided by the
users. When a job with higher priority arrives, the system cannot reshuffle its current
reservations to provide the higher priority job a reservation ahead of the existing ones for the
previous queued jobs. The reason is simple since any rearrangement would lead to not executing
the existing jobs at their guaranteed times. A system using Conservative Backfilling with
guaranteed execution time can only have FCFS priority.

Early job terminations lead to vacancies in the system. In order to make efficient use of these
vacancies the algorithm must reschedule the existing reservations for queued jobs. However,
keeping in mind that the reservations cannot be reshuffled as that may lead to not executing the
jobs at their guaranteed times, we can only compress the existing reservation schedule so that it
runs at an earlier time. This however may lead to an unfair scheduling.

Example of Job Scheduling Using Conservative Backfilling Algorithm

Table 4 shows a set of jobs in the system. As is the case for Conservative Backfilling, all jobs in
Table 4 that are queued have a reservation. Job3 has its reservation after the termination of Job1.
Job4 has its reservation after the termination of Job3. The system backfills Job5 as it does not
delay the jobs that have reservation. Since Job6 cannot be backfilled, the system makes a
reservation for Job6 after the termination of Job4. The snapshot of the system is illustrated in
Figure 4.

Table 4: Status of current jobs for an improved backfilled queue
Job ID Nodes Needed Time unit Status
Job1 6 3 running
Job2 6 1 running
Job3 12 1 queued
Job4 14 1 queued
Job5 4 2 new arrival – backfilled
Job6 4 3 new arrival – queued

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.7

Figure 4: Snapshot of a Conservative Backfilling algorithm for jobs in Table 4

5. Implementation Issues

We have simulated the three algorithms discussed above. This section clarifies some issues
related to the implementation. More details can be found in the project technical report10.

In a simulation study, the quality of input data plays a vital role in determining the significance
of the simulation results. To safeguard our simulation, we looked at some observations made by
researchers in the field of distributed-memory parallel systems8, 9. These studies indicate small
jobs (i.e. requiring few compute nodes) are more common than large ones (i.e. requiring large
number of compute nodes). Further, jobs with short runtimes are more common than jobs with
long runtimes. Based on these observations, we generated the input data for 16 compute nodes.
The main characteristics of the input data are:

1. 30% small jobs: 1-5 nodes, 40% medium jobs: 6-10 nodes, 30% large jobs: 11-16 nodes.
2. 80% of jobs with simulated runtime between 90 seconds and 9 hours, 20% of jobs with

simulated runtime between 9 hours and 12 hours. We use a minimum of 90 seconds
runtime which also includes overhead of parallel execution.

3. A simulated runtime may be anywhere between 10% to 100% of the estimated runtime.

The input data is kept in a workload file and is transferred to the job profiles in the simulator.
The supplied information for each job is: process-ID, number of requested nodes, estimated
runtime in seconds, simulated runtime in seconds, and arrival time in seconds. The arrival time
is used to order jobs in the ready queue prior to their scheduling or reservation of nodes.

For the Non-FCFS algorithm, a 24 hour limit is used to determine starved jobs in the system.
The backfilling algorithms employ the first-fit technique. This method looks for the first queued
job that can be used for backfilling. It would be interesting to investigate whether other methods
such as best-fit could have any impact to the performance.

The simulator utilizes two queues: event queue and ready queue. The event queue keeps track of
the arrivals and departures of jobs and generates events for the respective type. The simulation
clock advances when the system processes an event. The ready queue on the other hand holds
all arrival jobs for which their requested nodes are not yet granted. This queue is used by the

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.8

algorithms to schedule the jobs. Once a job arrives in the system, its profile will be moved from
the event queue to the ready queue. When a job is scheduled, its profile will be moved back
from the ready queue to the event queue. A departure event will remove the profile of the
terminated job. Both queues are implemented as vectors.

6. Simulation Results

Table 5 summarizes results of the simulation. The workload file that was used for the input data
was generated by using the specifications described in Section 5. To illustrate performance
degradation caused by early job terminations (that is before their estimated times), we assume
the simulated runtime of a job be the perfect estimation time. Table 6 summarize the results of
the second simulation. All illustrated times in the tables are simulated times and are in seconds.

Table 5: Results of simulation for generated job mix

Algorithm Name
Average

Execution
Time (sec)

Average
Wait Time

% System
Utilization

Highest
Response Time

Non-FCFS 308.37 101.04 85.49 296.36

Aggressive
Backfilling 301.37 107.52 87.48 284.88

Conservative
Backfilling 302.72 107.24 87.09 290.55

Table 6: Results of simulation for jobs submitting with prefect estimate

Algorithm Name
Average

Execution
Time (sec)

Average
 Wait Time

% System
Utilization

Highest
Response Time

Aggressive
Backfilling 764.38 262.55 89.36 747.08

Conservative
Backfilling 765.75 280.52 89.20 743.59

We also used a set of input data which has been used in a simulation carried out at Ames
Laboratory7. For this set of data, the following two tables summarize the results of our
simulation.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.9

Table 7: Results for the simulation job mix available using different input data

Algorithm Name
Average

Execution
Time (sec)

Average
Wait Time

% System
Utilization

Highest
Response

Time

Non-FCFS 68.55 19.92 77.99 62.73

Aggressive
Backfilling 65 20.08 82.25 59.18

Conservative
Backfilling 65.17 20.14 82.04 59.35

Table 8: Results for the simulation job mix using different input data with prefect estimate

Algorithm Name
Average

Execution
Time (sec)

Average
Wait Time

% System
Utilization

Highest
Response

Time

Aggressive
Backfilling 80.02 25.23 83.14 74.14

Conservative
Backfilling 79.17 25.42 84.04 73.29

The results shown in Table 5 through Table 8 depict that for the Backfilling algorithms
utilization is better than the Non-FCFS algorithm. Both Aggressive Backfilling and
Conservative Backfilling have almost the same utilization. However, for both algorithms the
average wait time is higher than the one from Non-FCFS. The highest response time (i.e. the job
that waited the most in the system) is lowest in the Aggressive Backfilling algorithm.

If we consider the case when the arrival job has a perfect estimate, then the utilization becomes
the same in both Aggressive Backfilling and Conservative Backfilling algorithms. With perfect
estimated runtime, utilization increases marginally. For example, in the case of Conservative
Backfilling, utilization increases by 2% from 87.09% to 89.20% (see Table 5 and Table 6).

The simulation results also indicate that more jobs are executed in their order of arrival for both
Backfilling algorithms, but that is not the case with Non-FCFS where many jobs that arrived late
could finish ahead of the jobs that arrived before them. This shows that the Aggressive
Backfilling and the Conservative Backfilling algorithms follow the priority policy more closely
than the Non-FCFS algorithm. Furthermore, the simulation results show that the Backfilling
algorithms are able to distribute the wait time among the jobs more evenly instead of just making
a few jobs wait indefinitely.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.10

7. Future Work

For the next phases, we would like to expand the simulation using variable nodes and launch
numerous actual jobs. These jobs could be managed by a mixture of simulated and experimental
scheduler in order to provide us with better measured data to further study and analyzing them.
We would like also to study additional scheduling algorithms and provide experimental models
for students to use in courses such as Operation Systems.

One job scheduling that is of high research interest is dynamic partitioning. In this approach, a
parallel job needs not always get its requested number of processors for its entire run time. Two
such techniques method that are still widely under research are Dynamic Co-scheduling and
Gang scheduling11, 12. Both of these approaches try to allocate more than one process to a node
and time share that node between processes. The difference is that Gang scheduling is similar to
round robin scheduling in which the system switches to a new sets of jobs after a fixed time
quantum. Dynamic co-scheduling, on the other hand, uses message arrivals to trigger execution.
The Dynamic co-scheduling can start a job even when all its requested nodes are not available.
Simulation can be done on these two approaches to study their performance.

Utilization of compute nodes tends to decrease in very large parallel systems. In our future
work, we can model workloads for very large systems and study performance of various
scheduling algorithms on such systems.

Moab Workload Manager is a cluster scheduler that is compatible with the Torque; an OpenPBS
based cluster resource manager7. The Moab scheduler has several configuration settings which
can provide the administrator with a greater flexibility in changing the scheduling algorithm to
suit some specific needs of the system. Moab scheduler can be configured to work as both an
Aggressive Backfilling scheduler and a Conservative Backfilling scheduler. In future, we would
like to install the Moab scheduler in Beowulf system and fine-tune it to suit our needs.

8. Concluding Remarks

The first phase of this project has provided significant insight on how the current work could
continue in several directions. Our primary objectives are still valid. That is, providing exciting
projects for students in a multiprocessors environment, as well as improving the current job
scheduler for our Beowulf cluster. The preliminary results of this study confirm that cluster
scheduling could furnish several interesting student projects for educational purposes, as well as
providing several challenging topics in the cutting edge research.

Furthermore, our simulation results advocate that the Backfilling algorithms produce better
utilization than Non-FCFS algorithm. The average wait time for a job, however, is higher in the
Backfilling algorithms than the one in the Non-FCFS algorithm. This could be nonetheless a
result of distributing the wait time among many jobs. Our future work will pursue to better
answer this issue. The simulation also shows that the two Backfilling algorithms perform almost
the same. Between the two, Aggressive Backfilling is less complex and more flexible when
regarding input to set the priority policy. The Conservative Backfilling algorithm can be used in
systems that would desire to have its scheduling policy set strictly based on FCFS. Conservative
Backfilling will be able to give the users a guaranteed response time.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.11

Bibliography

1. http://www.beowulf.org/ : Beowulf Project Overview

2. http://www.supercluster.org/ : Center for HPC Cluster Resource Management and Scheduling

3. http://www.cacr.caltech.edu/beowulf/tutorial/tutorial.html : How to Build a Beowulf: a Tutorial

4. Gropp, William, Lusk, Ewing and Sterling, Thomas, Beowulf Cluster Computing with Linux, Second Edition,

ISBN 0-262-69292-9, 2003.

5. Ehammer, Max, Roeck, Harald, and Rajaei, Hassan, “User Guide for the Beowulf P4 Cluster“ Department of

Computer Science, Bowling Green State University, Bowling Green, OH 43403,USA, July 2004.

6. Gropp, William, Lusk, Ewing and Sterling, Thomas, Using MPI, Portable Parallel Programming with

Message-Passing Interface, Second Edition, ISBN 0-262-57132-3, 2003.

7. Bode, Brett, Halstead, David M., Kendall, Ricky and Lei, Zhou “The Portable Batch Scheduler and the Maui

Scheduler on Linux Clusters”. In Annual Technical Conference, USENIX, June 1999.

8. Mu’alem, Ahuva W. and Feitelson, Dror G. “Utilization, Predictability, Workloads, and User Runtime

Estimates in Scheduling the IBM SP2 with Backfilling”. In IEEE trans. Parallel & Distributed Systems 12(6),
pp. 529-543, Jun 2001.

9. Feitelson, Dror G. Packing schemes for gang scheduling. In Dror G. Feitelson and Larry Rudolph, editors,

2ndWorkshop on Job Scheduling Strategies for Parallel Processing (in IPPS ’96), pages 89–110, Honolulu,
Hawaii, April 16, 1996. Springer-Verlag. Published in Lecture Notes in Computer Science, volume 1162.
ISBN 3-540-61864-3. Available from http://www.cs.huji.ac.il/~feit/parsched/p-96-6.ps.gz.

10. Alagusundaram, Kavitha “A Comparison of Common Processor Scheduling Algorithms for Distributed-

Memory Parallel System”, Department of Computer Science, Bowling Green State University, Bowling Green,
OH 43403, USA, May 2004.

11. Talby, David, Feitelson, Dror G., “Supporting Priorities and Improving Utilization of the IBM SP Scheduler

Using Slack Based Backfilling”, Institute of Computer Science, The Hebrew University, 91904, Jerusalem,
Israel.

12. Jette, Moe, "Gang Scheduling Timesharing on Parallel Computers",

http://www.IInl.gov/asci/pse_trilab/sc98.summary.html

HASSAN RAJAEI
Hassan Rajaei is an Associate Professor in the Computer Science Department at Bowling Green State University.
His research interests include computer simulation, distributed and parallel simulation, performance evaluation of
communication networks, wireless communications, distributed and parallel processing. Dr. Rajaei received his
Ph.D. from Royal Institute of Technologies, KTH, Stockholm, Sweden and he holds an MSE from U. of Utah.

MOHAMMAD B. DADFAR
Mohammad B. Dadfar is an Associate Professor in the Computer Science Department at Bowling Green State
University. His research interests include Computer Extension and Analysis of Perturbation Series, Scheduling
Algorithms, and Computers in Education. He currently teaches undergraduate and graduate courses in data
communications, operating systems, and computer algorithms. He is a member of ACM and ASEE.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

P
age 10.848.12

