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Abstract 
 
Cluster computing has become widespread by utilizing COTS (Commercial-Off-The-Shelf) PCs, 
a high-speed network, and Linux operating system.  This simple configuration of multiprocessor 
system can provide an excellent environment for student projects in courses such as Operating 
Systems, Data Communication, Distributed Programming, just to name a few.  In this paper we 
describe an ongoing project focused on job scheduling for a cluster of processors. 
 
Job scheduling on distributed-memory parallel systems has always been a challenge.  Traditional 
measurement factors such as job length to allocate the requested resources does not suffice.  
Other factors such as communication delays and synchronization overhead which are normally 
in the user domain, could turn out as key issues for multiprocessors' utilization.  As a result, 
utilization of each processor in a distributed-memory parallel system may end up comparatively 
lower than a single processor system.  Consequently, performance of the entire system may 
degenerate and user jobs risk waiting long in the queue before getting the requested number of 
processors.  This project is divided into several phases.  In each phase, one to three students 
investigate how to minimize waiting time of the jobs in the queue while allowing other projects 
have a scheduling policy that suits their experiment and research.  This paper reports the results 
of the first group which focuses on variable partitioning scheme.  When resources for the highest 
priority job are not available, then the lower priority jobs are allowed to acquire the available 
resources.  This paper investigates and evaluates variable partitioning schemes for job 
scheduling on distributed-memory parallel systems. 
 
1.  Introduction 
 
High Performance Computing (HPC) nowadays can easily be achieved with clusters of PCs 
connected through a high-speed switch on a high-speed network.  Such a tool provides excellent 
opportunities to explore numerous projects for educational as well as research purposes in 
computer science.  For this reason, we have installed a Beowulf Cluster1, 2, 3, 4, 5 with 16 compute 
nodes in our computing lab in order to engage our students with exciting projects in courses such 
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as Operating Systems, Data Communication, Parallel Programming, Distributed Simulation, 
Algorithms, Data Base Management, and several others. 
 
The Message-Passing Interface (MPI) library4, 6 and a fairly simple resource manager transform 
the cluster into a distributed-memory parallel system.  The job scheduler module of the parallel 
machine has a vital roll on the utilization of the distributed resources.  This project aims at 
studying feasible approaches to job scheduling on the parallel system.  Further, it targets 
improving the overall performance of our Beowulf system by modifying the existing scheduler.  
This paper reports the first phase of the project. 
  
Scheduling of parallel applications on distributed-memory parallel system often occurs by 
granting each job the requested number of processors for its entire run time.  This approach is 
referred to as variable partitioning which frequently utilizes non-preemptive batch scheduling7.  
That is, once a job acquires the requested number of compute nodes, it continues until the job 
completes or some error forces the system to abort the faulty job.  Consequently, most parallel 
programs restrict their I/O bursts to the beginning and to the end of the program in order to avoid 
significant performance penalties. 
 
Another scheduling approach is dynamic partitioning.  This scheme suggests partial allocation of 
requested nodes for a parallel job.  Even though this approach could help some jobs to start 
processing their task, the scheduling method is not widely used because of practical limitations.  
For example, consider a job where it needs all its requested nodes in order to start processing the 
parallel tasks.  In this case, allocating fewer compute nodes than the requested numbers will 
clearly contributes to the system deficiencies since the allocated nodes are not going to be used 
until this job receives the rest of its requested nodes. 
 
In this paper we focus on the variable partitioning schemes8, 9, 10.  The simplest method is to 
prioritize waiting jobs based on a preset policy, such as the arrival time, the job length, and the 
estimated wall-clock time.  When resources for the high priority job are not available or there are 
no more higher priority jobs in the queue, then the lower priority jobs are allowed to acquire the 
available computing nodes.  This approach seems to have the advantage of better utilizing the 
system resources.  However, a closer look reveals several pitfalls of this method.  Examples 
include: jobs could starve; no guarantee can be made to the user as to when a job is likely to be 
executed; and the high priority jobs may risk to starve. 
 
The project aims at investigating potential deficiencies and tries to provide alternative solutions 
for variable partitioning schemes.  The goal is to improve our existing scheduler in our clustered-
base parallel system.  To overcome some of the drawbacks mentioned above, this paper selects 
approaches such as reservations for jobs and backfilling technique to increase system utilization. 
   
The three scheduling algorithms in the framework of variable partitioning that we have focused 
on are Non-FCFS, Aggressive Backfilling, and Conservative Backfilling8, 9.  In Sections 2, 3, and 
4 we briefly describe each of these algorithms.  In Section 5 we discuss the implementation 
issues.  In Section 6 the simulation results are provided.  Finally, the future work and the 
concluding remarks are presented in Sections 7 and 8 respectively. 
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2.  Non-FCFS Scheduling Algorithm 
 
One simple scheme in variable partitioning is to prioritize the jobs in the waiting queue based on 
a preset policy such as the requested number of processors or the estimated wall-clock time in 
addition to the arrival time.  The resource manager then tries to allocate compute nodes to the 
waiting jobs in the order inserted in the queue.  When resources for the job at the head of the line 
with the highest priority are not available then other jobs in the queue with the lower priority can 
obtain the available resources.  This approach has three pitfalls; jobs can starve; no guarantee is 
made to the user as to when a job is likely to be executed; and there is no real priority since the 
high priority jobs can starve.  However, most schedulers that use this simple approach employ a 
simple starvation prevention policy by enforcing an upper bound for waiting.  These systems 
normally use two priority levels and a certain time limit, for example 12 or 24 hours, for a job to 
be in the Non-FCFS waiting queue.  After this time limit the priority is increased and the FCFS 
policy is enforced.  Another way to prevent the starvation would be to allow only a certain 
number of lower priority jobs to jump over a queued job.  The OpenPBS Torque2, which is 
incorporated in numerous clusters, employs such a policy.  It is important to mention that 
starvation can be prevented at the cost of utilization. 
 
Example of Job Scheduling Using Non-FCFS Scheduling Algorithm 
 
Consider a system with 16 nodes and a 24 hour wait limit to prevent starvation.  Table 1 
provides an example of a set of jobs in the system and Figure 1 illustrates a snapshot of the 
scheduler. 
 

Table 1: Status of current jobs in the system before 24 hours wait limit 
Job ID Nodes Needed Time unit Status 
Job1 6 3 running 
Job2 6 2 running 
Job3 12 1 queued less than 24 hours 
Job4 5 3 new arrival – jumps over Job3 
Job5 4 2 new arrival – jumps over Job3 

 
 

  
 
Figure 1: Non-FCFS without wait limit  
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Selection of the jobs for execution are based on the number of requested processors. When there 
is a tie between the requests, then the jobs' execution time is considered.  As illustrated in Table 
1, Job1 and Job2 are running.  Job1 has 3 time units to complete and Job2 has 2 time units to 
finish its task.  Job3 is queued because there are not enough nodes available.  Assume that Job4 
and Job5 have just arrived in the system.  Job5 gets immediate allocation since there are 4 free 
nodes left idle in the system.  When Job2 terminates, Job4 will be able to run.  As illustrated, the 
two new jobs move ahead of the waiting job3 and acquire the resources.  The fairness is poor in 
this scheme.  Further, if more new small jobs arrive, then the large jobs will starve assuming 
there was no upper bound for waiting. 
 
Now, consider the same example, but assume that Job3 has been queued in the system more than 
24 hours, as illustrated in Table 2.  Figure 2 demonstrates the snapshot of the system when 
waiting time exceeds the 24 hour limit. 
 

Table 2: Status of current jobs in the system after 24 hours wait limit 
Job ID Nodes Needed Time unit Status 
Job1 6 3 running 
Job2 6 2 running 
Job3 12 1 queued more than 24 hours 
Job4 5 3 new arrival – queued 
Job5 4 2 new arrival – queued 

 
 

      
  
 Figure 2:  Illustration of waiting time limit on Non-FCFS 
 
Figure 2 shows arrival of Job4 and Job5 in the system.  Job3 has already been waiting for more 
than 24 hours exceeding the wait time limit.  The scheduler inserts Job4 and Job5 after Job3 in 
the queue.  Even though allocation of nodes for Job5 would not delay the execution of Job3, the 
scheduler just queues all the incoming jobs in the arriving order until the starved job (i.e. Job3) 
has acquired the requested resources.  This simple technique would clearly lead to a low system 
utilization, however, it will prevent starvation. 
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3.  Aggressive Backfilling Algorithm 
 
This scheme requires the user to provide an estimated runtime in order to overcome the 
deficiency problem of Non-FCFS algorithm.  With the additional information this algorithm 
makes a first reservation scheduled for the queued job.  Then, it scans through the waiting queue 
to find a smaller job which can be run ahead of the reserved job without imposing any further 
delay for the reserved jobs.  This algorithm solves the starvation problem as well as improving 
system utilization by using backfilling technique.  That is, a job that does not risk to delay the 
reserved job is allowed to execute prior to the reserved job.  The drawback of this technique is 
that it cannot make any guarantee about the response time of the user job at the time of job 
submission.  Further, the user estimation may not be correct.  Early terminations and exceeding 
the estimated runtime have to be dealt with.  Early termination may not cause serious problems 
whereas exceeding the estimated runtime may generate numerous problems. 
 
Another issue is how to handle high priority job arrival.  If a new job has a higher priority than 
the reserved job in the queue, then the system has two choices: either preempt the existing 
reservation and reschedule for the new job, or make another reservation for the new job 
immediately after the current reservation without preempting it.  There is no simple solution for 
this case.  Choosing the former may result in starvation again as the higher priority jobs may 
continue to arrive.  Choosing the latter approach is not fair for the high priority jobs as their 
requests could be delayed and hence risking not be scheduled on time. 
 
Example of Job Scheduling using Aggressive Backfilling Algorithm 
 
Consider again the system of 16 nodes.  Table 3 shows a set of jobs in the system ordered based 
on their arrival. 

Table 3: Status of current jobs in the system for a backfilled queue 
Job ID Nodes Needed Time unit Status 
Job1 6 3 running 
Job2 6 1 running 
Job3 12 1 queued  
Job4 14 1 queued 
Job5 4 2 new arrival – backfilled
Job6 4 3 new arrival – backfilled

 
Job3 is the first queued job so it has a reservation in the system.  Job4 is queued behind Job3.  
When Job5 and Job6 arrive, the system attempts to backfill the jobs.  Job5 can be backfilled and 
scheduled immediately.  Job6 is queued.  This case is shown in Figure 3a for the system after 
arrival of Job4 and Job5.  When Job2 has terminated, its 6 nodes become available for 2 time 
units before Job1 terminates.  Since Job6 requires 3 time units the system cannot schedule it.  
Job6 is scheduled after the termination of Job5.  This case is demonstrated in Figure 3b, after 
Job5 has terminated.  At time 3, Job3 starts its execution.  Now that Job3 has been removed from 
the ready queue, Job4 becomes the first job in the queue so the system makes a reservation for it.  
Figure 3c shows snapshot of the system after Job3 starts execution.  Figure 3d illustrates the 
overall snapshot.  This example also demonstrates that the queued jobs (except the first one)  
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(a):   System after the arrival of Job4 & Job5  (b):  System after Job5 terminated 
 
 

  
(c):   System after Job3 starts execution 
 
 

  
(d):   Overall job scheduling order 
 
 Figure 3: Illustration of the Aggressive Backfilling algorithm based on their arrival 
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can be delayed because of backfilling.  This is a drawback which needs to be further analyzed 
when such a scheme is used. 
 
4.  Conservative Backfilling Algorithm 
 
In Aggressive Backfilling algorithm only one reservation is made for the job in front of the 
queue.  This could delay unnecessarily execution of a job even though enough resources may 
exist to allocate for that job.  The situation can be improved by allowing the scheduler to take a 
further step in backfilling.  In Conservative Backfilling all jobs get their own reservations when 
they are submitted.  Therefore this algorithm can guarantee execution time when a new job is 
submitted.  However, the algorithm works only for the First-Come First-Served (FCFS) priority 
policy.  As jobs arrive in the system, the scheduler makes reservation for them and provides a 
guaranteed execution time for each arriving job based on the estimated times provided by the 
users.  When a job with higher priority arrives, the system cannot reshuffle its current 
reservations to provide the higher priority job a reservation ahead of the existing ones for the 
previous queued jobs.  The reason is simple since any rearrangement would lead to not executing 
the existing jobs at their guaranteed times.  A system using Conservative Backfilling with 
guaranteed execution time can only have FCFS priority. 
 
Early job terminations lead to vacancies in the system.  In order to make efficient use of these 
vacancies the algorithm must reschedule the existing reservations for queued jobs.  However, 
keeping in mind that the reservations cannot be reshuffled as that may lead to not executing the 
jobs at their guaranteed times, we can only compress the existing reservation schedule so that it 
runs at an earlier time.  This however may lead to an unfair scheduling. 
 
Example of Job Scheduling Using Conservative Backfilling Algorithm 
 
Table 4 shows a set of jobs in the system.  As is the case for Conservative Backfilling, all jobs in 
Table 4 that are queued have a reservation.  Job3 has its reservation after the termination of Job1.  
Job4 has its reservation after the termination of Job3.  The system backfills Job5 as it does not 
delay the jobs that have reservation.  Since Job6 cannot be backfilled, the system makes a 
reservation for Job6 after the termination of Job4.  The snapshot of the system is illustrated in 
Figure 4. 
 
 

Table 4: Status of current jobs for an improved backfilled queue 
Job ID Nodes Needed Time unit Status 
Job1 6 3 running 
Job2 6 1 running 
Job3 12 1 queued  
Job4 14 1 queued 
Job5 4 2 new arrival – backfilled 
Job6 4 3 new arrival – queued 
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Figure 4:  Snapshot of a Conservative Backfilling algorithm for jobs in Table 4 
 
5.  Implementation Issues 
 
We have simulated the three algorithms discussed above.  This section clarifies some issues 
related to the implementation.  More details can be found in the project technical report10. 
 
In a simulation study, the quality of input data plays a vital role in determining the significance 
of the simulation results.  To safeguard our simulation, we looked at some observations made by 
researchers in the field of distributed-memory parallel systems8, 9.  These studies indicate small 
jobs (i.e. requiring few compute nodes) are more common than large ones (i.e. requiring large 
number of compute nodes).  Further, jobs with short runtimes are more common than jobs with 
long runtimes.  Based on these observations, we generated the input data for 16 compute nodes. 
The main characteristics of the input data are: 

1. 30% small jobs: 1-5 nodes, 40% medium jobs: 6-10 nodes, 30% large jobs: 11-16 nodes. 
2. 80% of jobs with simulated runtime between 90 seconds and 9 hours, 20% of jobs with 

simulated runtime between 9 hours and 12 hours.  We use a minimum of 90 seconds 
runtime which also includes overhead of parallel execution. 

3. A simulated runtime may be anywhere between 10% to 100% of the estimated runtime. 
 
The input data is kept in a workload file and is transferred to the job profiles in the simulator.  
The supplied information for each job is: process-ID, number of requested nodes, estimated 
runtime in seconds, simulated runtime in seconds, and arrival time in seconds.  The arrival time 
is used to order jobs in the ready queue prior to their scheduling or reservation of nodes. 
 
For the Non-FCFS algorithm, a 24 hour limit is used to determine starved jobs in the system. 
The backfilling algorithms employ the first-fit technique.  This method looks for the first queued 
job that can be used for backfilling.  It would be interesting to investigate whether other methods 
such as best-fit could have any impact to the performance. 
 
The simulator utilizes two queues: event queue and ready queue.  The event queue keeps track of 
the arrivals and departures of jobs and generates events for the respective type.  The simulation 
clock advances when the system processes an event.  The ready queue on the other hand holds 
all arrival jobs for which their requested nodes are not yet granted.  This queue is used by the 
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algorithms to schedule the jobs.  Once a job arrives in the system, its profile will be moved from 
the event queue to the ready queue.  When a job is scheduled, its profile will be moved back 
from the ready queue to the event queue.  A departure event will remove the profile of the 
terminated job.  Both queues are implemented as vectors. 
 
6.  Simulation Results 
 
Table 5 summarizes results of the simulation.  The workload file that was used for the input data 
was generated by using the specifications described in Section 5.  To illustrate performance 
degradation caused by early job terminations (that is before their estimated times), we assume 
the simulated runtime of a job be the perfect estimation time.  Table 6 summarize the results of 
the second simulation.  All illustrated times in the tables are simulated times and are in seconds. 
 

Table 5: Results of simulation for generated job mix 

Algorithm Name 
Average 

Execution 
Time (sec) 

Average  
Wait Time 

% System 
Utilization  

Highest 
Response Time

Non-FCFS 308.37 101.04 85.49 296.36 

Aggressive  
Backfilling 301.37 107.52 87.48 284.88 

Conservative 
Backfilling 302.72 107.24 87.09 290.55 

 
 

Table 6: Results of simulation for jobs submitting with prefect estimate 

Algorithm Name 
Average 

Execution 
Time (sec) 

Average 
 Wait Time 

% System 
Utilization 

Highest 
Response Time

Aggressive  
Backfilling 764.38 262.55 89.36 747.08 

Conservative 
Backfilling 765.75 280.52 89.20 743.59 

 
 
We also used a set of input data which has been used in a simulation carried out at Ames 
Laboratory7.  For this set of data, the following two tables summarize the results of our 
simulation. 
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Table 7: Results for the simulation job mix available using different input data 

Algorithm Name 
Average 

Execution 
Time (sec) 

Average  
Wait Time 

% System 
Utilization 

Highest 
Response 

Time 

Non-FCFS 68.55 19.92 77.99 62.73 

Aggressive  
Backfilling 65 20.08 82.25 59.18 

Conservative 
Backfilling 65.17 20.14 82.04 59.35 

 
 
Table 8: Results for the simulation job mix using different input data with prefect estimate 

Algorithm Name 
Average 

Execution 
Time (sec) 

Average  
Wait Time 

% System 
Utilization 

Highest 
Response 

Time 

Aggressive  
Backfilling 80.02 25.23 83.14 74.14 

Conservative 
Backfilling 79.17 25.42 84.04 73.29 

 
 
The results shown in Table 5 through Table 8 depict that for the Backfilling algorithms 
utilization is better than the Non-FCFS algorithm.  Both Aggressive Backfilling and 
Conservative Backfilling have almost the same utilization.  However, for both algorithms the 
average wait time is higher than the one from Non-FCFS.  The highest response time (i.e. the job 
that waited the most in the system) is lowest in the Aggressive Backfilling algorithm. 
 
If we consider the case when the arrival job has a perfect estimate, then the utilization becomes 
the same in both Aggressive Backfilling and Conservative Backfilling algorithms.  With perfect 
estimated runtime, utilization increases marginally.  For example, in the case of Conservative 
Backfilling, utilization increases by 2% from 87.09% to 89.20% (see Table 5 and Table 6). 
 
The simulation results also indicate that more jobs are executed in their order of arrival for both 
Backfilling algorithms, but that is not the case with Non-FCFS where many jobs that arrived late 
could finish ahead of the jobs that arrived before them.  This shows that the Aggressive 
Backfilling and the Conservative Backfilling algorithms follow the priority policy more closely 
than the Non-FCFS algorithm.  Furthermore, the simulation results show that the Backfilling 
algorithms are able to distribute the wait time among the jobs more evenly instead of just making 
a few jobs wait indefinitely. 
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7.  Future Work 
 
For the next phases, we would like to expand the simulation using variable nodes and launch 
numerous actual jobs.  These jobs could be managed by a mixture of simulated and experimental 
scheduler in order to provide us with better measured data to further study and analyzing them.  
We would like also to study additional scheduling algorithms and provide experimental models 
for students to use in courses such as Operation Systems. 
 
One job scheduling that is of high research interest is dynamic partitioning.  In this approach, a 
parallel job needs not always get its requested number of processors for its entire run time.  Two 
such techniques method that are still widely under research are Dynamic Co-scheduling and 
Gang scheduling11, 12.  Both of these approaches try to allocate more than one process to a node 
and time share that node between processes.  The difference is that Gang scheduling is similar to 
round robin scheduling in which the system switches to a new sets of jobs after a fixed time 
quantum.  Dynamic co-scheduling, on the other hand, uses message arrivals to trigger execution.  
The Dynamic co-scheduling can start a job even when all its requested nodes are not available. 
Simulation can be done on these two approaches to study their performance. 
 
Utilization of compute nodes tends to decrease in very large parallel systems.  In our future 
work, we can model workloads for very large systems and study performance of various 
scheduling algorithms on such systems. 
 
Moab Workload Manager is a cluster scheduler that is compatible with the Torque; an OpenPBS 
based cluster resource manager7.  The Moab scheduler has several configuration settings which 
can provide the administrator with a greater flexibility in changing the scheduling algorithm to 
suit some specific needs of the system.  Moab scheduler can be configured to work as both an 
Aggressive Backfilling scheduler and a Conservative Backfilling scheduler.  In future, we would 
like to install the Moab scheduler in Beowulf system and fine-tune it to suit our needs. 
 
8.  Concluding Remarks 
 
The first phase of this project has provided significant insight on how the current work could 
continue in several directions.  Our primary objectives are still valid.  That is, providing exciting 
projects for students in a multiprocessors environment, as well as improving the current job 
scheduler for our Beowulf cluster.  The preliminary results of this study confirm that cluster 
scheduling could furnish several interesting student projects for educational purposes, as well as 
providing several challenging topics in the cutting edge research. 
 
Furthermore, our simulation results advocate that the Backfilling algorithms produce better 
utilization than Non-FCFS algorithm.  The average wait time for a job, however, is higher in the 
Backfilling algorithms than the one in the Non-FCFS algorithm.  This could be nonetheless a 
result of distributing the wait time among many jobs.  Our future work will pursue to better 
answer this issue.  The simulation also shows that the two Backfilling algorithms perform almost 
the same.  Between the two, Aggressive Backfilling is less complex and more flexible when 
regarding input to set the priority policy.  The Conservative Backfilling algorithm can be used in 
systems that would desire to have its scheduling policy set strictly based on FCFS.  Conservative 
Backfilling will be able to give the users a guaranteed response time. 
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