
Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Session _3647_

Laboratory Development for a VHDL Design Course

George H. Zion
Electrical, Computer, and Telecommunication Engineering Technology

Rochester Institute of Technology
Rochester, NY 14623

Abstract

Due to the proliferation of highly integrated programmable logic devices, (PLD, CPLD, and
FPGA), the traditional methods for performing digital logic design has given way to a
development process that involves extensive use hardware descriptive languages. In industry,
the two languages that have become prominent are VHDL and Verilog.

This paper provides a brief overview of the VHDL hardware descriptive languages and discusses
the course and laboratory development for a VHDL design course for the Computer Engineering
Technology program at Rochester Institute of Technology.

P
age 7.787.1

Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

VHDL – A Brief History

First, what is VHDL? VHDL stands for Very High Speed Integrated Circuit (VHSIC) Hardware
Descriptive Language. VHDL was developed in the late 1970’s early 1980’s under the direction
of the Department of Defense as a means to document complex logic designs. Later, VHDL
evolved into a simulation language for large designs targeted for ASICs. Finally, with the
proliferation of low cost, quick time-to-market programmable logic devices (PLD, CPLD,
FPGA) VHDL has become an industrial standard for logic synthesis. VHDL was standardized
in 1987 (IEEE-1076) and has since been updated twice, first in 1993 (IEEE-1164) and again in
1996 (IEEE-1076.3). The 1996 update standardized VHDL as a synthesis language. Today,
VHDL, along with Verilog, are industry standards for logic simulation and syntheses.

VHDL Design Process

Prior to delving into an overview of
the VHDL language, it is important
to first understand the overall VHDL
design process. A flow chart for the
design process is shown in figure #1.
The process begins with the design
entry, which, for this discussion will
be limited to VHDL source code.
Many development tools also support
schematic entry and state graph
editor design entry. Following the
design entry is the compiler. Like
any programming language, the
compile performs a syntactical check
of the source code. The output of
the compiler is used as input to the
synthesizer as well as a pre-layout
simulator. The pre-layout simulator
is a very effective tool in validating
VHDL design early in the design
process. Pre-layout simulation is
most beneficial in large VHDL
designs where the end hardware will
be an ASIC and the impact to cost
and scheduling due to a design error
can be catastrophic. The benefits of
pre-layout simulation for small to
medium size designs where the end hardware will be a programmable logic device are limited
because post-layout simulation will still need to be performed to validate the hardware
implementation. The next step in the design process is to synthesize the VHDL source code into
a gate-level netlist, which is then implemented via a fitter (PLD/CPLD) or via a place & route
process (FPGA). Following implementation, a post-layout simulation is used to validate the

Design Entry

Compile

Device
Programming

Figure #1 : VHDL Design Process

Pre-Layout
Simulation

Synthesize

Implement
PLD / CPLD

Fitter
FPGA

Place & Route

Post-Layout
Simulation

P
age 7.787.2

Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Figure #2 : Block Diagram for VHDL Model

ENTITY DECLARATION

ARCHITECTURE BODY

Complete
VHDL
Model

D_IN(1)
D_IN(0)
CLOCK

RESET
ENABLE

Figure #3 : Design Example Block Diagram

D Q

CLR

CLK

D_OUT

hardware implementation of the VHDL design. The final step in the design process is to
program the programmable logic device.

Overview of VHDL Model

All VHDL models consist of an entity
and architecture pair (see figure #2).
The entity declaration describes the
interface signals along with their
corresponding data type and mode (i.e.
in, out, inout, buffer). The entity
describes the circuit as it is seen from
the outside with no reference to how
the model is implemented. The
architecture body describes the
functionality of the model. The architecture body can be implemented with one or more of the
three VHDL modeling techniques. These three modeling techniques are structural, dataflow
and behavioral. For the structural modeling technique, as the name implies, the structure of the
final design is captured in the VHDL code. For example, if the final design contained a D flip
flop, the VHDL code would include a structure of a D flip flop. Structural modeling, though
closest to the hardware, does not allow the designer to take advantage of many of the language
constructs that makes VHDL the powerful tool that it is. The second modeling technique is
dataflow. In dataflow modeling, the VHDL code describes the circuit in terms of how data is
transferred from register to register as the data is moved from the input to the output. Dataflow
modeling is often referred to as register transfer logic, and is very effective for implementing
combinational logic. The final modeling technique is behavioral. Using behavioral modeling,
the designer is not concerned with correlating the VHDL code with the final hardware, but rather
capturing the behavior of the high level design. Behavioral modeling is the most powerful
modeling technique yet is the most abstract and distant from the final hardware

A Design Example

Figure #3 shows a
simple logic circuit
consisting of a NAND
gate, a D Flip-Flop and
Tri-State output buffer.
This circuit will be
used to illustrate the
development of a
complete VHDL
model. The dotted line
placed around the
components is an
effective way to show
the division of a VHDL entity and its accompanying architecture.

P
age 7.787.3

Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
 port (D_IN : in STD_LOGIC_VECTOR (1 downto 0);
 CLOCK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 ENABLE : in STD_LOGIC;
 D_OUT : out STD_LOGIC);
end EXAMPLE;

Figure #4 : VHDL Entity

architecture EXAMPLE_ARCH of EXAMPLE is
 signal TEMP_IN, TEMP_OUT : STD_LOGIC;
begin
 -- Code for input NAND gate
 TEMP_IN <= D_IN(1) NAND D_IN (0);

 -- Code for Tri-State output buffer
 D_OUT <= TEMP_OUT when ENABLE = '1' else 'Z';

 -- Code for Negative Edge Trigger Flip-Flop
 -- with active high asynchronous reset.
 process (CLOCK, RESET)
 begin
 if RESET='1' then
 TEMP_OUT <= '0';
 elsif (falling_edge(CLOCK)) then
 TEMP_OUT <= TEMP_IN;
 end if;
 end process;

end EXAMPLE_arch;

Figure #5 : VHDL Architecture

All the signal names
around the parameter of the
dotted line are the interface
signal of the entity
declaration (see figure #4).
This entity declaration is
relatively self-explanatory,
all the inputs are of mode
in, the output is of mode
out, and all the signals are
of type STD_LOGIC or
STD_LOGIC_VECTOR.
But what is STD_LOGIC ?
As previously mentioned,
VHDL was originally
standardized in 1987
(IEEE-1076), and updated
in 1993 (IEEE-1164). One
of the most significant
changes made in the 1164
update was to add the base
data type STD_LOGIC. In
the original 1076 standard,
signals of type BIT could
only be assigned a value of
‘0’ or ‘1’. For anything
other than very simple
designs, this was
inadequate. Along with,
‘0’ & ‘1’, the STD_LOGIC
data type allows signals to
be assigned other values
including tri-state (‘Z’), un-
initialized (‘U’) and don’t
care (‘-’). In order to have
access to the STD_LOGIC
data type, the
IEEE.STD_LOGIC_1164
library must be include prior to the entity declaration. For the architecture body, the
functionality of the logic within the dotted line needs to be captured (see figure #5). For the
purpose of edification, all three modeling techniques were used for this example. First, the
NAND gate is implemented structurally; next the tri-state buffer is implemented with the
dataflow technique, and finally the flip-flop is implemented via the behavioral technique. Note,
because all statements within a VHDL architecture body are concurrent, the order that they
appear in the architecture does not matter. Shown in figure #6 is an annotated timing analysis for
this VHDL design implemented in a Xilinx XC9536-5 PC44.

P
age 7.787.4

Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Time Event
0 nSec D_IN1 and D_IN0 set to ‘0’

100 nSec Falling edge of clock

105 nSec D_OUT changes to ‘1’; Delay equal to typical tPD of 5 nSec for CPLD

130 nSec ENABLE set to ‘0’ (inactive state)

140 nSec D_OUT changes to ‘Z’ (tri-state); Delay equal to typical tPOD of 10 nSec for CPLD

160 nSec ENABLE set to ‘1’ (active state)

170 nSec D_OUT changes to ‘1’; Delay equal to typical tPOE of 10 nSec for CPLD

190 nSec RESET set to ‘1’ (active state)

205 nSec D_OUT changes to ‘0’; Delay equal to typical tPOR of 15 nSec for CPLD

200 nSec RESET set to ‘0’ (inactive state)

300 nSec Falling edge of clock

305 nSec D_OUT changes to ‘1’; Delay equal to typical tPD of 5 nSec for CPLD

360 nSec D_IN1 set to ‘1’ & D_IN0 set to ‘1’

400 nSec Falling edge of clock

405 nSec D_OUT changes to ‘0’; Delay equal to typical tPD of 5 nSec for CPLD

Figure #6 : Timing Analysis of Design Example

P
age 7.787.5

Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Course Material

The RIT design course that uses VHDL, titled Principles of Electronic Design Automation
(PEDA), has been taught since 1996. The course is required for all Computer and Electrical
Engineering Technology students and is taken at the start of their third year, prior to their first
CO-OP work block. Prior to taking this course the students are required to take two quarters of
digital electronics, one quarter each of C++ programming and an introductory microprocessor
course. Subsequently, the Computer Engineering Technology students are required to take a
three-course sequence in Embedded Systems Design where VHDL is heavily utilized. The
Electrical Engineering Technology students can take the Embedded sequence as their technical
electives.

The underlying philosophy of this
course is simple, we are teaching the
design process for the development of
quality logic designs where a hardware
descriptive language (HDL) is being
used as a means to this end. The
HDL and the specific development
tool being used are not really that
important, understanding the design
process and methodologies is.
Hopefully you have noticed that
throughout this paper no VHDL
development tool1 has been mentioned
and Verilog was mentioned only in
passing. This was not unintentional.
We could just as well have
implemented this course using Verilog
with any number of development
tools. When this course was first
developed, the rationale used for
selecting VHDL over Verliog had less
to do with the merits or features of the
languages then they did with the
availability of low cost development
tools. Unlike many courses and textbooks that focus on creating VHDL simulation models, this
course focus on VHDL development for programmable logic synthesis with a heavy emphasis
placed on the quality of the hardware created.

The current course topics and time allocations are given in table #1. Since its inception, this
content has remained relatively consistent with only minor changes. This consistency cannot be
said for the focus and content of the laboratories. Initially, the weekly laboratory assignments
where used to reinforce specific VHDL features or hardware principles and then were followed
by a multi-week quarter ending project. This bottom-up approach was met with limited success.

1 For the record, Xilinx’s Foundation Series version 3.1 is currently being used.

Topic Time
Introduction to VHDL

• History of HDL / Rational For Use
• Overview of CPLD/FPGA
• VHDL Structure and Syntax
• VHDL Design Process

One Week

Combinational & Synchronous Logic Design
• Behavioral
• Dataflow
• Structural

Two Weeks

State Machine Design
• Design Methodology
• Synchronous & Asynchronous Inputs
• Resource Allocation

One Week

Design Hierarchy
• Components & Packages
• Function & Procedures

One Week

Design Examples One Week
CPLD vs. FPGA Design Implementations One Week
Design Optimizing & Verification

• Pipelining
• Resource Sharing
• Test Vectors
• Algorithm

Two Weeks

Examinations, Homework and Laboratory Review One Week
Table #1 : Course Outline

P
age 7.787.6

Proceedings of the 2002 American Society of Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education

Many students who could easily perform the weekly assignments, had difficulty synthesizing the
concepts as needed to implement a design of any significant magnitude. Greater success has
been achieved via a combination of weekly homework assignments and several multi-week
laboratory projects. The homework assignments allow for specific VHDL concepts and
hardware principles to be emphasized and the larger laboratory projects repeatedly force the
application of these concept and principles. The laboratory projects, which in the past included a
home burglar security system, multi-lane traffic light controller, and a simple ALU, are
constantly changing, but the underlying principles that they stress are always present. These
principles are :

• Process : Languages and development tools come and go, the underlying process
stays the same.

• Hardware Focus: Hardware utilization needs to be stressed for every design example
and laboratory project. Projects need to push the limits of the hardware device to
force the issues of design efficiency.

• Software NON-Focus: Students need to be constantly reminded that they are
designing hardware, NOT writing software.

• Design Verification: All designs need to be thoroughly tested through software
simulation and hardware implementation.

Summary

Hardware descriptive languages, particularly VHDL and Verilog, have become the industrial
standard for implementing digital logic using programmable logic devices. Students educated in
the use of an HDL where the emphasis is placed on the design process rather than the language
have found, and will continue to find, great success in industry.

Bibliographic Information

[1] Skahill, Kevin; VHDL for Programmable Logic, Addison-Wesley, Menlo Park CA, 1996. ISBN 0-201-89573-0

[2] Pellerin, David; VHDL Made Easy !, Prentice-Hall PTR, Upper Saddle River NY, 1997. ISBN 9-13-650763-8

[3] Armstrong, James; VHDL Design Representation and Synthesis, Prentice-Hall PTR, Saddle River NY, 2000.

Biographical Information

George Zion is the Program Chair of and a Professor in the Computer Engineering Technology program in the
College of Applied Science and Technology at Rochester Institute of Technology. He received a BSEET in 1984
and an MSCS in 1988 from Rochester Institute of Technology. His teaching interests are VHDL, embedded systems
design and embedded C/C++ programming. He is a member of ASEE and the Rochester Engineering Society. P

age 7.787.7

