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Abstract 

 

The Rankine Cycler™ steam turbine system, produced by Turbine Technologies, Ltd., is a table-

top-sized working model of a fossil-fueled steam power plant.  It is widely used by engineering 

colleges around the world.   

 

This is the second paper about the Rankine Cycler, continuing the work started in 2004-05.  In 

the first paper two important objectives were met.  First, to determine the effectiveness of the 

Rankine Cycler as a learning tool, an indirect assessment was performed (i.e., a measure of 

student opinion).  The results were positive.  Second, a parametric study of the effects of 

component losses on Rankine Cycler thermal efficiency was performed.  The results showed that 

the range of component losses used in the parametric study accurately reflect experimental 

thermal efficiencies, and pointed to future experimental work. 

 

For this paper, two more objectives are met, contributing to the conclusions and 

recommendations from the first paper.  First, a direct assessment (and further indirect 

assessment) of the Rankine Cycler as a learning tool is performed.  Student’s laboratory reports 

were evaluated, so that ultimately the equipment can be used in the undergraduate curriculum in 

the best possible manner. 

 

Inevitably, when a power generation plant is scaled-down and it has few efficiency-enhancing 

components (e.g. lack of feedwater heaters, etc.), energy losses in components will be magnified, 

substantially decreasing the cycle efficiency.  Although the Rankine Cycler is a useful tool for 

teaching fundamentals of thermodynamics, fluid mechanics, heat transfer, and instrumentation 

systems in an undergraduate laboratory, a comprehensive analysis of the equipment had not been 

completed.  This analysis can be useful to faculty and students who use the equipment and can 

also be useful to potential customers of Turbine Technologies.  Therefore, as a second objective, 

faculty and students at two different universities have continued a comprehensive analysis of the 

Rankine Cycler.  Significant experimental work was performed to characterize the Rankine 

Cycler.  Multiple steady state runs were performed to determine the optimum operating point 

(i.e., load at which turbine/generator performance is optimum).  Also, methods for accurately 

measuring steam flow were studied.  Finally, future work is outlined to complete a 

characterization of the Rankine Cycler. 
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1.  Introduction 

 

At colleges around the world, each mechanical engineering student is required to learn 

something about the thermodynamic cycle known as the Rankine cycle.  Plants using this cycle 

with steam as the working fluid produce the majority of the electricity in the U.S.  For many 

students, this is simply a pencil-and-paper exercise, and only ideal or theoretical Rankine cycles 

are analyzed.  Therefore, unfortunately, many mechanical engineering graduates have only a 

vague understanding of this nearly ubiquitous method of power generation. 

 

One of the best ways to enhance student learning about the steam power cycle is to visit an actual 

power plant and perhaps analyze some data from the plant.  Many students do not have the 

option of visiting a power plant (because of location, time, or class size constraints), so the next 

best option is to operate a working model of a steam power plant in a laboratory.  There are 

various arrangements of educational steam power generating laboratory models available, but all 

but one of these operate with a reciprocating piston engine instead of a turbine.  These 

educational units employing a piston are very costly and often too large for many university 

laboratories.  The “Rankine Cycler”, produced by Turbine Technologies Ltd. of Chetek, 

Wisconsin (hereinafter called the “RC”), is a tabletop steam-electric power plant that looks and 

behaves similarly to a real steam turbine power plant (see Figure 1). It also has the advantage of 

relatively low-cost.  About the size of an office desk, the plant contains three of the four major 

components of a modern, full-scale, fossil fuel fired electric generating station:  boiler, turbine, 

and condenser.  Using only propane and water, the plant will actually generate electricity.  Note 

that the RC does not operate in a true cycle (there is no pump); it is a once-through unit (see 

Figure 2).  Nonetheless, many of the key issues regarding steam power generation are illustrated 

by the device.   

 

The RC is outfitted with sensors to measure key properties.  The data is displayed in real time on 

a computer so that students can instantaneously observe the behavior of the plant under differing 

scenarios.  The unit operates by burning propane to convert liquid water into high pressure, high 

temperature steam (over 450°F and 120 psia) in a constant volume boiler (see Figure 3).  The 

steam flows into a turbine causing it to spin (see Figure 4).  The turbine is attached to a generator 

which produces electricity when spun.  The generator can produce up to approximately 4 Watts.  

The steam, after it has used up some of its energy to spin the turbine/generator, leaves the turbine 

and flows into a condenser which operates at atmospheric pressure and condenses about 1/6
th
 of 

the steam into liquid water.  The remaining steam is vented to the atmosphere.  Because of the 

small scale of the unit, overall efficiency is inherently very low (on the order of a few hundredths 

of one percent). 
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Figure 1.  The Rankine Cycler.  Note that newer models include a USB port data 

acquisition system and laptop computer that is mounted to the tabletop
1
. 

 

Figure 2:  Schematic of the Rankine Cycler
1
. 
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Figure 3.  The dual pass, flame-through tube type (constant volume) boiler, with super heat 

dome
1
.  See Appendix A for more details. 

 

 
Figure 4.  Axial flow impulse steam turbine outside of its casing

1
.  See Appendix A for more 

details. 

 

 

A. Previous Study and Current Objectives 

 

Lawrence Technological University (LTU) and the University of Evansville (UE) want to ensure 

that each graduating mechanical engineer has a good understanding of power generation.  To 

accomplish this goal, both schools use the Rankine Cycler in an upper-level laboratory course, 

and have initiated a comprehensive study of the effectiveness of the RC.  This is the second 

paper, continuing the work started in 2004-05.  In the first paper
2
, two important objectives were 

met.  First, to determine the effectiveness of the RC as a learning tool, an indirect assessment 

was performed ; students were surveyed to assess the RC as a learning tool.  Preliminary results 

showed that the RC and the associated calculations and reports performed quite well as a 

learning tool, according to the students.  They reported that their knowledge of the Rankine cycle 

(and its associated thermodynamic concepts) increased.  They indicated that  discussing and 

operating the RC are more valuable than performing calculations with the data.  The level of the 
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material was appropriately challenging for upper-level engineering students.  A few keys to 

successful use of the RC were also given in the paper. 

 

Second, a parametric study of the effects of component losses on RC thermal efficiency was 

performed.  The results showed that the range of component losses used in the parametric study 

accurately reflects experimental thermal efficiencies, and the results pointed to future 

experimental work that can be accomplished with the RC.  The overall conclusion of the paper 

was that the benefits of the RC seem to outweigh the idiosyncrasies of the device.  For its 

relatively low cost, the RC is useful in a mechanical engineering curriculum. 

 

There are two objectives of the current paper which extend and support the conclusions and 

recommendations from the first paper.  First, assessment of the RC’s effectiveness as a learning 

tool is continued.  The indirect assessment of the first paper is extended through more student 

surveys, and a more direct assessment is performed based on graded student reports.  These 

assessment results help decide how the equipment can be used in the best possible manner in the 

undergraduate curriculum.    

 

A second objective of the current paper is to extend the comprehensive technical analysis of the 

RC.  Significant experimental work was performed to characterize the RC and its components.  

Multiple steady state runs were performed to determine the optimum operating point (i.e., the 

load at which turbine/generator performance is optimum).  Also, methods for measuring steam 

flow more accurately were studied.  Finally, future work is outlined to complete a 

characterization of the RC. 

 

B.  Background 

 

At LTU and UE, all mechanical engineering students learn about the Rankine cycle in their 

required Thermodynamics course during their sophomore or junior year.  During their junior 

year (at UE) or senior year (at LTU), the students put the theory into practice by operating the 

RC in a required laboratory course.  Consequently, it is hoped that every graduating mechanical 

engineering student will learn and understand electricity generation in fossil fueled plants. 

 

2.  Rankine Cycler
TM
 Effectiveness as a Learning Tool 

 

While the RC is the only cost-effective laboratory equipment on the market to introduce students 

to Rankine cycle power equipment similar to that they may encounter in practice (i.e., containing 

a turbine), it was unknown if the equipment is a good learning tool.  A study has been completed 

to determine if the RC is a worthwhile and practical tool for the students to study fossil-fueled 

electricity generation and cycle efficiencies.  Both indirect and direct assessments were 

performed. 

 

A. Indirect Assessment (Student Survey) Results 

 

The RC was first evaluated as a learning tool based on an indirect assessment (i.e., a survey of 

student opinions).  Various questions were asked of students on a survey after the laboratory 

exercises and subsequent written reports had been completed (but before they were graded).  
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Prior to distributing the survey, the instructors did their best to stay opinion-neutral toward the 

students as to the effectiveness of the RC as a learning tool; the students were made aware that 

this was a testing phase of the RC.  Much of the survey was quantified using a 5-point Likert 

scale, but written responses were also gathered.  While many different experiments are possible 

with the RC (see LTU sample laboratory assignment in Appendix B), the survey is general 

enough that it is likely applicable to any college using the unit.  Questions asked on the survey 

are shown in Appendix C.  The results compiled in this paper are derived from 19 LTU student 

surveys and 20 UE student surveys.  The results are an indirect assessment because they indicate 

student perceptions based on self-surveys. 

 

As shown in Table 1, before performing the RC exercise in lab, students felt fairly comfortable 

with the concepts related to the Rankine cycle. On a scale of 1 to 5, where 1 is “strongly 

disagree” and 5 is “strongly agree,” the average student response was 3.59.  The median was 4 

with a standard deviation of 1.21. 

 

Also shown in Table 1, after completing the RC exercise (including the calculations), the 

students gained a slightly better understanding of the Rankine cycle, scoring an average of 3.82, 

a median of 4, and a standard deviation of 0.885. 
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Before performing the Rankine Cycler exercise in lab, I felt 

comfortable with the concepts related to the Rankine cycle 
5.1 20.5 7.7 43.6 23.1 

After completing the Rankine Cycler exercise (including 

the calculations), I have a better understanding of the 

Rankine cycle 

2.6 2.6 25.6 48.7 20.5 

 

Table 1.   Percentage of students agreeing with the statements concerning their 

understanding of the Rankine cycle before and after using the Rankine Cycler
TM
 

 

After rating each part of the exercise, putting a 1 next to the most beneficial, a 2 next to the next 

beneficial, and a 3 next to the least beneficial, the average results are as follows: 

 

Seeing real (lab-scale) components and their operation – 1.74 

Discussing and using the RC with the instructor – 1.79 

Performing the calculations/analysis – 2.29 

 

Based on these results, the students did not believe they benefited as greatly from the 

calculations and analysis as they did from the in-lab exercise.  This result is not surprising for 

three reasons.  First, most of the students have already performed the required calculations in 

their Thermodynamics course.  Second, the numbers calculated from the laboratory data are not 

representative of full-size plant data or of the values that appear in typical textbook exercises and 

therefore have little meaning to the students; possibly the results seem contradictory.  

Considering that most students do not have an intuitive feel for quantities calculated from real 
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power plant data, the numbers that they generate have no significant meaning.  Third, many 

students do not enjoy detailed “theoretical” calculations; they are looking for hands-on 

application.  One student recommended “less calculations and more how does it work and why.” 

 

For the calculations and analysis ratings (students put a 1 next to the most beneficial, a 2 next to 

the next beneficial, and so on, up to 7), the results are shown in Table 2.  The number in 

parenthesis indicates rank.  

 

average analysis exercise  

3.1 (1) T-s diagram generation 

3.9 (5) turbine isentropic efficiency 

3.8 (4) first law analysis 

3.6 (3) Thermal efficiency / heat rate 

5.0 (6) condensing tower efficiency 

3.2 (2) power and energy 

5.4 (7) suggest methods to increase thermal efficiency 

 

Table 2:  Calculation / Analysis Ranking Results 

 

As shown on Table 3, the students found the RC as experimental equipment as a useful tool for 

learning thermodynamics.  On a scale of 1 to 5, where 1 is “strongly disagree” and 5 is “strongly 

agree,” the average student response was 3.74, the median was 4.0 and the standard deviation 

was 1.08. 

 

Also shown on Table 3, the students found the in-lab procedure for using the RC was a useful 

exercise for furthering their knowledge and understanding of Thermodynamics with an average 

score of 3.79, a median of 4 and a standard deviation of 1.03. 

 

Finally from Table 3, the students found the analysis and calculations associated with the RC 

exercise were useful for furthering their knowledge and understanding of thermodynamics with 

an average score of 3.69, a median of 4, and a standard deviation of 0.893. 
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The Rankine Cycler as experimental equipment is a useful 

tool for learning thermodynamics 
2.6 13.2 18.4 39.5 26.3 

The in-lab procedure for using the Rankine Cycler was a 

useful exercise for furthering my knowledge and 

understanding of Thermodynamics 

2.6 10.3 17.9 43.6 25.6 

The analysis and calculations associated with the Rankine 

Cycler exercise were useful for furthering my knowledge 

and understanding of Thermodynamics 

2.6 7.7 20.5 56.4 12.8 

 

Table 3.   Percentage of students agreeing with the statements concerning the aspects of the 

Rankine Cycler
TM
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As a basis for ensuring that the quality of instruction was sufficient and that the equipment was 

being used in a worthwhile manner, the students rated the instructor’s use of the RC.   The results 

are shown in Table 4.  On a scale of 1 to 5, where 1 is “unsatisfactory” and 5 is “excellent,” the 

average student response was 4.20, the median was 4, and the standard deviation was 0.731. 
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How do you rate the instructor’s use of the Rankine Cycler? 0 0 18.9 43.2 37.8 

 

Table 4.   Percentage of students rating the instructor’s use of the Rankine Cycler
TM
 

 

As shown on Table 5, the level of material covered with the RC exercise was rated as just barely 

advanced with an average score of 2.77, where 1 is “too advanced,” 3 is “just right,” and 5 is 

“too easy.”  The median was 3 and the standard deviation was 0.583. 
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The level of material covered with the Rankine Cycler 

exercise was: 
0 30.8 61.5 7.7 0 

 

Table 5.   Percentage of students rating the level of material covered with the Rankine 

Cycler
TM 

 

Finally the students found the RC exercise slightly increased their interest in the thermal-fluid 

sciences (see Table 6).  On a scale of 1 to 5, where 1 is “strongly disagree” and 5 is “strongly 

agree,” the average student response was 3.33.  The median was 3 and the standard deviation 

was 1.03.  By their senior year, students have already decided where their interests and/or 

strengths lie.  A single laboratory exercise is unlikely to change their perception.  Therefore it is 

pleasantly surprising that 10.3% of the students “strongly agreed” that the exercise increased 

their interest in Thermal-Fluid Sciences. 
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The Rankine Cycler exercise increased my interest in the 

thermal-fluid sciences. 
7.7 7.7 38.5 35.9 10.3 
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Table 6.   Percentage of students agreeing with the statement concerning their interest in 

the thermal-fluid science field due to the RC. 

 

Overall, the RC and its associated calculations and reports performed quite well as a learning 

tool, according to the students.  They reported that their knowledge of the Rankine cycle (and its 

associated thermodynamic concepts) increased.  They found discussing and using the RC more 

valuable than performing calculations with the data.  In addition, the level of the material was 

appropriately challenging for upper-level engineering students. 

 

The survey results were also compared from university-to-university (LTU vs. UE).  These 

results are useful for two reasons.  First, the thermodynamics courses and thermal-science 

laboratory courses have different formats between LTU and UE.  One of the goals for the UE 

thermal-science laboratory is for the students to perform a preliminary theoretical prediction 

exercise for the equipment.  This allows the students time to review the RC and aspects of its 

performance before any experiments are performed.  Additionally, the students at UE have more 

coverage of the Rankine cycle in their Thermodynamics course and the laboratory course is 

taken one semester after the Thermodynamics course, whereas at LTU, the laboratory is typically 

taken a year or more after Thermodynamics.  Therefore the UE students would be expected to 

have a better understanding of the process and procedures before the experiment and data 

analysis. A final difference is that at UE, a complete uncertainty analysis is required with the 

final report. 

 

Second, a comparison is useful because of the differing regions in which the universities are 

located.  Evansville, Indiana is in the heart of a major Midwestern coal mining region, on the 

Ohio river, and coal-fired steam power plants are an integral part of the engineering landscape.  

Some of the UE students have had co-op or internship experience at a power plant.  As a result, 

the UE students, in general, seem to be more “power plant savvy”.  Industry in Southfield, 

Michigan (i.e., Detroit) is dominated, not by the Rankine cycle, but by different types of power 

cycles; the Otto and Diesel cycles take lead roles in the Southeastern Michigan engineering 

landscape because of the auto industry.  LTU students tend to be less interested in coal-fired 

steam power generation and more interested in internal combustion engines. 

 

As shown in Table 7, the UE students were more comfortable with the Rankine cycle before 

completing the RC exercises (as expected), while the LTU students were split fairly evenly.  This 

is also shown in the average scores where 1 is “strongly disagree” and 5 is “strongly agree;” UE 

students scored an average of 4.1 whereas LTU students scored an average of 3.1.  Nevertheless, 

students from both universities found that using the RC increased their understanding of the 

Rankine cycle with a UE average score of 3.9 and an LTU average score of 3.8. 

 

After rating each part of the exercise, putting a 1 next to the most beneficial, a 2 next to the next 

beneficial, and a 3 next to the least beneficial, the average results for each university are shown 

in Table 8.  The LTU students found the discussion and use of the RC of greatest benefit and UE 

students found the visualization of the component operations most beneficial.  Both student 

groups found the calculations and analysis least beneficial (it should be noted that calculations 

were more extensive at UE, with a pre-lab theoretical prediction and an uncertainty analysis 

incorporated in the data analysis).  The students likely ranked the calculations lowest, because 
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the quantities calculated are not comparable to full-scale Rankine power plants and because they 

are considered tedious. 

 
 

st
ro
n
g
ly
 

d
is
ag
re
e 

d
is
ag
re
e 

n
o
 o
p
in
io
n
 

ag
re
e 

st
ro
n
g
ly
 

ag
re
e 

 LTU UE LTU UE LTU UE LTU UE LTU UE 

Before performing the Rankine Cycler 

exercise in lab, I felt comfortable with the 

concepts related to the Rankine Cycle 

10.5 0 36.8 5 0 15 36.8 50 15.8 30 

After completing the Rankine Cycler 

exercise (including the calculations), I have 

a better understanding of the Rankine cycle 

5.3 0 5.3 0 21.1 30 42.1 55 26.3 15 

 

Table 7.   Percentage of LTU and UE students agreeing with the statements concerning 

their understanding of the Rankine Cycle before and after using the Rankine Cycler
TM
 

 

 
 LTU UE 

Discussing and using the RC with the 

instructor 
1.53 2.05 

Seeing real (lab-scale) components and their 

operation 
1.63 1.84 

Performing the calculations/analysis 2.47 2.11 

 

Table 8.   LTU and UE student ranking of the Rankine Cycler
TM
 laboratory exercises 

 

For the calculations and analysis ratings, ( 1 = most beneficial,  2 = next beneficial, and so on, up 

to 7) the results are shown in Table 9.  The number in parenthesis indicates rank.  The most 

notable differences are that the UE students ranked the power and energy calculation as most 

beneficial, while LTU students ranked it 3
rd
, and the UE students ranked the first law analysis 5

th
 

while LTU students ranked it 2
nd
.  Both groups of students  considered the condenser efficiency 

calculation and speculating on methods for increasing thermal efficiency to be least beneficial.  

This result is not surprising.  The condenser is not comparable to full-scale condensers and has a 

very low efficiency.  Also, the “condenser efficiency” calculated for the experiment does not 

correspond to any parameter used in the power generation industry.  The methods to increase 

thermal efficiency are useful for the RC, but not particularly useful to an actual full-scale 

Rankine cycle power plant.  One student commented that methods of increasing the heat rate 

“seemed very obvious and logical,” and another simply stated, “was simple”;  both students 

therefore ranked it least beneficial.  The fact that the students recognize that it is obvious how to 

increase the RC efficiency indicates its benefit to students learning Thermodynamics!  Of course, 

student suggestions were often comments like “increase the efficiency of the turbine”. While 

obvious at this level, how to actually accomplish an efficiency increase is not so obvious. 

 

Table 10 indicates that both groups of students believe that the RC is a useful learning tool, and 

that the in-lab procedure and data analysis are useful.  Note that the LTU students showed a 

stronger agreement for the RC usefulness.  This likely reflects their somewhat more limited prior 
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exposure to power generation and the longer elapsed time between their classroom study and the 

RC experiment. 

 

LTU average UE average analysis exercise  

3.0 (1) 3.1 (2) T-s diagram generation 

4.0 (5) 3.8 (4) turbine isentropic efficiency 

3.3 (2) 4.2 (5) first law analysis 

3.9 (4) 3.4 (3) Thermal efficiency / heat rate 

4.1 (6) 5.8 (7) condensing tower efficiency 

3.7 (3) 2.8 (1) power and energy 

5.9 (7) 4.9 (6) suggest methods to increase thermal efficiency 

 

Table 9.  LTU and UE student comparison of calculation / analysis ranking 

 

 
 

st
ro
n
g
ly
 

d
is
ag
re
e 

d
is
ag
re
e 

n
o
 o
p
in
io
n
 

ag
re
e 

st
ro
n
g
ly
 

ag
re
e 

 LTU UE LTU UE LTU UE LTU UE LTU UE 

The Rankine Cycler as experimental 

equipment is a useful tool for learning 

thermodynamics 

5.6 0 11.1 15 16.7 20 33.3 45 33.3 20 

The in-lab procedure for using the Rankine 

Cycler was a useful exercise for furthering 

my knowledge and understanding of 

Thermodynamics 

5.3 0 10.5 10 10.5 25 31.6 55 42.1 10 

The analysis and calculations associated 

with the Rankine Cycler exercise were 

useful for furthering my knowledge and 

understanding of Thermodynamics 

5.3 0 10.5 5 15.8 25 52.6 60 15.8 10 

 

Table 10.  Percentage of LTU and UE students agreeing with the statements concerning the 

aspects of the Rankine Cycler
TM

 
 

Both LTU and UE students agreed that the quality of instruction for the RC was sufficient and 

that the equipment was being used in a worthwhile manner (see Table 11). 
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 LTU UE LTU UE LTU UE LTU UE LTU UE 

How do you rate the instructor’s use of the 

Rankine Cycler? 
0 0 0 0 16.7 21.1 27.8 57.9 55.6 21.1 

 

Table 11.  Percentage of LTU and UE students rating the instructor’s use of the Rankine 

Cycler
TM
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As shown in Table 12, both groups of students found the level of material between “just right” 

and “slightly advanced” (with an average LTU score of 2.79 and an average UE score of 2.75, 

where 1 is “too advanced,” 3 is “just right,” and 5 is “too easy”).   
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 LTU UE LTU UE LTU UE LTU UE LTU UE 

The level of material covered with the 

Rankine Cycler exercise was: 
0 0 31.6 30 57.9 65 10.5 5 0 0 

 

Table 12.  Percentage of LTU and UE students rating the level of material covered with the 

Rankine Cycler
TM 

 

Finally most students found the RC exercise slightly increased their interest in the thermal-fluid 

sciences (or kept it the same) (see Table 13).  On a scale of 1 to 5, where 1 is “strongly disagree” 

and 5 is “strongly agree,” the average LTU student response was 3.11, and the average UE 

student response was 3.55. 
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 LTU UE LTU UE LTU UE LTU UE LTU UE 

The Rankine Cycler exercise increased my 

interest in the thermal-fluid sciences. 
15.8 0 10.5 5 26.3 50 42.1 30 5.3 15 

 

Table 13.  Percentage of LTU and UE students agreeing with the statement concerning 

their interest in the thermal-fluid science field due to the RC. 

 

In general, students from two different regions ranked the RC and its exercises very similarly.  

These results indicate that the RC can be a useful learning tool for a varying student base.  In 

addition, students who feel that they have a firm understanding of the Rankine cycle before 

performing experiments feel that use of the RC is nevertheless beneficial. 

 

B. Student Comments 

 

Students had several worthwhile suggestions (written on the survey).  One student commented, 

“It would be more beneficial to discuss [the RC equipment] after the [completion of the 

laboratory report], as the knowledge has sunk-in and [had already been] applied.”   

 

Another student who found the operation of the RC as the most beneficial aspect of the exercise 

commented, “A picture or model is worth a lot.”  That same student found the calculations and 

analysis least beneficial and commented, “Doing the calculations was aggravating.  Units should 
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all be [in the] same [unit system].  It’s one thing to see and read the theory and another to make 

sense of a mess of data….” 

 

A student who found the generation of a T-s diagram most beneficial  commented, “This shows 

the most information for the amount of work.  If you understand the chart it can show 

(somewhat) most of the other information.”  This student found the condensing tower calculation 

least beneficial and added the comment, “The tower is not very accurate and doesn’t work well.” 

 

Nine students commented that a pump should be added to complete the cycle.  This is not 

feasible for the current RC configuration.  First, all or most of the steam would need to be 

converted to liquid.  Any condenser that could do this would be too large to be table-top sized 

and would require external cooling (e.g., fans or pumped cooling water).  External cooling would 

require an external power source, which is counterproductive for studying the small-scale power 

cycle.  Also the pump itself would require an external power source.  Suddenly, the power 

produced by the turbine/generator would seem trivial.  Also seven students commented that the 

condenser needed improvement.  Again this would require an external cooling source and 

possibly a larger condenser that would not fit the nicely sized workbench. 

 

A student noted that the equipment should have a method of viewing what is happening inside 

the components.  The student commented, “need see-through panels or cut-aways of a model to 

see what is really happening inside.  I would bet most students could not tell you what the 

turbine looks like and how it works.  One needs to know how it works to understand the 

process.”  It would therefore be useful for Turbine Technologies, Ltd. to make available extra 

turbine rotors and/or boiler cut-aways that instructors could show and discuss with the students. 

 

One student suggested that a better method of measuring water consumption was needed.  This 

will be addressed later in this paper. 

 

A student commented, “Rather than using the RC, the class could obtain real data from a [full-

scale] power plant; this would give realistic results and provide a more useful experience.”  

Another student suggested getting “data from an actual plant.”  While this may be true, the data 

alone does not show the operation of the components.  A tour of a plant with a schematic would 

need to accompany the data. 

 

One student noted that the equipment should more closely match real-world conditions and was 

“disappointed in the engineering of the test equipment.”  On the other hand this same student 

gave very high marks for the learning experience and his/her level of interest in thermal-fluid 

sciences strongly increased.  The fact that the RC does not closely replicate actual plant 

conditions may actually benefit student learning, because it forces the student to think about 

power cycles and their application. 

 

A student realized that, “The boiler efficiency is impossible to [calculate using standard 

methods] with the data recorded.”  Because the boiler is pre-filled and pre-heated and since it is 

not fed condensate, boiler efficiency as determined in a full-scale plant cannot be calculated by 

the students.  Student calculation of boiler efficiency would require additional equipment such as 

oxygen and exhaust gas temperature sensors. 
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Another student suggested to “reuse wasted heat from [exhaust] stack.”  This, of course, would 

require additional piping and the heat gained would likely not compensate for the additional pipe 

pressure drop.  Asking students how to use this waste heat would be a good exercise. 

 

There is some concern that the equipment is not a particularly active exercise for a group of 

students; the RC only requires one or two students to operate.  A student commented, “I am an 

active learner and [RC use and instruction] is…passive learning.”  Unfortunately, most thermal-

fluids laboratory exercises are fairly passive with minimal user interaction.  The only remedy to 

this problem would be to have lab groups of only 2 or 3 students, which is often impossible due 

to time constraints. 

 

In contrast, many student comments are laudatory and reinforce the reason to include hands-on 

teaching.  One student commented, “I learn better when I ‘see for myself’ instead of being taught 

concepts.”  Another stated, “Bringing numbers and diagrams to a hands-on experiment is key to 

learning.”  A third student commented, “Seeing these physical plants is enjoyable which 

encourages learning.” 

 

C. Direct Assessment 

 

Multiple direct assessments were performed which evaluate students’ understanding of the 

Rankine cycle after using the RC and evaluate the value of the RC as a learning tool.  First, 

direct assessment was performed by evaluating answers to final exam questions.  At LTU, a final 

exam is given at the end of Thermal Science Laboratory course.  The exam consists of 30 

concept questions, of which each student must answer 20 of his/her choosing.  Although the 

exam is closed book and closed notes, the exam questions are distributed a few days before the 

exam is administered, so that the students can investigate the questions ahead of time. 

 

The two questions on the final exam pertaining to the Rankine Cycler are as follows: 

 

1)  “Without modifying the equipment whatsoever, what is a simple method to improve the 

power generating performance?  Explain why.” 

 

2)  “With your 2 to 3 minutes of data, you calculated thermal efficiency and/or heat rate.  With 

our equipment, the resulting values are never a true measure of efficiency/heat rate.  Why?  

(HINT:  Something besides the pump was neglected that contributes a significant source of 

error.)” 

 

Each question is graded out of a possible 10 points.  Over the course of two semesters, twenty-

eight students answered the first question, and fifteen students answered the second question.  

Table 14 shows the results. 
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Question 1 Question 2 

Average score 8.6 4.7 

Median score 9 4 

Standard deviation 1.5 3.3 

 

Table 14.  Student final exam scores relating to the Rankine Cycler
TM
. 

 

The standard deviation of question 2 is high because three of the students received 0 points and 

two of the students received 10 points.  Based on the average score of question 1, the students 

tend to understand the Rankine Cycler and its inherently low efficiencies due to the small plant 

size.  Based on the average score of question 2, the students do not seem to fully understand how 

the RC compares to a full-sized power plant.  This conclusion is debatable considering the small 

sample size and the limited focus of the question.   

 

Besides examining the average scores, a target score of 7 (out of 10) was established for each 

problem; 89% of the students obtained this score for question 1, while only 27% of the students 

scored a 7 on question 2. 

 

The second method of direct assessment was to evaluate the graded laboratory reports.  Although 

the data reduction and performance calculations are the same between LTU and UE students, 

parts of the lab reports have differing objectives and formats.  While LTU reports are concerned 

with collecting experimental data and analyzing it, UE reports also require uncertainty analysis 

and pre-lab predictions of performance.  Also each LTU lab report is generated by an entire team 

of 2 to 5 students, although a set of sample calculations are performed by each student.  UE 

reports are the work of each individual student (although the experimental work was completed 

as a group).  For the current assessment, there are 15 LTU student lab reports, 4 UE student lab 

reports, and 47 LTU student sample calculations.  This sample size is fairly small but it 

constitutes the work of 60 students.  More direct assessment including more reports will be 

evaluated for a future paper. 

 

Figure 5 shows the distribution of the scores for the laboratory reports.  The average score is 

86.7%, the median is 87.5% , and the standard deviation is 7.0%.  A target score of 77.5% was 

established; this target score was chosen because this is the logical minimum score which 

constitutes above-average work (i.e., a C+ or B-).  Assessment determined that 94.4% of the 

reports reached this target.  These data indicate that the students gain a firm understanding of the 

Rankine cycle concepts through use and analysis of the RC.  Upon inspection of the reports, the 

calculations, plots, and supporting text are typically well established by the students and the RC 

appears to be a good learning tool for the steam power cycle.  Note that, in general, the scores 

reflect the work of groups of students (i.e., not individual work).  A weaker student can lean on 

the support of the stronger student.  Therefore it is worthwhile to assess individual student 

sample calculations.   

 

Figure 6 shows the distribution of the scores for the sample calculations.  The average score is 

77.9%, the median is 80%, and the standard deviation is 18%.  A target score of 77.5% was 

again established; 57.4% of the students reached this target.  As noted, the data from the sample 

calculations may be more indicative of the RC as a learning tool since they represent work from 
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individual students.  The wide score distribution and standard deviation of 18% indicates the 

wide range of scores, and little more than half of the students earned better than a C+.  This is not 

necessarily an indication that the RC does not reinforce the concepts of the steam power cycle or 

the concepts of thermodynamics.  It more likely indicates that some students are less interested in 

the thermal-fluids aspects of engineering or that some students are not putting forth a best effort.   
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Figure 5.  Distribution of students’ RC laboratory report scores.  

(Note that there were no scores less than 70%) 
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Figure 6.  Distribution of students’ sample calculation scores. 
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Evaluation of the UE reports indicates that students are most capable of reducing data and using 

data to make performance calculations.  Numerical results of pre-laboratory performance 

predictions do not agree well with actual performance because students do not realize how 

inefficient the small-scale equipment actually is.  Also, the required uncertainty analysis is much 

less sophisticated than the performance calculations. 

 

D. Keys to Meaningful Instruction 

 

There are a few potential pitfalls to avoid when using the RC as a learning/teaching tool.  First, 

the instructor should gauge the amount of Rankine cycle coverage that the students received in 

their Thermodynamics course.  At a smaller college where all of the students have had the same 

instructor for Thermodynamics, this is a simple task of asking the instructor or looking at the 

syllabus.  At a college where multiple sections of Thermodynamics are offered each semester 

with a variety of instructors, this task may be more difficult.  If the students received very little 

instruction on the Rankine cycle in Thermodynamics, the terminology and experimental process 

becomes intimidating.  Be sure to allow ample laboratory class time to describe and use the RC if 

this is the case. 

 

The condenser looks very similar to a hyperbolic natural draft cooling tower.  Convey to the 

students that it is not a cooling tower but a very simple atmospheric baffle condenser.  It is 

shaped like a cooling tower for visual impact, and the shape has little to no impact on the heat 

transfer occurring within the tower.  (By the way, the hyperbolic shape of an actual natural draft 

cooling tower also has little impact with the heat transfer occurring within the tower.  They are 

built that way “to offer superior strength and resistance to ambient wind loadings
3
.”) 

 

While heat rate is more commonly used in the (U.S.) power industry as a measure of plant and 

cycle performance, Thermodynamics texts and instructors typically spend more time discussing 

thermal efficiency.  If the students will be using heat rate, be sure to properly introduce the 

concept and its meaning.  The heating value of propane may be useful for this calculation. 

 

One of the most tedious tasks for the students while doing the calculations is determining steam 

properties.  Usually students only have access to steam tables in the back of a text book.  These 

tables are sufficient for classroom calculation, but for actual data, a significant of amount of 

interpolation is necessary.  The excessive interpolation is tedious and not particularly 

meaningful.  Therefore, the students should have access to accurate electronic tables .  This is 

also a good opportunity to introduce students to “professional level” data sources such as the full 

ASME Steam Tables. 

 

All of the RC pressure measurements are reported in gage pressure.  The students often forget or 

do not know that steam tables are based on absolute pressure.  Forewarn the students of this.  

 

If the students are plotting their results on a T-s diagram, they will have some difficulty.  The T-s 

diagrams that they experienced in their Thermodynamics course have greatly exaggerated scales 

making them easier to visualize. 
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Finally, the steam exiting the turbine is sometimes wet (a mixture).  Since only pressure and 

temperature are measured at the turbine outlet, there is no way to determine the steam quality 

and therefore no way to determine the enthalpy and entropy.  It may be best to use settings that 

ensure superheated steam is exiting the turbine. 

 

3.  Experimental and Analytical Study to Characterize the Rankine Cycler
TM
 and its 

Components 

 

The RC has several significant differences from both an ideal and a real-world full-sized plant.  

One of the most significant is the fact that the RC does not use a pump.  This means that truly 

cyclic operation is not possible.  It is possible, however, to obtain (limited time) nearly steady-

state flow operation of the turbine and generator.  Another significant difference lies with the 

boiler.  The water is heated at constant volume by a flame fueled with liquid propane (LP).  The 

heat addition process under constant volume conditions causes a pressure increase in the boiler.  

The steam flow from the boiler can be maintained for some time period until the boiler pressure 

falls below an acceptable level.  It is important to note that this “no-pump” feature of the RC 

makes it different from the real-world power plant as well as the ideal cycle. 

 

The other ways that the RC differs from the ideal cycle also show up as differences between the 

ideal cycle and actual operating power plants.  In almost all cases, these are “non-ideal” effects 

that cause the efficiency (or heat rate) of the real RC to be poorer (lower efficiency or higher 

heat rate) than the ideal model.  A partial catalog of these effects was given in the previous 

paper
2
.  The results from that paper of a parametric study of the effects of component losses on 

RC thermal efficiency helped to pinpoint what combinations of various component losses 

account for the poor performance (i.e., low thermal efficiency or high heat rate) of the RC.  The 

greatest RC losses were attributed to boiler-to-turbine line pressure drop and poor 

turbine/generator efficiency (perhaps only 5% to 10%).  The parametric study gave the authors a 

rough guide for the limitations of the RC, so that the proper experimental work could be 

performed. 

 

A.  Optimum Operating Point 

 

Typical ranges of data gathered from the RC are shown in Table 15.  Because the RC has several 

significant differences from and is much smaller than both an ideal and real-world full-sized 

plant, the efficiencies calculated from the data are inherently low.  It would therefore be most 

beneficial for the students to use the RC at its highest overall efficiency or optimum operating 

point. 

 

 Boiler Turbine Inlet Turbine Outlet 

Pressure (psia) 90 – 120 20 – 25 17 – 18 

Temperature (˚F) 350 – 600 300 – 450  275 – 390  

Steam mass flow (lb/sec) 0.006 – 0.013  

Fuel flow rate (lb/sec) 0.00038 

Generator power (W) 2 - 4 

 

Table 15.  Typical ranges of RC experimental data. 
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Multiple steady state runs were carefully performed to determine the optimum operating point 

(i.e., turbine/generator performance versus load).  There are multiple experimental parameters to 

investigate to determine optimum operating point.  Figures 7 through 9 display three variations.  

Figure 7 shows overall efficiency (generator power divided by fuel energy input) plotted against 

generator power output.  The relationship appears linear, so a straight line has been fit to the 

data.  The linear equation is shown on the figure along with the Pearson product moment 

correlation coefficient (also known as the “r-squared value” which gives an indication of the 

quality of the line fit with 1.0 being a perfect fit).  The figure implies that there is not an 

optimum point at which to operate the RC; it should simply be run at the highest possible load.  

However, at some power output, the efficiency would begin to drop.  The data collected may not 

have covered the maximum operating load (according to generator manufacturer’s 

specifications) which may be the point at which the generator RPM is nearly 4500.  The data 

shown only covers a range up to 3400 RPM.  Unfortunately, it may not be possible to maintain a 

generator RPM over 3500 and maintain steady state conditions.  The RC runs to date have 

proven attaining 4000 RPM is difficult.  Continued higher load RC runs will be attempted as a 

supplement to the current data sets.  At present, this data would indicate that the RC should be 

operated at the highest achievable steady power output. 

 

%Efficiency = 0.0119(Power) - 0.0004

R
2
 = 0.9977
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Figure 7.  Overall Efficiency vs. Power Output 

 

Figure 8 shows overall efficiency plotted against generator voltage.  Generator RPM is implicitly 

indicated since it is related to DC output voltage by RPM = 366.7 V (information supplied by 

Turbine Technologies, LTD.).  The efficiency vs. voltage trend is similar to the one in Figure 7 

but not as distinct.  This reinforces the idea that the RC should be run at maximum loading 

(maximum speed) for optimum conditions. 
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Figure 9 shows efficiency plotted with isentropic enthalpy drop from turbine inlet to atmospheric 

outlet.  The increasing trend is very faintly indicated with one obvious outlier near 41 BTU/lb. 
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Figure 8.  Overall Efficiency vs. Voltage/RPM 
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Figure 9.  Overall Efficiency vs. Isentropic Enthalpy Drop from turbine inlet to 

atmospheric outlet 
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B.  Using Turbine Exhaust Tube Pressure Drop to Measure Steam Flow 

 

Possibly the least satisfying aspect of running an experiment with the Rankine Cycler is 

determining the steam flow rate.  This requires marking the boiler water level (using a sight-

glass) at the beginning and end of the data collection period, waiting a few hours for the system 

to cool, then draining and refilling the boiler, noting the volume of water added to move the level 

between the two points on the sight-glass.  The volume flow rate for the test is then determined 

by dividing the make-up water volume by the elapsed time for the run; mass flow would then be 

obtained by multiplying by liquid water density.  Steam mass flow rate determined by this 

method is highly inaccurate because of the uncertainty involved in marking the water level, in 

draining and refilling the boiler, and in the differences in density between hot and cold water.  

The uncertainty in steam flow rate is likely no better than 10% - probably higher when 

inexperienced students are making the measurements.  Steam flow measurement may be the 

largest contributor of error in the analysis of the RC data.  Clearly, a more direct and real-time 

steam mass flow measurement is highly desirable. 

 

Possible approaches to obtaining such measurements would involve the installation of a small-

scale flow meter such as an orifice or turbine meter.  This would be problematic because it would 

require purchasing another instrument and would introduce yet another pressure drop into an 

already highly inefficient system.  Such devices would also require calibration, especially a 

turbine meter which would be required to operate at elevated temperatures in the steam 

environment. 

 

An alternate approach that shows considerable promise is to use the turbine-to-condenser exhaust 

line pressure drop to indicate the steam flow rate.  The exhaust tube is a surprising 88 

centimeters long and contains several bends, making the effective length about 1.4 m.  The steam 

pressure drop along the tube is the order of 4 lb/in
2
 (28 kPa).  In a typical experimental run, the 

steam at the turbine exit is superheated, and the pressure drop along the tube ensures that it 

remains superheated – facilitating modeling the steam as a gas.  In addition to giving a 

potentially reliable measurement of steam flow, the evaluation of the flow rate requires students 

to apply methods from fluid mechanics (compressible or incompressible), providing one more 

link between the laboratory and the classroom. 

 

Experimental measurements required to estimate steam mass flow from exhaust tube pressure 

drop are turbine outlet pressure and temperature (already available from the standard RC data) 

and the atmospheric pressure.  Physical measurements required are the tube length (about 88 

cm), tube inside diameter (about 0.8 cm), and the number and types of bends (five 90
o
 bends and 

two 45
o
bends, all with r/D ≈ 4).  Other information required is the equivalent length for the 

bends and the friction factor for the tube (available from fluid mechanics texts or handbooks; 

perhaps requiring iteration because of Reynolds number dependence). 

 

At least four different models can be used to evaluate the steam flow from the data.  In 

increasing order of complexity (and increasing order of accuracy), they are: 
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• Model as incompressible flow, using steam density determined from turbine exhaust 

conditions 

• Model as incompressible flow, using steam density averaged between tube inlet (turbine 

exhaust) and tube exhaust conditions.  This requires using the energy equation to 

determine tube exhaust temperature, use of the steam tables, and a couple of cycles of 

iteration. 

• Model as compressible, adiabatic, frictional flow (Fanno flow); treat steam as an ideal 

gas 

• Model  as compressible, adiabatic, frictional flow (Fanno flow); treat steam as a real gas, 

using the adiabatic exponent from steam tables and a compressibility factor (pv = ZRT) 

 

Preliminary calculations with all of these methods indicate that results agree within a few 

percent, especially among the latter three methods.  In addition, the calculations yield values 

comparable to the standard Rankine Cycler “boiler refilling” method (that were carefully 

controlled and monitored). 

 

A critical factor effecting the accuracy of the steam flow evaluated from exhaust tube pressure 

drop is the friction parameter for the exhaust tube, fLeq/D, where f is the Darcy/Moody friction 

factor, Leq is the equivalent length of the tube and D is the inside diameter.  All calculations to 

date have used the Colebrook-White formula for f (equivalent to the Moody Chart), the actual 

tube geometry, and standard tables for equivalent length of bends.  Accuracy of this method can 

easily be improved by determining the effective friction parameter by calibrating the tube.  The 

most effective method would be to derive the entire parameter (fLeq/D) rather than, say, f and Leq 

separately.  Because the Mach numbers involved are low (on the order of 0.3) an incompressible 

flow calibration of the tube, using cold water or air, should be sufficient.  Such calibrations will 

be investigated during Spring semester 2006 at the authors’ institutions and results should be 

available with the presentation of this paper, and in a subsequent follow-up paper.  

 

It is expected that using the exhaust tube pressure drop method together with a calibrated value 

for the friction parameter will yield “real-time” steam mass flow data with an uncertainty the 

order of 1%; a full order of magnitude better than the “cool, drain, and refill” method currently in 

use. 

 

C.  Turbine Calculations Compared to Generator Output Power 

 

It should be noted that the power output from the generator is an order of magnitude lower than 

the power calculated from the enthalpy drop and steam flow rate through the turbine (e.g., 

W150Pwhile,W3P dropenthalpygen ≈≈ ).  Initially, there was some concern that kinetic energy 

change (i.e., velocity change) of the steam flow should be taken into account when an energy 

balance is performed on the turbine.  Investigation revealed that the sensors for turbine inlet 

steam properties ( p, T ) and outlet steam properties (p, T ) are located in (relatively) large 

volume “plenum” regions.  The inlet and outlet properties are nearly stagnation properties, so 

kinetic energy change does not account for the discrepancies.  Until further investigative work is 

completed, the differences between enthalpy drop work/power and generator values are assumed 

to be due to heat loss to the relatively massive turbine housing and the surroundings, together 
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with mechanical and generator inefficiency.  (Significant heat loss would be another obvious 

discrepancy between the RC and a real-world power plant.) 

 

4.  Future Work 

 

Some experimental work remains to complete a characterization of the RC.  This experimental 

work will be an important contribution to potential customers of the unit, faculty/technicians 

using the equipment with students, students performing experiments, and for future upgrades by 

Turbine Technologies, LTD.  The following four studies would enhance the usefulness of the RC 

to determine parameters such as output, efficiency, and flow rates. 

 

1.  Component Performance:  Experiments should be performed on individual components of the 

RC.  Specifically, boiler efficiencies should be determined for various operating conditions.  

Boiler efficiency determination will require exhaust gas temperature and oxygen (O2) 

measurements.  An investigation of generator efficiency, separate from the turbine should be 

made.  In addition, the turbine and generator interaction should be investigated to characterize 

any discrepancies in power output. 

 

2.  Steam flow measurement:  As stated above in Section 4B, the turbine exhaust tube can be 

calibrated to allow determination of steam flow rate from exhaust line pressure drop. 

 

3.  Second Law Analysis:  An exercise of considerable educational value would be to conduct a 

Second Law analysis of the unit.  Because of its small scale, and high losses together with the 

rather complete set of thermodynamic data available, the RC is an excellent device for 

performing a second law analysis.  Not only would the students benefit from performing a 

second law analysis (a topic that receives little or no coverage in the required Thermodynamics 

courses at LTU and UE), it would also give a better understanding of scaling drawbacks and help 

identify the major sources of losses. 

 

4.  The fuel (LP) flow is measured by a pre-installed turbine meter.  Calibration of the meter may 

be problematic because it is performed on air prior to installation so an independent verification 

of fuel flow is desirable. UE will investigate using a scale under the propane tank in an attempt 

to verify the fuel flow measurement by cross-checking against a mass used divided by elapsed 

time measurement. 

 

In addition, continued experimental runs will be performed with the RC to include higher 

voltages (or generator RPM) to attempt to identify, or verify the lack of, an optimum operating 

point.  Also, additional student surveys, calculations, reports, and exam questions will be 

assessed to determine the effectiveness of the Rankine Cycler as a learning tool. 

 

5.  Conclusion 

 

Students were surveyed to indirectly assess the RC as a learning tool.  Overall, the RC and its 

associated exercises performed quite well as a learning tool, according to the students.  They 

reported that their knowledge of the Rankine cycle (and its associated thermodynamic concepts) 

increased.  They found discussing and using the RC hardware more valuable than performing 
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calculations with the data.  The level of the material was appropriately challenging for upper-

level engineering students.  Students from different universities and geographic/economic 

regions ranked the RC and its exercises very similarly.  These results indicate that the RC can be 

a useful learning tool for a varying student base.  In addition, students who feel that they have a 

firm understanding of the Rankine cycle before performing experiments feel that use of the RC is 

nevertheless beneficial.  Students that have used the RC and performed its associated analysis 

gave multiple suggestions for equipment improvements and commented on the RC’s educational 

value.   

 

Multiple direct assessments were performed to evaluate students’ understanding of the Rankine 

cycle after using the RC and to evaluate the value of the RC as a learning tool.  Based on 

laboratory final exam scores, the students understand the Rankine Cycler equipment and that its 

efficiency is inherently low due to the small plant size, but they do not seem to fully understand 

how the RC compares to a full-sized power plant.  More assessment will be performed to 

confirm these conclusions.  Based on laboratory report scores, the students gain a firm 

understanding of the Rankine cycle concepts through use and analysis of the RC.  Upon 

inspection of the reports, the calculations, plots, and supporting text are typically well established 

by the students and the RC appears to be a good learning tool for the steam power cycle.  Based 

on individual student sample calculations scores, the RC reinforces the concepts of the steam 

power cycle and/or the concepts of thermodynamics for the majority of students (although it is 

apparent that some students are less interested in the thermal-fluids aspects of engineering or that 

some students are not putting forth a best effort).   

 

In addition to assessment, a few keys to successful use of the RC were noted. 

 

Multiple experimental parameters were investigated in an attempt to determine an optimum 

operating point of the RC.  The analysis implies that an optimum point at which to operate the 

RC is not attainable with current component limitations.  The RC should simply be run at the 

highest possible load (i.e., wattage, voltage, etc.). 

 

Four methods for accurately determining steam flow rate using the measured turbine exhaust 

pipe pressure drop were suggested.  Preliminary calculations with all of these methods indicate 

that results agree within a few percent.  In addition, the calculations yield values comparable to 

the currently used steam flow rate determination method.  The new methods of steam flow rate 

calculation are expected to improve uncertainty.  A cold fluid calibration of the friction 

parameter for the exhaust tube is being contemplated. 

 

Future work is outlined to complete a characterization of the Rankine Cycler.  In conclusion, the 

educational benefits of the RC seem to outweigh the idiosyncrasies of the device.  For its 

relatively low cost, the RC is useful to the mechanical engineering curriculum.  Further 

experimental and analytical work is being performed to fully characterize the RC so that it can be 

used most effectively for the students.  
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Appendices 

 

A.  Experimental Apparatus Descriptions
1 

 

The experimental hardware (Rankine Cycler™) consists of multiple components that make up 

the necessary components for electrical power generation (utilizing water as the working fluid).  

These components include: 

 

1.  Boiler 

A stainless steel constructed, dual pass, flame-through tube type boiler, with super heat dome, 

that includes front and rear doors.  Both doors are insulated and open easily to reveal the gas 

fired burner, flame tubes, hot surface igniter and general boiler construction.  The boiler walls 

are insulated to minimize heat loss.  A side mounted sight glass indicates water level. 

 

2.  Combustion Burner / Blower 

The custom manufactured burner is designed to operate on either LP or natural gas.  A solid-state 

controller automatically regulates boiler pressure via the initiation and termination of burner 

operation.  This U.L. approved system controls electronic ignition, gas flow control and flame 

sensing. 

 

3.  Turbine 

The axial flow steam turbine is mounted on a precision-machined stainless steel shaft, which is 

supported by custom manufactured bronze bearings.  Two oiler ports supply lubrication to the 

bearings.  The turbine includes a taper lock for precise mounting and is driven by steam that is 

directed by an axial flow, bladed nozzle ring.  The turbine output shaft is coupled to an AC/DC 

generator. 

 

4.  Electric Generator 

An electric generator, driven by the axial flow steam turbine, is of the brushless type.  It is a 

custom wound, 4-pole type and exhibits a safe/low voltage and amperage output. Both AC and 

DC output poles are readily available for analysis (rpm output, waveform study, relationship 

between amperage, voltage and power).  A variable resistor load is operator adjustable and 

allows for power output adjustments. 
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5.  Condenser Tower 

The seamless, metal-spun condenser tower features 4 stainless steel baffles and facilitates the 

collection of water vapor.  The condensed steam (water) is collected in the bottom of the tower 

and can be easily drained for measurement/flow rate calculations. 

 

6.  Data Acquisition (Note: Newer RC models have an updated system that will operate through 

the USB port of any newer PC.) 

The experimental apparatus is also equipped with an integral computer data acquisition station, 

which utilizes National Instruments™ data acquisition software (modified 2004 models). 

 

The fully integrated data acquisition system includes 9 sensors.  The sensor outputs are 

conditioned and displayed in “real time”- on screen.  Data can be stored and replayed.  Run data 

can be copied off to floppy for follow-on, individual student analysis.  Data can be viewed in 

Notepad, Excel and MSWord (all included).   

 

The system is test run at the factory prior to delivery and the “factory test run” is stored on the 

hard drive under the “My documents” folder.  This file should be reviewed prior to operation, as 

it gives the participant an overview of typical operating parameters and acquisition capability.  

 

7.  Sensors 

Nine (9) sensors are installed at key system locations.  Each sensor output lead is routed to a 

centrally located terminal board.  A shielded 64-pin cable routes all data to the installed data 

acquisition card.  This card is responsible for signal conditioning and analog to digital 

conversion. Software and sensor calibration is accomplished at the factory prior to shipment. 

 

Installed sensor list includes: 

• Boiler pressure 

• Boiler temperature 

• Turbine inlet pressure 

• Turbine inlet temperature 

• Turbine exit pressure 

• Turbine exit temperature 

• Fuel flow 

• Generator voltage output 

• Generator amperage output 

 

8.  Overall System Dimensions 

Length:  48.0 inches (122 cm) 

Width:   30.0 inches (77 cm) 

Height:  58.0 inches (148 cm) 

 

B.  LTU laboratory exercise calculations/analysis 
 

After completing a 2 or 3 minute steady state run at around 3 to 4 Watts, the following data 

reduction is completed by the students: 
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1. The measured or weighted re-fill mass of water represents the boiler’s total steam production 

during your run. This can be correlated as the steam rate by dividing the weight of the water 

replaced by the time duration of your run. 

2. Create a T-s diagram showing the actual cycle and the ideal Rankine cycle for 

the steady-state process. 

3. Provide a first law analysis of each stage of the actual process. 

4. Calculate the isentropic efficiency for the turbine. 

5. Calculate the thermal efficiency for the entire process.  Also calculate the heat rate for the plant 

during your experiment.  You will need the heating value of propane and the fuel flow rate. 

6. Calculate the tower efficiency.  The purpose of the tower is to reclaim the working fluid (in this case 

water).  In other words, the amount of condensate collected, minus the starting amount of water, gives 

an indication of the effectiveness of the cooling tower, or tower efficiency.  What was the condensing 

tower efficiency for your experiment? 

7. You were able to record the instantaneous values of voltage and amperage.  What is the 

average power produced?  What is the total energy that was produced during your experiment? 

8.  Suggest some practical methods to increase the thermal efficiency of the apparatus (with little 

to no expense (money or power)). 

 

C.  Student Survey Sample 

 

Following is the survey/questionnaire distributed to the laboratory students. 

  

The following survey is used purely for assessment.  It will remain confidential and will not 

contribute to your grade.  Be honest in your responses.  The goal of this survey is to assess the 

effectiveness of the Rankine Cycler as a learning tool.  The equipment, the experimental process, 

and the analysis/calculations will be assessed. 

 

I took Thermodynamics in:  Fall  Spring  Summer of (year) _________ Grade: ____ 

 

I took Fluid Mechanics in:  Fall  Spring  Summer of (year) _________ Grade: ____ 

 

I took Heat Transfer in:  Fall  Spring  Summer of (year) _________   Grade: ____ 

 

The Rankine Cycle was covered in my Thermodynamics course. Yes ____  No _____ 

 

The Rankine Cycle was covered in my Thermodynamics course. Yes ____  No _____ 

 

Before performing the Rankine Cycler exercise in lab, I felt comfortable with the concepts 

related to the Rankine Cycle:   

Strongly disagree disagree no opinion agree  strongly agree 

1         2        3        4       5 

 

After completing the Rankine Cycler exercise (including the calculations), I have a better 

understanding of the Rankine Cycle.  

Strongly disagree disagree no opinion agree  strongly agree 

P
age 11.862.28



 

 

 

1         2        3        4       5 

 

Rate each part of the exercise that you found most beneficial.  Put a 1 next to the most beneficial, 

a 2 next to the next beneficial, and a 3 next to the least beneficial.  

 

_____  Seeing real (lab-scale) components and their operation 

_____  Discussing and using the Rankine Cycler with the instructor 

_____  Performing the calculations/analysis 

 

For your most beneficial aspect listed above, why was it most beneficial?  

 

For your least beneficial aspect listed above, why was it least beneficial?  

 

Rate the analysis/calculation parts of the exercise that you found most beneficial.  These are 

found in the hand-out under “Data Reduction” and are listed as 2 through 8 (#1 is not included 

here as it is simply an essential.).  Put a 1 next to the most beneficial, a 2 next to the next 

beneficial, etc. 

_____  2.  T-s diagram 

_____  3.  first law analysis 

_____  4.  isentropic efficiency 

_____  5.  thermal efficiency / heat rate 

_____  6.  condensing tower efficiency 

_____  7.  power and energy 

_____  8.  decreasing heat rate 

 

For your most beneficial aspect listed above, why was it most beneficial?  

 

For your least beneficial aspect listed above, why was it least beneficial?  

 

What analysis/calculations should be added, if any? 

 

The Rankine Cycler as experimental equipment is a useful tool for learning thermodynamics. 

Strongly disagree disagree no opinion agree  strongly agree 

1         2        3        4       5 

 

Suggested changes?  

 

The in-lab procedure for using the Rankine Cycler was a useful exercise for furthering my 

knowledge and understanding of Thermodynamics. 

Strongly disagree disagree no opinion agree  strongly agree 

1         2        3        4       5 

 

Suggested changes?  

 

The analysis and calculations associated with the Rankine Cycler exercise were useful for 

furthering my knowledge and understanding of Thermodynamics. 
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Strongly disagree disagree no opinion agree  strongly agree 

1         2        3        4       5 

 

Suggested changes?  

 

How do you rate the instructor’s use of the Rankine Cycler? 

Unsatisfactory  poor  satisfactory good  excellent 

1         2        3        4       5 

 

The level of material covered with the Rankine Cycler exercise was: 

Too advanced    just right   Too easy 

1   2  3  4  5 

 

The Rankine Cycler exercise increased my interest in the thermal-fluid sciences. 

Strongly disagree disagree no opinion agree  strongly agree 

1         2        3        4       5 

 

The students were also asked for “Additional comments/observations.” 
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