120th ASEE Annual Conference & Exposition

FRANKLY, WE DO GIVE A D*MN

ATLANTA

Paper ID #6767

LabVIEW and Arduino as a gateway to PLC programming
Dr. Wesley B. Williams P.E., University of North Carolina, Charlotte

Dr. Wesley B. Williams is an assistant professor in the Department of Engineering Technology and Con-
struction Management at the University of North Carolina at Charlotte. Dr. Williams joined the de-
partment in 2011, teaching courses in the mechanical engineering technology and electrical engineering
technology undergraduate programs as well the facilities management graduate program. His research
interests include additive manufacturing, instrumentation, controls, and lapping. His professional expe-
rience also includes work in the pharmaceutical industry where he designed custom instrumentation and
automation solutions for pharmaceutical researchers. In addition to his professional and academic ac-

tivities, Dr. Williams is active mentoring students through programs such as the UNC Charlotte Senior
Design Program and US FIRST Robotics.

(©American Society for Engineering Education, 2013

T9v8's¢ abed

LabVIEW and Arduino as a gateway to PLC programming
Abstract

The key topics of an instrumentation and controls course are a) the transducers that convert the
phenomenon of interest into a predictable signal b) the actuators that influence the process in
question and c) the hardware and software that control these outputs based the measured inputs.
Common candidates for these control systems are data acquisition (DAQ) systems,
microcontrollers, and programmable logic controllers (PLCs). Outside of the electrical
engineering technology curriculum, engineering technology undergraduates at the University of
North Carolina at Charlotte do not cover any of these devices until taking a single course junior
or senior year. In a graduate course focused on facilities instrumentation and controls, National
Instruments DAQ systems, Arduino microcontrollers, i-TRILOGI ladder logic simulator and
Allen Bradley industrial PLCs were introduced in that order to quickly bring students up to speed
on the strengths, weaknesses, and suitable applications for each device.

The graduate students in the class came from both civil engineering and construction
management undergraduate programs. As such, they had limited backgrounds in electronics and
programming. This assessment was reflected in an initial course survey where students rated
their abilities in electronics theory, electronics hands on, LabVIEW, and MATLAB as being
weak, slightly weak, or average (the three lowest categories on the survey). Conversely, they
rated their abilities in math and physics as being average, strong, or very strong (the three highest
categories on the survey).

National Instruments LabVIEW and a NI USB-6009 multifunction DAQ were chosen as a
starting platform given the graphical programming environment, readily available tutorials, and
integration with the hardware. Students were shown demonstrations involving simple
breadboard circuits before the students worked in small groups to replicate and extend the
LabVIEW code and breadboard wiring to include both measurements and control circuits. After
completing the breadboard exercises with LabVIEW and the USB DAQ, students were
introduced to the Arduino 1.0 Integrated Development Environment (IDE) and an Arduino Uno
microcontroller. As a high level programming language, students viewed the Arduino sketches
as easy to follow given a limited introduction in lecture and access to the Arduino website. The
abundance of published sketches made it easy for students to see the versatility of the
microcontroller platform and learn common coding structures. Other key skills that were
acquired through the Arduino exercises included effective documentation of code, addressing
inputs and outputs, and understanding the difference between analog outputs (available on the NI
USB DAQ) and the emulated analog outputs utilizing PWM (available on the Arduino Uno).

Ladder logic was introduced with i-TRiLOGI ladder logic simulators. Relay ladder logic was
presented with a focus on the similarities to the graphical, ‘wiring’ approach to programming
found in LabVIEW. The Arduino skills of addressing inputs and outputs and documenting code

Z2'918°c¢ abed

were also reemphasized as was a focus on program/logic flow. Allen Bradley PLCs
programmed with RSLogix 5000 software were the final platform introduced to the students,
applying their acquired knowledge of ladder logic from i-TRiLOGI to industry grade hardware
and software. Throughout Arduino, i-TRILOGI, and RS Logix 5000, a common exercise was
used to highlight the similarities, differences, and capabilities of each platform.

Introduction

Programmable logic controllers are a common solution to automation and control projects for
engineers. Despite their frequent application, PLC instruction is limited to a single upper
division course for Mechanical Engineering Technology students at the University of North
Carolina at Charlotte. The versatility and capability of many industrial PLCs though comes at the
expense of accessibility, with a programming environment that can be intimidating for students
with limited programming experience (Figure 1) or students accustomed to languages like C++
and Python®. To overcome this intimidation with students from mechanical engineering or
facilities management backgrounds, students were led through a common task using a selection
of software and hardware that was believed to be more accessible, to build their skills and
confidence prior to programming with RSLogix 5000.

o 1
AU 8 1 ? - AAQABEE AR -
a Far l(- v &
Ofline r —
=) e
Mo Foe :
o Py : \fo A X LA LS A X X X IS /
2
C o -
‘ L.)]
Cadar
11 0wa
o n 0 o
Mo 1
- Data
foi B R
sotion (21
Ace s Rt
y Dt
at —
" P & Iaminalod aaf e sut ight 10 & s
oo =1 8 B Rels y
Module 11 Data 1 Cata -
Trendy i | PV J
VO Conligu
B1760s 7 e gt ' 4 &, 1 1
& |0 JEER-QALH R 4 0 Buston y
Fros d Vo ¥ ta I
J Led) Ve
Fxpw X
& Eiter L stched & So ant
@ 17691 24ER-0618 O
e Laster Dvagrarm Mavg
Dwacagtvn
. | Masnmcative
1ie savec

Figure 1. Screen shot of the RSLogix 5000 software, which while powerful and versatile can
appear quite daunting to students with limited programming experience.

€98z abed

Students were initially introduced to the LabVIEW programming environment based on the
graphical nature of the programming, the robust in program help, and the active community of
users providing both tutorials and support®>. Arduino was chosen as the second platform due to
the readability of the code, the abundance of examples and tutorials®, and the key lessons of
program flow that can be taught with loops and conditionals. Given that Arduino was originally
targeted a non-technical audience®, the expectation was that this would be an accessible
environment for the students to develop programming skills. The final step before moving to
RSLogix 5000, was introducing the students to ladder logic with i-TRiLOGI, which provides a
much simpler environment given the more limited toolset.

In order to give these new programmers structure in their exercises, tasks in each programming
environment were broken down to the following steps:

e Define Inputs/Outputs: Determine names/aliases and physical connection assignments

e Generate Code Elements: Produce the commands for discrete tasks in the program

e Test Code Elements: Test the discrete tasks and revise as necessary

e Assemble Code Elements: Integrate the working elements of code into a cohesive
program

The exercise

Students were guided through developing the code to simulate a quiz show with two buzzers.
The moderator would press a button as she started to read the question, turning on a green light,
which would stay on. The first player (blue or red) to press their button would have their light
come on and flash. The second player to press their button would not see their light illuminate or
flash. Once a particular question was finished, the moderator would press a reset button, turning
off all lights in preparation for the next question.

The definition of inputs and outputs takes place in different ways depending on the programming
environment. In Arduino, text commands take care of this by assigning aliases to the various
numbered pins and setting those pins up as either inputs or outputs (Figure 2). The Arduino code
also includes a number of variables that are used in the code (trgState and pbState for example,
which are used to denote the whether the moderators switch has been flipped or the blue players
button has been pressed).

v 9v8-cz abed

// declaration of variables

const int GLED=8; // green LED - the trigger light

const int BLED=9; // blue LED light for the blue player
const int RLED=10; // red LED light for the red player

const int MODER=7; // moderator switch
const int BS=6; // blue player switch

const int RS=5; // red player switch

int trgState=0; // initial trigger state

int pbState=0; // blue player win state

]

int prState=0; // red player win state

int d=10; //sets the delay in milliseconds

void setup() {
// sets the pins to inputs and outputs
pinMode (GLED, OUTPUT); pinMode (BLED, OUTPUT); pinMode (RLED, OUTPUT);

// sets up the LED pins as outputs

pinMods (MODER, INPUT); pinMode (BS, INPUT); pinMode (RS, INPUT);

//sets up the switch pins as inputs

digitalWrite (GLED,LOW); // sets all the LEDs to LOW
digitalWrite (BLED,LOW) ; digitalWrite (RLED,LOW) ;

Figure 2. Definition of inputs and outputs in Arduino.

Definition of inputs and outputs in i-TRILOGI takes place through filling out an input/output
(I/0) table. The point was emphasized with students that just as a programmer cannot use a
variable that has not been defined previously in Arduino, tags for switches, outputs, and relays
are not available in i-TRiLOGI’s ladder logic unless they appear in the I/O table. There are four
buttons used in the i-TRILOGI code, two for the moderator and one for each player. Each player
and the moderator are also assigned a relay and light in the 1/O table.

r 1Y [R
£ 1/0 Labels | X |£:] Programmable Logic Simulator ‘_'=‘ =l X
+ | Inputs v »| | [ADC1-8 | | | | | | | | Select | control IV Pausel Re‘J
#l Label Name l Input Tirmer Counter Relay Output
] - | » |ENMR » |G LIGHT »
MOD_RESET 1|28 — |2l — | EMBR (= |BEB_LIGHT —
B_BUTTON | | =|[EERR (=1 R LIGHT | =
RCBUTTON . “ . . |
dl | = || — | = En =
&3 o |]]
e Ex)]
] —|)] i
s 5 = 5

Figure 3. The I/O table used in i-TRIiLOGI ladder logic software.

G'9vg8'cz abed

The 1/0 definition for RSLogix 5000 is similar to i-TRiLOGI with the programmer filling out a
table under program tags to establish the inputs, outputs, and any timers or counters that are
used. In this program there is a button, relay, and light for each player (e.g., B_Button, B_Relay,
B_Light). The moderator has a button, a reset button, and a green light. There is also a timer
(F_Timer) that is used to make the lights flash (Figure 4).

Controller Organczer « 0 X Scope FMainProgram v Show AlTogs
| Controdlér QuizUightsRGE —

B Controller Tags Name =1 Ir‘-has For IB&:& Tag | Dats Type
Controler ‘m'”,l Handler __| B Buton | Local 11 Data.10{C) |LocalT1Dats 1. | BOOL
Power-Up Handler || B.Light | Lacal 1.0 Data 3(C) |locallODeta BOOL

i Tasks || B.FPely | Locel1:0 Data.10(C) {Local1:0Deta. . | BOOL

2 MainTask | J2 F_Tmer | . .T""ER

-8 MainProgram || G Lagm | Locat1:0 Data 0(C) |Local:1:0 Data... | BOOL

& Program Tags || Moo _Resel | Locat 1| Data 8(C) ._cha_l.lﬂlpa[aal. -QOO,L,

E? MainRoutine | Mogerste | Locat 14 Data 0(C) [LocalliDain0(.) BOOL

Unscheduled Programs / Phases || R Bution | Local 1| Date.2(C) (Lacall1 Dats 2(. BOOL

i Motion Groups | | R_lght | Local 1O Data 11(C) | Local1.0Data.. | BOOL

Ungrouped Axes || R _Rslay Locatt C Data 2(C) Local 1.0 Data.. | BOOL
Add-On Instructions E3 ' [[

Figure 4. Program tags table in RSLogix 5000.

With the inputs and outputs successfully mapped, the next task in each program was to generate
elements of the code. These elements of code were small portions of the overall code, dealing
with specific inputs and outputs that could be isolated and tested individually. As an example,
the code to handle the green, moderator light is shown below in Arduino (Figure 5), i-TRILOGI
(Figure 6), and RSLogix (Figure 7). The Arduino code uses a digitalRead command to
determine if the moderator switch has been flipped. If it has, the variable trgState is set to 1, for
use in later logic in the program and the green LED is turned on with a digitalWrite command.

void loop () {

if (digitalRead (MODER)==HIGH) { // triggers the green LED once the switch is flipped
trgState=1;digitallrite (GLED, HIGH) ;

}

else {

trg3tate=0;

}

Figure 5. Arduino code for determining when to illuminate the green light.

The first rung of the ladder logic in i-TRiLOGI accomplishes the task by using a normally open
moderator switch, a normally open reset switch, a moderator relay (MR), and the green light.
When the MODERATOR button is pressed, the MR relay is energized, latching the rung, which
will keep the relay energized and the green light lit until the MOD_RESET button is pressed. It
is worth noting that i-TRiLOGI has the capacity for latching outputs, but this example was
specifically done with the relay in parallel to show how to construct a latching rung (Figure 6).

9'9¥8°cz abed

Quiz RGB example

MODERATOR MOD_RESET G_LIGHT
| | 1AL ol ToUT)
MR MR
e L gLy

Figure 6. First rung of the i-TRILOGI program latching the green light once the moderator
button is pressed.

The ladder logic is similar in RSLogix, but uses two rungs and takes advantage of latching
outputs. Rung 0 simply energizes and latches the green light (G_Light) output when the
moderator button is pressed. Rung 1 unlatches the G_Light as well as relays to indicate whether
the blue or red player pressed their button first (B_Relay and R_Relay) when the Mod_Reset
button is pressed (Figure 7). The operation of the blue and red lights was separated out into
relays and lights, because unlike the green light, the blue and red lights needed to flash which
would be cumbersome if latching the lights was also being used within the logic of the code (to
exclude the other players button press).This unlatching of all latched outputs returns the program
to the initial ready state in preparation for another question.

Moderator G_Light
<Local 11 Data 0> <Local 1.0 Data 0>
0] | s

The moderator presses the reset button, cleanng all latched outputs
Mod_Reset G_Light
<l ocal 11Data §> <Local 1 O Data 0>

] [' T iy

B8 _Relay
<Local: 1.0 Data 10>

R_Relay
<Local 10 Data 2>
QD)

Figure 7. RSLogix, Rung 0 and 1, showing the green light latching and unlatching operation.

Individual elements of code, like those shown above, were then tested to ensure proper
operation. The Arduino code was tested with a simple breadboard circuit using three LEDs, a
switch for the moderator and push buttons for the blue and red players. The i-TRiLOGI code
was simulated to verify the correct operation of the rungs as they were built. The RSLogix
ladder logic was verified on CompactLogix Package Controller with 16 digital inputs and 16
digital outputs, where button inputs were simulated by forcing them with the software.

As these snippets of code were generated and tested, they were assembled into the final code that
is found in the Appendices. By using the same program through each programming language,
students were able to see how each language handled certain elements of the program. For
example, in the case of the flashing lights the Arduino code handled that with a simple loop that

1 9v8's¢ abed

turned the light on then off after a delay. The i-TRiLOGI code used the internal clock functions
which provide intermittent connectivity between the energized relays and the appropriate lights.
In RSLogix, the same effect was achieved by using a repeating timer® and a less than conditional
statement prior to the energized lights.

Assessment

Students found the introduction to data acquisition and control through LabVIEW to be
accessible. Given online video tutorials?, a lab session, and the robust help functions in the
program, they were able to replicate and extend the in class demonstrations with limited
intervention on my part. Most questions on those exercises revolved around building the
associated circuits on the breadboard, though sampling frequency DAQ assistant also came up on
occasion.

The students’ response’ to Arduino were more mixed. While students did well with the exercise
presented in this paper and seemed to genuinely enjoy the other Arduino projects in the class,
they worked at a much slower pace than they did with LabVIEW. Tasks that involved more
advanced programming concepts like nested loops, switch cases, and arrays were challenging for
them. In these cases the students showed an ability to explain and evaluate code that used these
concepts, but they were slow to independently implement these techniques into their code when
it would have been the appropriate/efficient approach.

The introduction of ladder logic through i-TRILOGI was well received by the students. By
outlining their code on paper and filling in their 1/O tables before starting to program their first
rungs, students had some time to think about and reflect on their program strategy. This made
the actual programming go much quicker, with students quickly arriving at ladder logic that was
close to the behavior that they wanted. Errors that appeared in simulations were quickly
investigated and alternatives were generated and tested. Much of this success continued into
RSLogix as well, but the additional menu choices and depth of customization provided more
opportunities for students to get lost or an errant click to give unintended behavior.

In surveys at the end of the class, students reported that they felt more comfortable with ladder
logic than LabVIEW or Arduino. They cited the ability to focus in on the single rung affecting a
misbehaving output as a tremendous asset when troubleshooting a program. Students also felt as
though they would likely come across ladder logic and PLCs in the careers after graduation.
LabVIEW, while also a graphical program, was largely viewed as more difficult to follow with
the program flow between blocks being more haphazard, especially with poor layouts and
commenting. In discussions about Arduino, students noted that while they enjoyed the activities
greatly and it made programming and electronics more accessible, they did not see themselves
using it professionally on a project. Despite this, over half the group did feel that Arduino would
be something that they would revisit on their own as a low cost way to experiment with
electronics, programming, and automation. This type of response gives encouragement to

8'9¥8°cz abed

educators who are increasingly incorporating Arduino into their electronics lab activities, both on
campus and remotely instructed®.

It is unclear if the Arduino and LabVIEW exercises at the beginning of the class were
instrumental in the ready acceptance of PLC ladder logic. It is possible that the visual structure
of ladder logic makes it inherently more accessible than text based or block based programming.
The students in the class were also not ‘heavily burdened’ with preexisting notions about
programming, given their limited initial programming experience. The reinforcement of good
programming practices such as defining inputs and outputs, generating and testing small
segments of code, and liberally commenting the code regardless of programming environment,
did seem to yield better code as the semester progressed. Finally, stepping through a common
exercise for each programming environment was useful as a vehicle to compare and contrast
both the capabilities and syntax of each programming language. This left the students
understanding that each combination of hardware and software brought varied capabilities to the
project, but they were ultimately just tools to implement the logical control that they devised.

Bibliography

1. FOSTER, M. HAMMERQUIST, C. A Review of Programmable Logic Controllers in Control Systems

Education. American Society for Engineering Education Annual Conference. (2010)

NI LabVIEW 101: Video Instruction for Students. http://www.ni.com/academic/students/learnlabview/

www.arduino.cc/en/Tutorial/HomePage

BANZI, M. Getting Started with Arduino, 2nd ed. O’Reilly Media, Sebastopol, CA, 2011.

REHG, J. SARTORI, G. Instructional Algorithms Enhance Student Understanding of PLC Ladder Logic

Programming. American Society for Engineering Education Annual Conference. (2010)

6. SARIK, J. KYMISSIS, I. Lab Kits Using the Arduino Prototyping Platform, 40th ASEE/IEEE Frontiers in
Education Conference. (2010)

arwn

6°918°c¢ abed

Appendix A: Arduino Code

/4 Quiz Gape B5D Bucser Shetch W

// desliaravitn af varishles

copnt ant GLED=8; // geeen LEF - the Sriggec Light
const int BLED=9; // blus LED Llight for the hiuwe plaper
cokst iur PLEDw10; // red LED light for the red plapes

conat int WOOER=T; // noderator mwitch
ponat 1nt BE=6; // hlue player suiven
cunat tut R8=3; S/ red player switch

int trgitate=0; // initial triggec state
int pbStatemD; // hlue player sin state
ane peStata=0; // zed plager win stste
ant @=10; //ests the delay in willisesoods

void setup() |(

// ety the pins vc inputs and uutputs

pisdods (GLED, OUTPUT); pinMode |BLED, OUTPUT); pinMode (RLED, OUTPUT);
// ozts up the TOV piun as cutputs

pinMcde (MODBR, INPUT]; panMode [BS, INPUT); pindode (RS, INPUT);
{lsets up the mautch pins as inputs

digitalicits (GLED,LOW) ;- // sets all the LEUN tu LOM
digisalrics |BLAD,50M) 7 digitalscite [RLAD, T0K) ;

woud loop() |

ergdtate=l;daigatalrste (GLED, HION) ;
|
els= |
tegState=0;
1
if (crgitavessl)| //runs only unce the triggered state has ooourced
! (digitallead (BS)e=HICH) |
FoState=1;
!
sf (digizaliead (R3)*=HIGH) (
pritate=1;
I
|
delay(d)}

if (phstatetprState==1)(// sumiltannous push
digizalisite (BLED, NIGH) 3
digitelrive |RLED, KISH)
while (digitalbesd |BS) =100) (
/7 » vintle leop ta hold i bere unsil reest
pbState=0; prtates0;
|

3% (pb3tate==1) {
digitalie e |BLED, HIGH); // blue pusbed first
wihiile (digizaliend (B8) '=L0M) (
digatalir it (BLED, NIGH) deley (5°d) jdagatalies tte (DLED, LON) ¢
pbStaten0; //flashes the hlue light and resets the blue state
|

it (prStatessl] (
digitalae ity (RLED, HIOH) 3 // red pushed fresy
s le (dagitalRead [DS) 1=L0M) |
Higiealinice (RLED, HIGH) jde lay (5°d) jdagitaliorite (RLED, LOM| §
prStatemD; // flashes the red Light and resets the red atate
!

3t fdigitalbead (NODRR)S=HISH] | // triggers the gresn LED once the muiteh 12 fligped

0T'9t8°c¢ abed

Appendix B: i-TRiLOGI code

Quiz RGB example

MODERATOR MOD_RESET

Rung 1: Latching rung for turning on the green light.

! [G_LIGHT
I II' _H'(Z ol (OUT)
MR MR
: =r1 ri (RLY)

Rung 2: Conditions for latching the blue rung
MR RR B_BUTTON " BR
1 e I /LY

ER
| 12
I

Rung 3: Conditions for latching the red rung
MR BR R_BUTTON 5 RR
1 42 | E LY

RR

| 12

I
Rung 4 & 5: The clocks are used with the latch blue or red rung to make the light flash

B Clk:0.5s . B_LIGHT
|} |} 2 {ouT)
R Clk:0.55 R_LIGHT
| | I % {OUT)

T1°9v8'sg abed

Appendix C: RSLogix Code

(End)

The moderator presses a button turmning on a light and fatching the output.
Moderator

G_Light
<Local:1:l.Data.0> <local:1:0.Data.0>
1°F PRy

5%
The moderator presses the reset button, clearing all latched outputs.
Mod_Reset G_Light
<Local:1:1.Data.8> <Local:1:0.Data.0>
]l 1 /LJ’\
35 U
B Relay
<Local:1:0.Data. 10>
>
R_Relay
<Local:1:0.Data.2>
(>
If the green light is illuminated and the red light is not, when the blue button is pressed, the blue relay is latched.

G_Light B_Button R_Relay B Relay
<Local:1:0.Data.0> <local:1:l.Data.10> <Local:1:0.Data.2> <Local:1:0.Data 10>
=l = H | — —— (L
If the green light is illuminated and the blue light is not, when the red button is pressed, the red relay is latched.

G_Ligh R_Button B Relay R Relay
<Local:1:0.Data.0> <Local:1:l.Data.2> <Local:1:0.Data. 10> <Local:1:0.Data.2>

l: IE i &
Once the blue or red relay is latched a timer is started
B Relay
<Local:1:0.Data. 10> ———TON——
J E Timer On Delay —EN>—
R_Relay Timer F_Timer
<Local;1:0.Data.2> ‘F\‘reset 500 [<(DN>—
1 ccum o
3 G
The end of the timer causes it to start over
F_Timer.DN F_Timer
1E CRES>—
This rung causes the light to flash on an off by comparing the timer value to a 250
B_Relay B Light
LES <Local:1:0.Data. 10> <Local:1:0.Data.3>
—— Less Than (A<B) 1 E C
Source A F_TimerAC(g R_Relay R_Light
SieH 250 <Loca|.1jOEData.2> <Local.1.fO>Data.1\>

21°9v8'cz abed

