
Paper ID #6767

LabVIEW and Arduino as a gateway to PLC programming

Dr. Wesley B. Williams P.E., University of North Carolina, Charlotte

Dr. Wesley B. Williams is an assistant professor in the Department of Engineering Technology and Con-
struction Management at the University of North Carolina at Charlotte. Dr. Williams joined the de-
partment in 2011, teaching courses in the mechanical engineering technology and electrical engineering
technology undergraduate programs as well the facilities management graduate program. His research
interests include additive manufacturing, instrumentation, controls, and lapping. His professional expe-
rience also includes work in the pharmaceutical industry where he designed custom instrumentation and
automation solutions for pharmaceutical researchers. In addition to his professional and academic ac-
tivities, Dr. Williams is active mentoring students through programs such as the UNC Charlotte Senior
Design Program and US FIRST Robotics.

c©American Society for Engineering Education, 2013

P
age 23.846.1

LabVIEW and Arduino as a gateway to PLC programming

Abstract

The key topics of an instrumentation and controls course are a) the transducers that convert the

phenomenon of interest into a predictable signal b) the actuators that influence the process in

question and c) the hardware and software that control these outputs based the measured inputs.

Common candidates for these control systems are data acquisition (DAQ) systems,

microcontrollers, and programmable logic controllers (PLCs). Outside of the electrical

engineering technology curriculum, engineering technology undergraduates at the University of

North Carolina at Charlotte do not cover any of these devices until taking a single course junior

or senior year. In a graduate course focused on facilities instrumentation and controls, National

Instruments DAQ systems, Arduino microcontrollers, i-TRiLOGI ladder logic simulator and

Allen Bradley industrial PLCs were introduced in that order to quickly bring students up to speed

on the strengths, weaknesses, and suitable applications for each device.

The graduate students in the class came from both civil engineering and construction

management undergraduate programs. As such, they had limited backgrounds in electronics and

programming. This assessment was reflected in an initial course survey where students rated

their abilities in electronics theory, electronics hands on, LabVIEW, and MATLAB as being

weak, slightly weak, or average (the three lowest categories on the survey). Conversely, they

rated their abilities in math and physics as being average, strong, or very strong (the three highest

categories on the survey).

National Instruments LabVIEW and a NI USB-6009 multifunction DAQ were chosen as a

starting platform given the graphical programming environment, readily available tutorials, and

integration with the hardware. Students were shown demonstrations involving simple

breadboard circuits before the students worked in small groups to replicate and extend the

LabVIEW code and breadboard wiring to include both measurements and control circuits. After

completing the breadboard exercises with LabVIEW and the USB DAQ, students were

introduced to the Arduino 1.0 Integrated Development Environment (IDE) and an Arduino Uno

microcontroller. As a high level programming language, students viewed the Arduino sketches

as easy to follow given a limited introduction in lecture and access to the Arduino website. The

abundance of published sketches made it easy for students to see the versatility of the

microcontroller platform and learn common coding structures. Other key skills that were

acquired through the Arduino exercises included effective documentation of code, addressing

inputs and outputs, and understanding the difference between analog outputs (available on the NI

USB DAQ) and the emulated analog outputs utilizing PWM (available on the Arduino Uno).

Ladder logic was introduced with i-TRiLOGI ladder logic simulators. Relay ladder logic was

presented with a focus on the similarities to the graphical, ‘wiring’ approach to programming

found in LabVIEW. The Arduino skills of addressing inputs and outputs and documenting code

P
age 23.846.2

were also reemphasized as was a focus on program/logic flow. Allen Bradley PLCs

programmed with RSLogix 5000 software were the final platform introduced to the students,

applying their acquired knowledge of ladder logic from i-TRiLOGI to industry grade hardware

and software. Throughout Arduino, i-TRiLOGI, and RS Logix 5000, a common exercise was

used to highlight the similarities, differences, and capabilities of each platform.

Introduction

Programmable logic controllers are a common solution to automation and control projects for

engineers. Despite their frequent application, PLC instruction is limited to a single upper

division course for Mechanical Engineering Technology students at the University of North

Carolina at Charlotte. The versatility and capability of many industrial PLCs though comes at the

expense of accessibility, with a programming environment that can be intimidating for students

with limited programming experience (Figure 1) or students accustomed to languages like C++

and Python
1
. To overcome this intimidation with students from mechanical engineering or

facilities management backgrounds, students were led through a common task using a selection

of software and hardware that was believed to be more accessible, to build their skills and

confidence prior to programming with RSLogix 5000.

Figure 1. Screen shot of the RSLogix 5000 software, which while powerful and versatile can

appear quite daunting to students with limited programming experience.

P
age 23.846.3

Students were initially introduced to the LabVIEW programming environment based on the

graphical nature of the programming, the robust in program help, and the active community of

users providing both tutorials and support
2
. Arduino was chosen as the second platform due to

the readability of the code, the abundance of examples and tutorials
3
, and the key lessons of

program flow that can be taught with loops and conditionals. Given that Arduino was originally

targeted a non-technical audience
4
, the expectation was that this would be an accessible

environment for the students to develop programming skills. The final step before moving to

RSLogix 5000, was introducing the students to ladder logic with i-TRiLOGI, which provides a

much simpler environment given the more limited toolset.

In order to give these new programmers structure in their exercises, tasks in each programming

environment were broken down to the following steps:

 Define Inputs/Outputs: Determine names/aliases and physical connection assignments

 Generate Code Elements: Produce the commands for discrete tasks in the program

 Test Code Elements: Test the discrete tasks and revise as necessary

 Assemble Code Elements: Integrate the working elements of code into a cohesive

program

The exercise

Students were guided through developing the code to simulate a quiz show with two buzzers.

The moderator would press a button as she started to read the question, turning on a green light,

which would stay on. The first player (blue or red) to press their button would have their light

come on and flash. The second player to press their button would not see their light illuminate or

flash. Once a particular question was finished, the moderator would press a reset button, turning

off all lights in preparation for the next question.

The definition of inputs and outputs takes place in different ways depending on the programming

environment. In Arduino, text commands take care of this by assigning aliases to the various

numbered pins and setting those pins up as either inputs or outputs (Figure 2). The Arduino code

also includes a number of variables that are used in the code (trgState and pbState for example,

which are used to denote the whether the moderators switch has been flipped or the blue players

button has been pressed).

P
age 23.846.4

Figure 2. Definition of inputs and outputs in Arduino.

Definition of inputs and outputs in i-TRiLOGI takes place through filling out an input/output

(I/O) table. The point was emphasized with students that just as a programmer cannot use a

variable that has not been defined previously in Arduino, tags for switches, outputs, and relays

are not available in i-TRiLOGI’s ladder logic unless they appear in the I/O table. There are four

buttons used in the i-TRiLOGI code, two for the moderator and one for each player. Each player

and the moderator are also assigned a relay and light in the I/O table.

Figure 3. The I/O table used in i-TRiLOGI ladder logic software. P
age 23.846.5

The I/O definition for RSLogix 5000 is similar to i-TRiLOGI with the programmer filling out a

table under program tags to establish the inputs, outputs, and any timers or counters that are

used. In this program there is a button, relay, and light for each player (e.g., B_Button, B_Relay,

B_Light). The moderator has a button, a reset button, and a green light. There is also a timer

(F_Timer) that is used to make the lights flash (Figure 4).

Figure 4. Program tags table in RSLogix 5000.

With the inputs and outputs successfully mapped, the next task in each program was to generate

elements of the code. These elements of code were small portions of the overall code, dealing

with specific inputs and outputs that could be isolated and tested individually. As an example,

the code to handle the green, moderator light is shown below in Arduino (Figure 5), i-TRiLOGI

(Figure 6), and RSLogix (Figure 7). The Arduino code uses a digitalRead command to

determine if the moderator switch has been flipped. If it has, the variable trgState is set to 1, for

use in later logic in the program and the green LED is turned on with a digitalWrite command.

Figure 5. Arduino code for determining when to illuminate the green light.

The first rung of the ladder logic in i-TRiLOGI accomplishes the task by using a normally open

moderator switch, a normally open reset switch, a moderator relay (MR), and the green light.

When the MODERATOR button is pressed, the MR relay is energized, latching the rung, which

will keep the relay energized and the green light lit until the MOD_RESET button is pressed. It

is worth noting that i-TRiLOGI has the capacity for latching outputs, but this example was

specifically done with the relay in parallel to show how to construct a latching rung (Figure 6). P
age 23.846.6

Figure 6. First rung of the i-TRiLOGI program latching the green light once the moderator

button is pressed.

The ladder logic is similar in RSLogix, but uses two rungs and takes advantage of latching

outputs. Rung 0 simply energizes and latches the green light (G_Light) output when the

moderator button is pressed. Rung 1 unlatches the G_Light as well as relays to indicate whether

the blue or red player pressed their button first (B_Relay and R_Relay) when the Mod_Reset

button is pressed (Figure 7). The operation of the blue and red lights was separated out into

relays and lights, because unlike the green light, the blue and red lights needed to flash which

would be cumbersome if latching the lights was also being used within the logic of the code (to

exclude the other players button press).This unlatching of all latched outputs returns the program

to the initial ready state in preparation for another question.

Figure 7. RSLogix, Rung 0 and 1, showing the green light latching and unlatching operation.

Individual elements of code, like those shown above, were then tested to ensure proper

operation. The Arduino code was tested with a simple breadboard circuit using three LEDs, a

switch for the moderator and push buttons for the blue and red players. The i-TRiLOGI code

was simulated to verify the correct operation of the rungs as they were built. The RSLogix

ladder logic was verified on CompactLogix Package Controller with 16 digital inputs and 16

digital outputs, where button inputs were simulated by forcing them with the software.

As these snippets of code were generated and tested, they were assembled into the final code that

is found in the Appendices. By using the same program through each programming language,

students were able to see how each language handled certain elements of the program. For

example, in the case of the flashing lights the Arduino code handled that with a simple loop that

P
age 23.846.7

turned the light on then off after a delay. The i-TRiLOGI code used the internal clock functions

which provide intermittent connectivity between the energized relays and the appropriate lights.

In RSLogix, the same effect was achieved by using a repeating timer
5
 and a less than conditional

statement prior to the energized lights.

Assessment

Students found the introduction to data acquisition and control through LabVIEW to be

accessible. Given online video tutorials
2
, a lab session, and the robust help functions in the

program, they were able to replicate and extend the in class demonstrations with limited

intervention on my part. Most questions on those exercises revolved around building the

associated circuits on the breadboard, though sampling frequency DAQ assistant also came up on

occasion.

The students’ response’ to Arduino were more mixed. While students did well with the exercise

presented in this paper and seemed to genuinely enjoy the other Arduino projects in the class,

they worked at a much slower pace than they did with LabVIEW. Tasks that involved more

advanced programming concepts like nested loops, switch cases, and arrays were challenging for

them. In these cases the students showed an ability to explain and evaluate code that used these

concepts, but they were slow to independently implement these techniques into their code when

it would have been the appropriate/efficient approach.

The introduction of ladder logic through i-TRiLOGI was well received by the students. By

outlining their code on paper and filling in their I/O tables before starting to program their first

rungs, students had some time to think about and reflect on their program strategy. This made

the actual programming go much quicker, with students quickly arriving at ladder logic that was

close to the behavior that they wanted. Errors that appeared in simulations were quickly

investigated and alternatives were generated and tested. Much of this success continued into

RSLogix as well, but the additional menu choices and depth of customization provided more

opportunities for students to get lost or an errant click to give unintended behavior.

In surveys at the end of the class, students reported that they felt more comfortable with ladder

logic than LabVIEW or Arduino. They cited the ability to focus in on the single rung affecting a

misbehaving output as a tremendous asset when troubleshooting a program. Students also felt as

though they would likely come across ladder logic and PLCs in the careers after graduation.

LabVIEW, while also a graphical program, was largely viewed as more difficult to follow with

the program flow between blocks being more haphazard, especially with poor layouts and

commenting. In discussions about Arduino, students noted that while they enjoyed the activities

greatly and it made programming and electronics more accessible, they did not see themselves

using it professionally on a project. Despite this, over half the group did feel that Arduino would

be something that they would revisit on their own as a low cost way to experiment with

electronics, programming, and automation. This type of response gives encouragement to

P
age 23.846.8

educators who are increasingly incorporating Arduino into their electronics lab activities, both on

campus and remotely instructed
6
.

It is unclear if the Arduino and LabVIEW exercises at the beginning of the class were

instrumental in the ready acceptance of PLC ladder logic. It is possible that the visual structure

of ladder logic makes it inherently more accessible than text based or block based programming.

The students in the class were also not ‘heavily burdened’ with preexisting notions about

programming, given their limited initial programming experience. The reinforcement of good

programming practices such as defining inputs and outputs, generating and testing small

segments of code, and liberally commenting the code regardless of programming environment,

did seem to yield better code as the semester progressed. Finally, stepping through a common

exercise for each programming environment was useful as a vehicle to compare and contrast

both the capabilities and syntax of each programming language. This left the students

understanding that each combination of hardware and software brought varied capabilities to the

project, but they were ultimately just tools to implement the logical control that they devised.

Bibliography

1. FOSTER, M. HAMMERQUIST, C. A Review of Programmable Logic Controllers in Control Systems

Education. American Society for Engineering Education Annual Conference. (2010)

2. NI LabVIEW 101: Video Instruction for Students. http://www.ni.com/academic/students/learnlabview/

3. www.arduino.cc/en/Tutorial/HomePage

4. BANZI, M. Getting Started with Arduino, 2nd ed. O’Reilly Media, Sebastopol, CA, 2011.

5. REHG, J. SARTORI, G. Instructional Algorithms Enhance Student Understanding of PLC Ladder Logic

Programming. American Society for Engineering Education Annual Conference. (2010)

6. SARIK, J. KYMISSIS, I. Lab Kits Using the Arduino Prototyping Platform, 40th ASEE/IEEE Frontiers in

Education Conference. (2010)

P
age 23.846.9

Appendix A: Arduino Code

P
age 23.846.10

Appendix B: i-TRiLOGI code

P
age 23.846.11

Appendix C: RSLogix Code

P
age 23.846.12

