
Paper ID #37397

Lessons Learned: Developing Homebrew Software Tools to
Enhance and Combine Grading, Assessment, and Research
Benjamin Daniel Chambers (Associate Professor of Practice)

Dr. Ben Chambers is an Associate Professor of Practice in the Department of Engineering Education at Virginia Tech, and
Director of the Frith First Year Makers program and of the Minecraft Museum of Engineering. His research focuses
include creativity-based pedagogy, the interactions of non-humans with the built environment, and the built environment
as a tool for teaching at the nexus of biology and engineering. He earned his graduate degrees from Virginia Tech,
including an M.S. Civil Infrastructure Engineering, M.S. LFS Entomology, and a Ph.D. in Environmental Design and
Planning.

David Gray

David Gray is an Associate Professor of Practice in the Engineering Education Department at Virginia Tech. David is
currently serving as the Assistant Department Head for Undergraduate Programs. Dr. Gray teaches in a two-sequence
Foundations of Engineering course, several courses within an Interdisciplinary Innovation Minor, and is leading the new
Interdisciplinary Senior Design Capstone course within the College of Engineering. David maintains an active
undergraduate research group. His research interests focus on teamwork and interdisciplinary curricula.

Matthew B James (Associate Professor of Practice)

Matthew James is an Associate Professor of Practice in Engineering Education at Virginia Tech. After working in the
Civil/Site Development engineering field for a number of years, he returned to Virginia Tech to pursue teaching. His
primary role is teaching within the first-year general engineering undergraduate program. He also is interested in study
abroad, expanding service learning opportunities for students, and serves as the faculty advisor for the Engineers in Action
student design team.

Stephen Moyer

Po-Jen Shih

© American Society for Engineering Education, 2022
Powered by www.slayte.com

 Lessons Learned: Developing Homebrew Software Tools to
 Enhance and Combine Grading, Assessment, and Research

 1. Introduction

 This lessons learned paper describes the development and deployment of software tools designed
 to facilitate grading, assessment, and research efforts by interfacing the standard learning
 management system (LMS) used by our university with spreadsheet-based systems developed
 in-house. Faculty in instruction-focused roles are charged with providing the high quality, timely
 feedback that enables student success [1]. They may also need to capture student performance
 for internal and external assessment purposes or pursue their own educational research. Each of
 these efforts carries significant overhead in terms of time and energy. As such, time-saving
 measures are constantly being developed and explored, and are a major appeal of an LMS [2].
 There is a large body of work in automated grading systems beyond just multiple choice,
 including short answers [3], essays [4], and computer programming [5]. However, manual
 grading is still the norm, and tools to support it are integrated into LMSs such as the
 SpeedGrader function in Canvas [6]. There is also a long history of embedded assessments or
 other combinations of assessment and grading efforts to reduce faculty workloads or streamline
 processes, e.g. [7], [8], [9]. Additionally, faculty conducting data collection for internal
 assessment and educational research often wish to evaluate aspects of student submissions for
 their own curiosity and development purposes, in ways that are not related to grading, and
 therefore are not captured in grading rubrics.

 In our university, the official LMS, Canvas [10], currently has limitations both in its ability to
 extract assessment metrics and to modify rubric criteria and format during grading. What was
 needed was a grading tool that included rubric lines that could be designated for either students
 or internal review, allowed for rapid display and analysis of rubric metrics, and automatically
 linked with our LMS. After separate efforts to develop tools for their particular needs, three
 faculty members discussed their needs and wants for these tools and worked with two graduate
 teaching assistants (GTAs) to create generalized and flexible tools that all faculty in the
 department could employ. These tools were mostly spreadsheet based and coding was done with
 Google Apps Script. In the two semesters since sharing the generalized versions, the tools have
 been adopted by several faculty and have successfully supported grading, course administration,
 assessment, and research efforts.

 2. Department context

 The faculty and graduate students involved in the development of these tools teach in the general
 engineering program at a large mid-atlantic university. All incoming engineering students pass
 through a two-semester introductory engineering course sequence. The program serves well over
 2000 students per year, supported by a team of about 15 instructional faculty, each working with
 at least one graduate teaching assistant and undergraduate grader. Faculty have one to four
 sections of 72 students each per semester. The team operates in a model of consistency with
 autonomy, working with a basic course framework and requirements, actively sharing content
 and discussing course design, and modifying the course to suit their individual strengths and
 expertise. As faculty in a department focused on engineering education, most instructors have

 some expectation to conduct scholarship of teaching and learning. We also support program
 assessment and accreditation with assignments and completed grading rubrics. Our university
 has annual internal assessment requirements for our courses, which helps maintain our teaching
 standards while avoiding some common traps related to preparation for intermittent accreditation
 visits [11].

 Research using course data is supported by a “blanket” consent form for research on materials
 from the first-year courses and approved by our IRB. At the beginning of their first semester,
 students have the option to provide informed consent. The IRB reviews any proposed research
 for existing consenting data. We then de-identify submissions and remove non-consenting
 submissions.

 Our university subscribes to Canvas, a popular LMS. It is extensively used in the first-year
 program and plays a central role in our first-year engineering course administration. The LMS is
 used to share all course materials, make announcements, and submit all student assignments
 where possible. The caveat to this is that most documents are supplied through Google Drive
 files, though links are made available within the LMS.

 3. Development of tools

 The Canvas LMS has an application programming interface (API) to support modifications and
 an online community of instructors who seek their own modifications in response to needs not
 yet officially supported by the LMS [12]. For example, it does not have the ability to generate
 detailed reports on specific rubric lines, nor is it built to support rubric adjustment after grading
 has begun. These are needed for when instructors discover errors in rubric construction or
 assignment instructions, or wish to change the weight of a particular rubric line after seeing the
 results of grading. The LMS also does not yet have any built-in features for summarizing student
 performance based on individual rubric items.

 Several faculty members in our department have built tools using Microsoft Excel, Google Docs,
 and Google Sheets to support grading efforts in a way that ensured rubrics were appropriately
 designed and consistently applied. Similar tools were also created for various other
 administrative support functions, such as copying or migrating shared Google Drives between
 semesters, emailing individualized files to students, and processing and de-identifying student
 submissions for research purposes. We quickly found ourselves discussing and sharing our tools
 with each other and borrowing elements to support our individual purposes. Descriptions for a
 selection of successfully deployed tools are included in Appendix A.

 As other faculty became interested in these projects, it became clear that we would benefit from
 standardizing some of the grading tools. After determining a set of criteria and standards for
 developing a more universal set of tools, which included guidelines for ease of use and
 adaptability, two GTAs were given the task of synthesizing the various existing grading tools
 while adding a few desired features. The result was grading tools in Google Sheets that allow
 graders and instructors to review various grading statistics, rapidly modify rubrics, use and apply
 standard comments, and automatically generate, share, and upload complete rubrics for each
 student or team to the LMS. There are currently two grading tools in use with some minor
 differences according to instructor preference, but they are functionally quite similar and thus

 combined for the sake of this paper. Detailed information on the functions included in the
 grading tool is included in Appendix B and example interface images in Appendix C.

 4. Deployment and outcomes

 Upon completion, the tools were shared with other teaching faculty and GTAs in the department.
 A particular focus of this sharing was the grading tool which was seen as the most broadly
 useful. The tools were discussed during a semester kickoff meeting for instructional faculty, and
 then continued to be promoted at monthly meetings. One GTA who worked on development also
 held a seminar for the other GTAs to teach them how to use it. Several additional faculty
 members adopted the grading tool and continue to use it a year later. Some newly hired faculty
 members have also expressed interest or adopted the tool as well. For this Lessons Learned
 paper, the authors reflected on their experiences and the conversations they have had with other
 faculty using the tool, and synthesized these outcomes and lessons.

 The tools, and the grading tool in particular, have reduced the time required for course
 administration activities. Rubrics are now easily copyable and adjustable during grading without
 having to go back and correct each individual student grade that had already been input. The
 back-end file management and emailing tools have also saved hours of tedious setup work each
 semester. This carries through to university assessment projects which require extracting results
 on specific rubric lines from several assignments at the end of each semester. For teams using the
 LMS alone, this was a tedious task for graduate students that usually took at least half a day.
 Those who use the grading tool are now able to quickly complete similar regular tasks of
 uploading student feedback, regardless of student numbers. For example, in Spring 2018, it took
 one of the authors about 33 minutes to fully engage in manually uploading detailed feedback
 (grade breakdown and detailed comments included) on one programming assignment (with two
 problems) for a total of 57 students. The grading tool has reduced this labor to a few minutes. We
 normally have 72 students per section, for which we’d expect about 42 minutes per assignment.
 For a semester with ten such assignments, that would mean about 7 hours of tedious feedback
 uploading work per section. For a single faculty load of four sections per semester, that is
 meaningful savings.

 Instructors with multiple GTAs and undergraduate graders who wanted to confirm grading
 consistency were formerly only able to compare overall final scores on assignments between
 graders. With our tool the team can review specific lines to identify if and where inconsistencies
 occur and also adjust those lines, their values, and the student scoring in a matter of minutes.
 Graders working simultaneously can also check themselves for consistency. Similarly, comments
 and feedback can be easily standardized and edited with this tool. Under the basic LMS system,
 comments are input in a comment box and must be read and adjusted individually if there is a
 need. With the grading tool, we can write (and edit) standard comments, quickly scroll through
 specific individual comments or search them for keywords, and upload and manage all feedback
 in batches.

 In addition to major time saving on course administration, the grading tool has made it much
 easier for faculty to perform research and assessment based on assignment responses. The tool
 allows for quick deidentification and filtering for consent. More importantly, in addition to
 graded rubric items, the grading tool can include rubric lines for coding characteristics of
 responses that are excluded from reports generated for students. These provide faculty the

 opportunity to explore possible research questions during grading. The tool is also easily used for
 more detailed research coding in the same fashion. So far, the faculty using the tool have
 explored numerous minor assessments of assignments that have resulted in a variety of
 improvements to those assignments. These explorations conducted during grading have also led
 to several research projects that utilized assignment responses as data. These explorations and the
 grading synergies have so far assisted one of the teaching-focused faculty in publishing two
 conference papers and one journal acticle.

 5. Lessons for other faculty

 We hope that this work inspires other faculty to consider ways to leverage their programming
 and spreadsheet skills and the flexible aspects of their own LMSs to save themselves time and
 combine efforts. Before rushing off to start coding, though, there are several things that should
 be considered.

 Adoptability is important if you want to share your work with your colleagues. The first
 iterations of our tools were seen as overwhelming by some folks who were less confident in their
 programming skills, or who had through years of experience streamlined their own processes.
 We also noted that the timing of sharing tools had an impact. During onboarding and semester
 preparations, some faculty and GTAs were inclined to postpone learning new tools. On a related
 note, while homebrew systems allow teams to address their own unique set of needs, these
 systems also create challenges with maintenance as faculty and GTAs move on to new jobs, as
 LMS features change and grow, or as structures or methods within APIs are changed. Expected
 use rates and lifespan should be considered before starting a project, as well as repositories of
 existing tools.

 Developing new tools can take a lot of time. We got excited about what we were doing and had
 fun with it, but it did take time away from other tasks. It has paid off for us, but if we hadn’t been
 able to finish developing the tools or had they not worked well, the time might have been better
 spent elsewhere. We discovered during this process that the online communities for the LMS and
 Google Scripts were excellent resources and many components of our tools were informed by
 prior work. Before starting any similar project, it is a good idea to check whether someone has
 already done part or all of it, or whether the LMS is planning to implement a similar feature in
 the near future.

 Overall, this project has proven valuable in saving faculty time on grading, course administration
 processes, and facilitating career-advancing research projects. We have been pleased with our
 results and encourage others to seek or develop their own process improvements and synergies.
 We are also happy to share our tools upon request.

 6. References

 [1] V. J. Shute, “Focus on formative feedback,” Review of educational research , vol. 78, no. 1,
 pp. 153–189, 2008.

 [2] S. Lonn and S. D. Teasley, “Saving time or innovating practice: Investigating perceptions and
 uses of Learning Management Systems,” Computers & education , vol. 53, no. 3, pp. 686–694,
 2009.

 [3] S. Patil and K. P. Adhiya, “Automated Evaluation of Short Answers: a Systematic Review,”
 Intelligent Data Communication Technologies and Internet of Things , pp. 953–963, 2022.

 [4] J. G. Borade and L. D. Netak, “Automated grading of essays: a review,” in International
 Conference on Intelligent Human Computer Interaction , 2020, pp. 238–249.

 [5] H. Aldriye, A. Alkhalaf, and M. Alkhalaf, “Automated grading systems for programming
 assignments: A literature review,” International Journal of Advanced Computer Science and
 Applications , vol. 10, no. 3, pp. 215–221, 2019.

 [6] Instructure, “How do I use SpeedGrader?,”
 https://community.canvaslms.com/t5/Instructor-Guide/How-do-I-use-SpeedGrader/ta-p/757.
 2022. [Accessed 22 Mar 2022].

 [7] D. Lalush, C.F. Abrams, P. Mente, M. McCord, H.T. Nagle, E. Loboa, S. Blanchard,
 “Rubrics Cubed: Tying Grades To Assessment To Reduce Faculty Workload” in 2004 ASEE
 Annual Conference , Salt Lake City, Utah. 10.18260/1-2--14030, 2004.

 [8] W. A. Richman and L. Ariovich, “All-in-one: Combining grading, course, program, and
 general education outcomes assessment,” National Institute for Learning Outcomes Assessment
 Occasional Papers , vol. 19, 2013.

 [9] K. Dahm, “Combining the tasks of grading individual assignments and assessing program
 outcomes in project-based courses,” Journal of STEM Education , vol. 15, no. 1, 2014.

 [10] Instructure, “Canvas by Instructure,” https://canvas.instructure.com. 2022. [Accessed 22
 Mar 2022].

 [11] K. Shryock and H. Reed, “ABET accreditation: Best practices for assessment,” in 2009
 Annual Conference & Exposition , 2009, pp. 14–148.

 [12] Instructure, “Canvas Developers Group,” 2022.
 https://community.canvaslms.com/t5/Canvas-Developers-Group/gh-p/developers. [Accessed 22
 Mar 2022.]

 Appendix A: Table of descriptions of selected successful tools

 General Description Purpose Inputs Notes

 Batch File
 Rename

 A simple script using Microsoft
 Excel and Visual Basic for
 Applications (VBA) that takes a list
 of students with study ID codes along
 with folder locations as input, then
 creates renamed copies of the files in
 a new folder. Students without an
 associated code are skipped.

 To perform research and assessment
 on student submissions, it may be
 necessary to remove identifiers such
 as file names. Batch downloads of
 submissions to the LMS
 automatically rename files with
 student information.

 Student information
 list with name and
 email as formatted
 in Canvas, list of
 study ID codes

 All written assignments are
 submitted through the LMS, and
 batch downloads rename files
 with the student names. We are
 able to simplify de-identification
 by removing “Name” from
 submission templates and relying
 on Canvas to add student names.

 Drive
 Folder
 Copy

 A script in Google Apps based in a
 Google Sheet, that copies files and
 subfolders from one Google Drive
 folder to another.

 For student privacy, logistical, and
 archival reasons, our instructors
 typically create new shared drives
 for their courses each semester.
 Copying over individual files can be
 tedious.

 Source folder,
 destination folder

 This was in response to older
 versions of Google Drive and
 Google Drive for Desktop, which
 did not permit copy/paste of files
 between folders in the same way
 as the Windows File Explorer.

 Individual
 Email
 Generator

 A script in Google Apps based in a
 Google Sheet that creates and sends
 emails with attachments to individual
 students.

 For some assignments, we wanted
 students to have individualized files
 to prevent plagiarism. This was
 created to make distribution easy for
 instructors with lots of students.

 Student name,
 email, subject line,
 body components,
 attachments.

 We added a send confirmation on
 the sheet for each student in case
 of process termination. Google
 Apps Scripts terminate after 30
 minutes

 Canvas
 Gradesheet
 Interface

 A script in Google Apps based in a
 Google Sheet that automates
 information transfer between Sheets
 and Canvas. Users can download
 course rosters to the spreadsheet, or
 upload/download rubric line items
 and scores.

 To enable spreadsheet-based
 grading. Assignments can be scored
 in either Google Sheets or Canvas,
 and then automatically synced
 between the two. Facilitates grade
 archiving, and the scoring of
 multiple assignments.

 Canvas API
 authorization key,
 Canvas course
 number, and Canvas
 assignment number.

 Custom-defined tool menus in
 Google Sheets allow for
 downloading course roster from
 Canvas to Sheets.

 Canvas
 Team
 Upload

 A script in Google Apps based in a
 Google Sheet that takes a list of
 students with teams and imports it to
 Canvas.

 To streamline the generation of and
 population of teams in Canvas. This
 was made prior to release of native
 Canvas .csv import functionality for
 team generation.

 Google Sheet
 spreadsheet with
 student email,
 Canvas course ID,
 and team name.

 This works as an excellent
 intermediary between CATME
 Team Generator and Canvas
 LMS.

 Appendix B: Table of grading tool design needs and solutions

 Need Solution

 Limit manual setup with new assignments Script for automatic setup. Inputs: rubric manually entered
 into a template, access token for LMS. Script accesses
 LMS, downloads student and team information, and builds
 the user interface tab

 Suitable for team or individual assignments Toggle switch in script

 Globally adjust point values and rubric line
 descriptions, without any re-entry for
 specific students

 Binary entry for each student for each rubric line, with
 master columns containing description and point value for
 each rubric line

 Review statistics and distributions of
 grades for each rubric line during grading

 Column containing sum for each rubric line, using the
 binary entry by graders

 Compare grading distributions between
 multiple graders working on the same sheet

 Pre-grading assignment of students for each grader, sum
 columns for each pre-assigned range for each rubric line

 Apply standardized comments and be able
 to modify the standard comment during
 grading according to observations

 Set of rubric lines without point values, separated so that
 the script could tell when graded lines ended and comments
 began. Applied and modified like the graded rubric lines

 Code responses for assessment or
 pre-research explorations, using rubric lines
 that are not shared with students

 Rubric lines marked as internal placed below the comment
 rows with indication to the script to skip

 Real-time validation, confirming
 multi-option rubrics were correctly applied

 Tally totals with conditional formatting for visual cues to
 graders

 Pre-upload validation of grading Checks built in to the script, confirming that rubrics were
 complete

 Automatic rubric generation Script for automatic rubric generation created a file for each
 individual or team, either as a Google Sheet or a .pdf,
 according to instructor preference

 Automatic rubric sharing Script for sharing rubrics granted view permission,
 generating an automatic email, and posting a link as a
 comment on the submission in the LMS or uploading a .pdf,
 according to instructor preference

 Automatic uploading of grades into LMS Script for importing grades to LMS

 Generate rubrics for individual students or
 teams in the event of late work or grade
 corrections

 Script toggle for full class or specified individuals

 Correct and remove rubrics with mistakes
 or necessary changes after posting

 Script to batch remove automatically posted comments,
 links, and files from LMS in the event of an instructor error
 in grading, or a universal change to the rubric after posting

 Appendix C: Example grading tool interface

 Figure 1: Grader interface with some example entries.

 Figure 2: Automated setup interface with instructions and suggestions.

