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Math in Engineering: Looking Beyond the Equations 
 

Abstract 

In this paper, perceived student shortcomings that inhibit a student’s acceptance, development, 

and lifelong recognition of mathematics usage are discussed.  Observations made in calculus and 

engineering statics regarding student attitudes towards mathematics, the use of mathematics, 

modern computing, and learning in general, are presented and discussed.  Interventions are 

proposed to help students develop a lifelong appreciation for and awareness of the mathematics 

they will encounter and use, even if subconsciously, every day in professional practice.  The 

paper concludes with a summary of student recognition of the impact of the interventions in their 

lives. 

Introduction 

Engineering students begin working with simple mathematical models in their first math and 

science courses.  As they progress in school, the models become more involved, as does the 

mathematics.  By the time a student graduates and enters engineering practice, they should be 

experts in, or at the very least comfortable with, the development of mathematical models and 

capable of solving many physical problems.  Wankat and Oreovicz suggest that obtaining 

‘expert’ status takes a decade of consistent work assembling increasingly complicated models to 

accumulate that level of knowledge [1].  Math, science, and engineering courses are where 

tomorrow's experts begin their development. 

Calculus and differential equations are standard prerequisite courses in engineering 

programs.  Significant time, typically fifteen semester credit hours, is dedicated to teaching 

mathematics to engineers, but how is this math really used?  In the spring of 2019, Dr. Brooks, a 

calculus professor, enrolled in Dr. McDonald’s engineering statics class.  She wanted to see how 

the math she taught in Calculus I, a prerequisite to the statics course, was employed.  The 

resulting experience was enlightening for both professors, the authors of this paper.  Math is 

generally perceived as ‘being hard’ and that you have to be ‘really smart’ to be successful at 

it.  Often, math classes act as the initial culling of engineering school candidates, and passing 

that first calculus class can be quite rewarding.  By the time a student completes differential 

equations, they either feel invincible or simply relieved to have made it through. 

In the engineering classes that follow, math is used to develop models and describe the behavior 

of stress, strain, fluid flow, electric current, heat, and even traffic on highways.  Everything 

engineers design involves the modeling of observed physical behaviors using math.  Why then, 

when practicing engineers are asked how often do they use higher order math, do they often 

reply “Never”?  

  



An Example from Strength of Materials 

Students designing a timber ‘T’ beam for a quiz question exemplified how a model and the 

accompanying mathematics is, or is not, used in engineering.  The beam is constructed using two 

planks by setting one on edge (the stem of the T) and nailing the other down the middle to the 

top edge.  The quiz question asked students to specify s, the maximum nail spacing required to 

safely fasten the two planks together for the given loading.  Students learn about internal forces 

in statics and then shear flow and shear stress in strength of materials courses.  They typically 

work several fastener spacing problems during class and in assigned homework.  The quiz 

problem described a situation where V(x), the internal shear force in the beam evaluated along 

the length, x, of the beam, is constant in three regions of the beam but varies between those 

regions.  Since s is dependent on V, the instructor anticipated that students would specify a 

maximum spacing for each region of the beam.  The model is not complicated, nor is the math, 

even though some basic calculus is involved.  The entire class missed this problem, with many of 

the students earning zero credit.  Most of the practice problems worked prior to the quiz 

specified V on the cross-section of the beam located at an unspecified x, where s was to be 

determined.  When given V, the students could calculate s.  The students had also demonstrated 

earlier that they were accomplished at plotting V(x), the internal shear force diagram, and 

determining V at any specific section, or x, along the length of the beam.  In the quiz question, 

the students were unable to connect the two processes without explicit directions.  This resulted 

in an ‘aha moment’ for the instructor.  While grading this question, the instructor realized that 

the students knew the equations, and they could do the mathematical operations; however, they 

did not fully understand the model or the mathematics.  They studied to obtain an answer, a 

numerical value, rather than understand the fundamental behavior and solve the problem.  They 

were not looking beyond the equations. 

After graduating, students don’t magically change their approach to problem solving.  The 

methods they develop and exercise while in school carry over into their professional practice.  If 

they don’t learn to look beyond the equations while they are in school, they won’t go beyond the 

equations as engineers. The expert designer recognizes situations that do not conform to the 

standard model, typical solution, and tabulated handbook values.  Then they use their 

mathematics skills to adjust the model, update the equations, and arrive at a satisfactory solution. 

An Example from Algebra 

In algebra, when solving for the roots of polynomials, students are taught to move all terms to 

one side of the equation so that the other side of the equation is zero, factor completely, and then 

set each factor equal to zero.  This method utilizes the zero-product property of the real numbers: 

one cannot multiply two (or more) non-zero numbers to obtain zero.  However, it is not 

uncommon for students to misinterpret this method.  Indeed, upon having two or more factors 

whose product is equal to one, for example, they will set each factor equal to one.  Procedurally, 

this makes sense, but logically and mathematically, it does not.  

Much as a child clings to their parent’s hand and blindly follows in a crowded street, students 

obey the commands given by their math instructors without knowledge of why they are doing so 

and where it will take them.  When students understand the reasoning behind the methods of 

problem-solving, that is, when their understanding reaches beyond the superficial equations and 

procedures, they are much less likely to make conceptual mistakes and more likely to retain the 

concepts being taught. 



Observations 

High school graduates entering college-level engineering, mathematics, and science courses 

often demonstrate a culture of rote learning [2].  They follow a prescribed approach to obtain an 

answer, often times never pausing to think if or why the approach works.  They can calculate s, 

and don’t question what the given V represents.  While having a prescribed approach can aid in 

demystifying problem solving for apprehensive students and may increase productivity (in that 

no time is spent thinking), such procedural approaches perpetuate the general mindset that math 

and other STEM subjects are a ‘bag of tricks’ rather than a means of critical thinking.  This 

complication became apparent while Dr. Brooks was formally enrolled in engineering statics for 

credit under the instruction of Dr. McDonald.  In particular, high-performing students in calculus 

were struggling to identify appropriate solution pathways in statics.  When the procedural path 

was obscured, the necessity to think critically seemed to be an inconvenience for the students. 

Specific to science degree-seeking students taking mathematics courses, the lack of applied 

problems perpetuates rote learning.  In mathematics courses, students are tasked with solving 

mathematical problems in a generic setting.  However, when the time comes to apply 

mathematics in external courses, many students act as if they have never encountered the 

mathematical concepts; their knowledge retention is near zero without the aid of a prompt 

review.  This phenomenon was observed by Dr. Brooks while attending a statics lecture in Dr. 

McDonald’s class.  Dr. McDonald stated that since an angle 𝜃 was small, he was going to 

replace sin(𝜃) with 𝜃.  When Dr. Brooks pointed out that Dr. McDonald was using the local 

linear approximation for the sine function, a concept introduced in Calculus I the previous 

semester, the students had a look of bewilderment on their faces.  By not exposing students to 

mathematics ‘in the wild’, that is, utilizing mathematics as it occurs in external disciplines, 

instructors are doing their students a great disservice.  The mathematical rules and steps that 

students want to blindly follow need the support of reason and the utility of application to 

become memorable and pertinent. 

Engineering students work hard to learn calculus and differential equations.  These are the tools 

used to develop the models of physical phenomena that engineers use to solve problems.  In their 

engineering courses, the instructors often brush over the mathematical development of the 

models and, in the interest of time, simply jump into applying the resulting equations.  When the 

model development isn’t explained, emphasized, and practiced, the students only become 

proficient in solving the equations and computing answers.  They aren’t required to use their 

calculus skills, which they then soon forget; they fail to develop the conceptual understanding 

that builds their confidence, allows them to solve more difficult problems, and provides context 

for the computed answer.  Recently, a diligent statics student followed the author’s prescribed 

steps to locate the centroid of the area under a parabola using equations found on the back cover 

of the text.  The correct answer was computed; however, the student had no idea how, why, or 

what the meaning was.  Figuring out how to find the abc’s in y=ax2+bx+c and then integrate 

xdA to get the answer without using the equation on the back cover was not considered, even 

though the integration process had been the focus of a lecture two hours earlier and the student 

wanted to know how the equation was developed.  Was the math hard?  No.  Because the student 

couldn’t get beyond the equation in order to understand the phenomena (the moment of an area 

about an axis), comprehending the solution was impossible. 



The past 50 years has ushered in an era of technology unparalleled in history.  If not guided in its 

proper usage, students are in jeopardy of becoming so dependent upon it that they cannot 

function without it.  When this happens, they aren’t solving problems: an engineering 

trait.  Instead, they are simply computing values: a technician trait.  Blindly entering values and 

reporting a numerical result does not constitute solving a problem.  Finding roots on a graphing 

calculator by scrolling the birdie to zero doesn’t qualify as factoring equations.  One day, a 

student actually became curious and brave enough to ask the professor, “Exactly what does the 

EXP key do?”  Technology exists to support, not replace, mathematics.  Engineers, whether 

students or professionals, need to remember that problem solving involves understanding the 

entire process; a black box solver should never be trusted!  It is shameful that students and 

graduates alike pick up a calculator to work simple sums, products, and functions that they 

should be exercising their minds to determine.  Calculators, spreadsheet templates, computer 

programs, and other technological devices save a great deal of time.  They aren’t bad -- they just 

shouldn’t be used blindly.  Users need to understand the basis and limitations of any technology 

before relying on it. 

Within any STEM field, a skill that requires careful development is that of effectively 

communicating solutions.  In high school math and science courses, the work that students are 

often required to show in their solutions is minimal.  For full credit, high school students are 

accustomed to simply writing their answers down in a list.  In college-level math, science, and 

engineering courses, they quickly learn that showing their work is not just encouraged, it is 

required!  Some students have never had to show any work, and they really don’t know how.  In 

practice, just knowing how to find the answer is not enough.  Presenting and defending a solution 

requires that the solution be supported with dialogue explaining what was done and why it was 

done.  Students cannot create that dialogue without looking beyond the equations.  They have to 

understand the model and the mathematics in order to explain it, and without an explanation, 

most solutions are of little value. 

Interventions 

After Dr. McDonald and Dr. Brooks’ experience in the spring semester of 2019, they recognized 

that they could address many of the aforementioned issues by adjusting their instructional styles 

in the core lower-level engineering courses.  Indeed, in their article entitled “Why They Leave: 

Understanding Student Attrition from Engineering Majors,” Geisinger and Raman note that 

“teaching styles were more important in predicting student success in the classroom than was the 

students’ amount of precollege preparation, a finding that suggests that engineering instructors 

can play a crucial role in increasing retention. [3]”  What follows are some of the more 

significant pedagogical adjustments Dr. Brooks and Dr. McDonald made. 

Dr. Brooks’ intention for enrolling in the statics course for credit was to gain a better 

understanding of how calculus and differential equation concepts were utilized in engineering 

courses, and, ultimately, she wanted to tailor her teaching of mathematics to engineering 

students.  One of the first things that she changed within her classroom was her emphasis on 

geometric interpretations.  Research has shown that when students are able to visualize 

mathematics, they are able to achieve a deeper understanding [4].  Being able to ‘go through the 

mathematical motions’ to achieve the correct answer is one thing, but understanding the meaning 

behind concepts is quite another.   Throughout her experience in statics, it became evident early 

on that geometric interpretations are the key to identifying solution paths in many engineering 



problems.  As a result, whenever possible, Dr. Brooks made sure to not only explain new 

mathematical concepts but also show them using cartoons and sketches.  For example, when 

introducing double integration as a tool to compute areas in multivariable calculus, Dr. Brooks 

would illustrate that dA represents an infinitesimally small patch of area on a surface, and the 

integral serves to add up all of the patches of area.  This concept is employed in statics when 

computing centroids.  Similarly, within single variable calculus, Dr. Brooks would repeatedly 

refer to Riemann sums to illustrate that integration is merely the sum of areas of infinitesimally 

small rectangles.  In guiding students to think about seemingly abstract concepts, such as 

integration, with a geometric mindset, students are better able to apply these concepts to 

coursework later on in other disciplines.  This intervention discourages the familiar method of 

rote learning and focuses on critical thinking and conceptual understanding. 

Prior to the spring semester of 2019, Dr. Brooks always included applied mathematical problems 

within her calculus and differential equations courses; she recognized the value of students 

making connections between new mathematical concepts and how they relate to the 

world.  However, after her humbling experience as a student, she also began emphasizing 

including units with answers, when applicable, as the units often convey as much information as 

the numerical value.  In addition, she would discuss whether the numerical value obtained for 

that question made sense in the context of the problem.  All too often, students simply write 

down an answer because ‘their calculator said so’.  Discussing the validity of a particular answer 

aids in training students to pause, assess their answer, and determine whether the problem merits 

closer examination.  The skill of self-assessment is so important that authors of university 

textbooks, such as Beer and Johnston, have begun to explicitly define and instruct it in their 

textbooks [5].  Undoubtedly, this particular skill is one that is necessary for all aspiring engineers 

to master as they prepare to enter the workforce -- where applied problems exist in the wild and 

have different flavors like ‘pounds’ and ‘newtons’!  For some students, the units and the 

equations are different processes -- unrelated to each other.  The reality is that in every solution, 

they are related, and when students begin to understand the relationships and/or differences, 

especially between mass and force, then they begin to look beyond the numerical value and 

investigate the meaning of their answer. 

Beginning in the fall of 2017, Dr. Brooks began incorporating learning assistants (LAs) in her 

Calculus I and Calculus II classrooms.  The concept of LAs was first introduced at the University 

of Colorado in Boulder in 2012, and the LA model has now been adopted by institutions across 

the globe [6], [7].  The main goal of incorporating LAs into classroom instruction is to aid in 

transforming the setting to an active learning environment.  This transition, in conjunction with 

interactions with LAs, has been shown to increase student performance [8].  In Dr. Brooks’ LA-

assisted courses, rather than lecturing and expecting students to mindlessly copy down solutions 

and memorize steps, students work on problems in class on their own or in groups, with 

assistance from the LAs and Dr. Brooks.  This pedagogical approach discourages rote learning 

while encouraging critical thinking and collaboration.  Additionally, as a result of her experience 

in statics, Dr. Brooks began having the LAs speak to the students about appropriate study habits, 

balancing work loads, and other essential topics with which students often struggle.  Such 

interactions among students and peer mentors aid in improving student attitudes and their sense 

of belonging at the institution.  

Having Dr. Brooks attend the statics class as a student caused a great deal of reflection on Dr. 

McDonald’s part.  It quickly became clear that many mathematical processes were only lightly 



touched upon, in favor of dwelling on ‘this is how you work the problem’ discussions.  Having a 

mathematician in the audience makes one pay attention to how mathematics is presented and 

applied.  Engineers often take mathematical shortcuts without providing much in the way of 

explanation; this was quickly pointed out!   

One of the first opportunities that engineering students have to apply their newly acquired 

knowledge of calculus is in statics determining centroids.  As an instructor, it is tempting to 

believe that the initial fundamental concepts are already mastered in prerequisite courses and that 

they only need to be lightly covered.  Those initial topics, regardless of how fundamental, need 

to be well-developed.  The time spent explaining each concept pays dividends later when 

students are able to smoothly solve problems because they fully understand the basic 

principles.  Furthermore, by fully explaining those first concepts, students come to expect full 

explanations of all the following concepts.  Dr. McDonald now spends more time in the details 

of those introductory concepts such as unit vectors, vector products, and simultaneous equations, 

which he previously assumed to be prerequisite knowledge.  Later on, he doesn’t shy away from 

employing calculus, even for the really simple problems.  When introducing the centroid of an 

area determination, integrate the square, then a triangle and eventually a parabola.  When 

students master the simple problems and really understand the development, then they are 

prepared to work on more complex problems.  They need to practice on a lot of simple problems, 

building their understanding and confidence, before moving on to difficult problems. 

All of the class time cannot be spent deriving equations.  Demonstrating problem solving at the 

board is also required; however, the students are better served if they solve the problems on their 

own rather than simply watching the instructor.  The ‘flipped’ classroom [9] is an excellent 

example of where students are mentored through solving problems rather than being ‘shown’ 

how to work problems.  Repeatedly showing students a solution method leads to rote 

memorization of the steps and little understanding of what each step accomplishes.  Having 

students answer their own how-to questions amongst themselves leads to more experimentation 

and results in greater understanding.  They begin looking beyond the equations and into the 

behaviors. 

Today’s technology enables lightning fast, precise calculations.  Students need to learn how to 

exploit the incredible computational power available to them without becoming dependent on 

it.  Using spreadsheets to do homework exposes students to one of today's most commonly used 

office tools and opens the door to an astonishing assortment of computational tools while 

engaging them in the development of fully explained (using English) and legibly presented 

solutions [10].  Spreadsheet use is introduced in most primary school curriculums, and 

engineering professors generally assume that their students are competent users.  Typically, they 

are not; however, engineering graduates should be, and the way they become competent is 

through practice.  Dr. McDonald assigns one problem each week to be completed and fully 

explained using a spreadsheet.  He assigns an additional ten ‘study’ problems that only require 

work notes.  Many students catch on quickly and complete all of the problems using 

spreadsheets.  Filling in a spreadsheet template doesn’t expand a student’s knowledge of a 

subject very much, but programming a solution in a spreadsheet does.  Programming requires the 

student to thoroughly investigate the problem, understand the mathematical formulation, and 

explore all of the possible avenues toward the solution until the correct pathway has been 

identified.  Requiring students to document and explain the solution further develops their 

knowledge because they have to communicate what they are thinking about and what they are 



doing.  They are developing creative problem-solving skills.  Even if they elect to plagiarize, 

documenting answers from a solutions manual is surprisingly difficult since the publishers 

seldom provide more than calculations.  To explain the calculations, students have to look 

beyond the equations.  Students should implicitly understand that units must be associated with 

input values and the results.  Unfortunately, this often isn’t the case, and they may require an 

explicit instruction.  By preparing spreadsheet solutions, students develop organization skills, 

better understand the mathematical procedures, and discover that they can experiment with 

solutions -- something they never did before.  The detailed preparation requires more time and 

that results in greater retention.  The transition from turning in a list of values, which they called 

answers in high school, to submitting well-presented and defended senior-level engineering 

problem solutions is not instantaneous.  It takes time to develop, so start early and be persistent.  

Exams are traditionally thought of as assessment tools rather than learning opportunities.  With 

COVID-19 and the global pandemic, the ability to give a traditional exam was essentially 

eliminated and take-home exams became much more desirable [11], [12], [13].  Dr. McDonald’s 

take-home exams utilize a measure of trust in student integrity.  Questions are developed so that 

answers cannot be easily found via Google, and students must explain their work rather than 

simply showing an equation and computing a result.  In a take-home exam, the mathematics 

must be developed and explained as well as worked!  Take-home exams take more time for 

students to complete and that additional time spent may result in greater retention. 

While teaching in the COVID-19 alternative delivery mode, Dr. McDonald uploaded a take-

home statics quiz, and Dr. Brooks, now a statics graduate, accidentally dropped into one of her 

virtual meetings that several of her calculus II students were using to collaboratively prepare for 

the statics quiz.  Dr. McDonald had posed the general problem configuration on the course web 

page ahead of the quiz, but the actual questions were only available when the quiz was opened 

and a twenty-minute timer began. The students were diligently deciphering the 3-D geometry of 

a frame and the applied forces, checking coordinates, working out position vectors, and trying to 

predict what they could pre-work that would save time once they began the quiz.  This kind of 

collaboration, under the pressure of a pending quiz, can be beneficial.  As a result of their focus, 

those students likely learned more in that one study session helping each other than in the prior 

week solving the ten study problems.  During the study session, they desired knowledge instead 

of answers.  Since they didn’t know the questions, they wanted to understand why and how 

specific mechanisms worked.  The quiz became a learning experience as well as an assessment 

tool, hopefully it resulted in improved knowledge retention, and it encouraged students to 

demonstrate their math knowledge to a greater extent than working the same question in a 

classroom exam.  

Results 

The Western Illinois University Quad Cities campus in Moline, Illinois is a branch of the main 

campus located 90 miles away in Macomb, Illinois.  The total Quad Cities campus enrollment, as 

of Spring 2021, is just shy of 800 [14].  The School of Engineering was formed in 2009 and is 

located on the Quad Cities campus.  It currently offers degree programs in general, mechanical, 

civil, and electrical engineering and consists of 138 undergraduate students -- 25% of the 

undergraduate population on the branch campus.  The small enrollment at the Quad Cities 

campus results in small class sizes.  Within the School of Engineering, lower division 



(freshman/sophomore) core courses typically enroll twenty to thirty students and the upper 

division (junior/senior) discipline specific courses enroll five to fifteen students. 

After three and a half semesters of changes in teaching strategies at Western Illinois University’s 

Quad Cities campus, Dr. McDonald and Dr. Brooks have gleaned both quantitative and 

qualitative data that indicates the aforementioned interventions have made a difference in student 

awareness and appreciation of mathematics.  To begin, we will analyze the trend in declared 

math minors on the Quad Cities campus. 

Prior to 2016, it was not possible for students on the Quad Cities campus to earn a minor in 

mathematics because mathematics courses outside of those required for the engineering majors 

were not being offered.  During the summer of 2016, linear algebra was offered as an online 

summer course, and as a result, Quad Cities students were able to complete a minor.  Interest in 

the minor has remained strong and is growing.  The following table displays the number of 

engineering students who declared mathematics as a minor, as well the corresponding percentage 

of the students enrolled in the School of Engineering. 

 

Year (Spring Semester) 2017 2018 2019 2020 2021 

Number of Math Minors on Campus 16 20 26 25 21 

Cumulative Number of Engineering Students 154 108 128 144 138 

Percentage of Engineering Students Declaring Math as a 

Minor 

10% 19% 20% 17% 15% 

Table 1: Mathematics Minors on the Quad Cities Campus. [15] 

While the percentage of engineering majors who have declared math as a minor has slightly 

decreased, the fact that it has held relatively steady despite the global pandemic is 

telling.  Indeed, as a result of COVID-19, many students have reduced their course load or even 

withdrawn entirely.  The fact that the percentage of engineering students who have declared 

mathematics as a minor is within 5% of the historical high indicates that engineering students 

remain interested in mathematics as well as recognize its value as a supplemental (and not 

required) minor to accompany their engineering major. 

Perhaps more telling than the trend in declared mathematics minors is that in student 

retention.  It is not uncommon for a percentage of engineering students to drop out or switch 

majors during their freshman year.  At Western Illinois University, the standard courses taken by 

engineering students during their freshman year include Calculus I, Physics I, and a CAD course 

in the fall followed by Calculus II, Physics II, and Statics in the spring.  These courses heavily 

emphasize mathematics and/or mathematical modeling.  The table below displays the number of 

new freshman engineering students (both full and part-time) that began in the fall and were 

retained in the spring, as well as the corresponding percentage of retained students. 

 

 



Academic Year Starting Number Number Retained Percent Retained 

2016 - 2017 17 14 82% 

2017 - 2018 12 9 75% 

2018 - 2019 16 11 69% 

2019 - 2020 19 13 68% 

2020 - 2021 12 11 92% 

Table 2: Retention Rates of New Freshman Engineering Majors on the Quad Cities Campus. [16] 

As was mentioned earlier, the global pandemic brought on unprecedented challenges within 

higher education.  In spite of the associated complications, the freshman retention rate held 

steady during the 2019-2020 academic year.  Furthermore, it increased to an all-time high for the 

2020-2021 academic year.  Although the number of new freshmen within the School of 

Engineering dropped overall, the increase in retention resulted in an equivalent raw number of 

students retained in the spring of 2021 when compared to the spring of 2019 and an increase 

from the spring of 2018.  This drastic increase in the freshman retention rate illustrates an 

increase in freshman student success in mathematics courses (calculus) as well as applied 

mathematics courses (physics and statics).  In comparison, the ASEE “Engineering by the 

Numbers” survey indicated that the overall student persistence to the second year was around 

80% in 2014 [17]. 

What the above quantitative data fails to effectively convey are students’ attitudes toward 

mathematics.  In Dr. Brooks’ course evaluations at the end of the fall semester of 2020, one of 

the sophomore Calculus III students, an engineering major, commented “I really enjoyed this 

class, and [Calculus] has been my favorite series of classes here at WIU.”  This student’s 

comment illustrates that he/she does not view mathematics as a ‘necessary evil’ dictated by a 

degree plan; rather, this student recognizes its worth and expresses his/her appreciation for the 

three-semester sequence.  Students also recognize the value of understanding the ‘why’ behind 

the procedures for solving calculus problems.  In the Calculus I course evaluations in the fall of 

2019, one student wrote, “She is always able to provide an explanation of why things in Calculus 

must be done a certain way, which really helps to further my understanding.”  By encouraging 

students to focus not only on the ‘how’ but also the ‘why’, they begin to understand mathematics 

on a deeper level.  An increased mathematical awareness will help students retain their 

understanding throughout their life. 

A recent engineering graduate sent a gratifying note to Dr. McDonald thanking him for the 

forced introduction into using mathematics in spreadsheets to solve engineering problems.  He 

now uses spreadsheets that he develops every day at work!  He has advanced ahead of other 

junior level engineers because he documents and explains his calculations and solutions.  Four 

years ago, when Dr. McDonald first started requiring spreadsheet work, he observed students in 

the computer lab grinding numbers through their calculator and entering the results into the 

spreadsheet they were preparing for his assignment!  That hasn’t happened recently.  Students 

now are quicker to adopt the spreadsheet solution concept in other courses when not required, 

mostly for the improved legibility, but also for the calculation abilities.   



Encouraging students to collaborate with each other has been productive.  Many of the 

interventions promote collaboration and peer-to-peer learning, such as the LAs and even the 

take-home exams.  For some students, spreadsheets are tough to initially figure out, but their 

peers that demonstrate some proficiency early on are easily identified and usually willing to 

help.  The initial help sessions are great to observe.  Although they are guiding this cell to that 

cell operations, the students are also discussing the mathematics taking place in each cell and 

‘what the mathematics is doing’ rather than ‘it has to be this value’. 

Conclusion 

Engineers are problem solvers.  They provide the means for clean water, safe transportation, 

economical energy, and other processes or devices that improve the way our modern society and 

civilization functions.  They use physical models described by mathematical equations to 

communicate and solve problems; therefore, they should be using mathematics within their 

profession. 

While studying engineering, the most successful students often share similar traits; they are 

careful, innovative, and reflective.  They understand how equations are derived, they recognize 

constraints and limitations, and they identify how to best apply this knowledge.  These students 

are also proficient in estimating solutions and recognizing unrealistic results.  Conversely, less 

successful students are often complacent; they rely on rote memorization and procedural 

approaches.  They can calculate an answer but lack a deep understanding of the mechanics 

supporting the answer, and they fail to recognize improbable results.  They are more likely to 

‘abuse’ equations by using ill-conditioned or improper input as opposed to recognizing that the 

equation is but one small part of a larger and more intricate solution path.  

By intentional and mindful development of their teaching pedagogy, professors of mathematics, 

science, and engineering can improve student awareness of mathematics in problem solving by 

continuously exposing not only the design equations but also their development and the physical 

behaviors they represent to their students.  In particular, when instructors adapt their teaching 

style to encourage students to look beyond the equations, teaching them to look for places to use 

mathematics within their engineering courses, the students will rise up to the challenge.  When 

unique problems arise, these students are then able to recognize the limitations of a coded 

solution, common errors in assumptions, or the potential for failure when a published solution is 

not properly applied.  As a result of their diligence, these students have a better understanding of 

the application of mathematics and an ability to incorporate those applications into their 

professional work throughout their life.  These students become the engineers that expand the 

boundary of human knowledge.  They look beyond the equations. 
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