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Background, Goals, and Objectives. Seeking improvements over the curriculum currently
in place, during the academic year 1996-97, faculty from several engineering programs and
the programs of mathematics, physics, and chemistry at Louisiana Tech evaluated the
integrated engineering curricula at several universities with the goal to implement a similar
program at Louisiana Tech University. Upon this review it was decided to pilot an integrated
engineering curriculum at Louisiana Tech University. For papers that describe experiences
with integrated engineering programs cf. [Aetal], [BF], [Cetal], [FR], [Mor], and [RPC]
(freshman year); [GRGG], [HM], and [RR] (sophomore year); and [CEFF] and [MW]
(managing the transition to a new curriculum).

The goal was and is to build an integrated engineering curriculum that produces engineers
who can function, succeed, and provide leadership in today’s rapidly evolving engineering
workplace. This goal is to be achieved with the same type of students who currently enter
Louisiana Tech. In mathematics this means that about 5% of the students are ready for
calculus, another 55% are ready for precalculus and the remaining 40% start below
precalculus. The decision was made to pilot a curriculum with students that are ready for
precalculus. The curriculum was to expose students to engineering from the start of and in
every term during their college careers. Concurrent classes were to support each other.
Intended consequences of better preparation and a streamlined curriculum are higher success
and retention rates, higher quality graduates as well as shorter times to graduation.

Designing this integrated engineering curriculum is a major undertaking with many features.
In this paper we will focus on two of our objectives, namely

1) The introduction of key theoretical concepts “in context”, and
2) The elimination of unnecessary duplication in the curriculum.

Other features will (hopefully) be described elsewhere. We will describe how mathematical
content can be re-ordered to make the necessary mathematical tools available to the students
before they are needed in other engineering and science classes. The benefits to be derived
from small content realignments as described here are less duplication of content in the
curriculum and better student understanding of the mathematical as well as the engineering
and science content. Indeed, the mathematics will be well motivated through engineering and
science courses and the engineering and science courses can focus on their subject rather than
ad hoc presentations of mathematics. Many of the arguments on content realignment given
here are valid not only for integrated curricula, but for engineering curricula in general. We

                                                          
1 The first author was supported by a Fellow of Excellence in Engineering Education grant by the Louisiana Board
of Regents (Faculty Incentives and Rewards – Undergraduate Project program).
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will show how our changes in course alignment and content alignment within courses allow
for students to complete all mathematics, physics and chemistry requirements plus an
engineering breadth class (such as statics and strengths of materials or circuit theory) each
term within the first two years of college. For the present structure of our integrated
curriculum, cf. Tables 1 and 2. It should be noted that while we consider the new alignment
of content an improvement, it is by no means perfect and will be refined over the next several
years. Since the first two mathematics courses are presently in further reorganization (from
separate precalculus-calculus to an integrated course) and since the key shifts discussed here
happen later in the sequence, we will focus more heavily on the last four mathematics
courses.

The Situation at the Start. Teaching mathematics to engineers requires not only the
coverage of certain topics (generally single and multivariable calculus and differential
equations plus some linear algebra and statistics), but also, if one wants interdisciplinary
connections between engineering and mathematics classes, the presentation of certain topics
"at the right time". For example, to analyze an oscillating spring in physics one needs some
higher order differential equations for the theory and some statistics for the analysis of
experimental data. Typically these topics have not been covered in the calculus sequence at
the time they are needed in an introductory physics class.

The reason appears to be the difference in the philosophies and work methods of engineers
and mathematicians. Mathematicians build theories from a small set of common axioms (for
calculus the existence of the real number system) and do not wish to leave logical gaps in the
structure that is built. Based on this philosophy the development of calculus follows a fairly
canonical sequence. Single variable calculus before multivariable calculus; differentiation,
sequences and series before power series and power series solutions of differential equations;
etc. Engineers and scientists deal with design problems and experimentally verifiable
phenomena in their field. While these phenomena can be described using mathematical
language, the degree of sophistication of the mathematical model varies. Experimentally the
above mentioned oscillating spring is quite simple, while its mathematical description using
differential equations is quite sophisticated for a beginning college student. Conversely, many
problems encountered in a beginning engineering class require mathematics no more
sophisticated than algebra, possibly involving vectors.

The above described difference makes the consistent teaching of undergraduate students
difficult and it is one of the major challenges in designing an integrated engineering
curriculum. Oversimplifying the situation the engineers’ or scientists’ statement will be “I
need these tools NOW to enable me to adequately discuss this phenomenon”, with the
mathematicians’ reply often being “We canNOT provide the tool YET, since the
prerequisites have not been covered”. Both points-of-view are valid within their respective
areas. The nature of recorded mathematics is linear and logically without holes. Any change
in this setup would distort the students’ view of mathematics. Not to mention that teaching,
say, partial derivatives without first differentiating functions of a single variable can be
overload for many students. On the other hand, engineering and science courses that only
tackle problems for which all mathematical prerequisites are present are potentially very P
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uninteresting, especially in the first two years of college for students that start with
precalculus.

Traditionally there are two ways of tackling this problem.

1) One can build what mathematical tools are necessary in the engineering and science
classes themselves, or

2) One can delay certain engineering and science classes until after the necessary
mathematical prerequisites have been taken.

Aside from the obvious benefit of formally having all mathematical tools “in place”, both
approaches have their problems. Building mathematical tools “on the spot” can force students
to struggle so much with the mathematics that the engineering/science content looses priority
in the students’ mind and is not as well understood as it could be. Delaying classes until after
their mathematical prerequisites have been taken is not an option if we are to have an
engineering class every term. Moreover such delays can lead to delays in graduation or to
terms in which students take only mathematics and electives. (For example, in many curricula
any class that requires the use of differential equations would become a junior level class
taken after the calculus sequence and differential equations.)

What “advanced mathematics” is needed when and (how) can we provide it? This is the
key question for a mathematician involved in teaching engineering students. For the
framework of the Foundation Coalition at Texas A&M University an answer is provided in
[BF]. For a new view on the prerequisite structure of mathematics curricula, cf. [OP].
Naturally the answer will depend on the calendar of the institution as well as on the
requirements of the classes to be supported. Louisiana Tech University operates on a quarter
calendar, but awards semester credit hours. A typical 3 semester credit hour class meets three
times a week for 75 minutes each time. The calculus sequence consists of four 3-hour classes
Calculus I-IV, differential equations is a separate 3-hour course and there are two precalculus
classes (precalculus algebra and precalculus trigonometry) that are both 3-hour classes. The
quarter system has proven to have advantages as we move away from the traditional lecture
format, since the longer class periods are more conducive to cooperative learning. For content
realignment there are also certain advantages to having three terms per academic year rather
than two (there are more places to shift courses to). However our key idea (the shift of two
blocks of topics) should translate easily into a semester system. Our approach is characterized
by the desire of staying reasonably close to traditional alignments (otherwise the amount of
class materials to develop can become too large), while still achieving our goal of content
integration. With the calculus sequence itself being very canonical, the idea was to shift a few
key topics into the sequence, while developing calculus with a standard text ([St] at Louisiana
Tech University). Thus “advanced topics” translated into “non calculus sequence topics”. In
cases where it was not possible to provide the mathematical background for an engineering or
science class, the engineering/science class was moved in the curriculum. The sequence
ultimately conceived for students ready for precalculus or calculus is as follows
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Table 1. Freshman Year Course Sequence.

Fall Quarter Winter Quarter Spring Quarter

ENGR 120, 2hr, [EJMN], [FL],
engineering profession, study,
teaming, problem solving skills

ENGR 121, 2hr, [EJMN], [Ei],
[FL], problem solving, technical
reports, design project

ENGR 122, 2hr, [EJMN],
[Ei], basic mechanics,
electricity, energy, design
project

Elective, 3 or 4hr, typically
combined precalculus algebra
and trigonometry using [SP]

Math I, 3hr, [St], single
variable differential calculus

Math II, 3hr, [St], single
variable integral calculus

Chemistry  100,  2hr, [Eb],
measurement, atomic symbols,
chemical formulas

Chemistry 101,103, 2hr+1hr lab,
[Eb], atomic and molecular
structure, bonding mechanisms

PHYS 201, Physics I, 3hr,
[HRW], Newtonian Physics

English 101, 3hr, composition I English 102, 3hr, composition II Elective, 3hr

Table 2. Sophomore Year Course Sequence.

Fall Quarter Winter Quarter Spring Quarter

ENGR 220, 3hr, [RSM],
Mechanics: statics and
strengths of materials

ENGR 221, 3hr, [SD],
EE Applications: network
theorems, AC circuits

ENGR 289, 3hr
Thermal Sciences: work, heat, laws
of thermodynamics, entropy, cycle
processes

Math III, 3hr, [Sch], [St],
Basic differential
equations and statistics,
multivariable differential
calculus

Math IV, 3hr, [St],
multivariable integral
calculus, vector analysis

Math V, 3hr, [St], [Zi], sequences,
series, differential equations

M&MSc 201, [Cal],
2hr+1hr lab, Materials
Science

PHYS 202, Physics II,
3hr, [HRW], Electric and
magnetic fields

The remaining coursework in the sophomore year is controlled by the programs. To avoid
scheduling problems, Materials Science and Physics II are optional in some programs.

Guiding principles in the design of the course sequence were the linkage of content across the
courses whenever possible and, especially in the sophomore year, the presentation of key
engineering content as early as possible to allow students to start taking classes in their major.
For example one goal was an alignment that would allow electrical engineering students to
finish a second circuit theory course by the end of the sophomore year. Naturally the “linkage
of content” vs. “as early as possible” principles present the same conflict as the philosophical
conflict described earlier. Tradeoffs certainly were necessary. For example, with
multivariable calculus only possible to finish in Math V in any implementation it was decided
to follow up Physics I with a mechanics class, not with Physics II as is often done. Note that
the mathematics sequence is essentially the precalculus, calculus, differential equations
sequence with some rearrangements and some topics inserted. Interestingly enough our
emerging list of needed “early non-calculus topics” obtained by analyzing the existing
engineering and science classes was fairly short. The topics are
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1) Separable first order differential equations,
2) Linear differential equations with constant coefficients (homogeneous and with time

dependent inhomogeneity)
3) Statistics: probability, mean, variance; normal, exponential, uniform distribution
4) Interpretation of data: Central Limit Theorem, confidence intervals, hypothesis testing

Having answered the “what”, the next question is where. The above topics can be presented
without significant breaches in logic right after a presentation of single variable differential
and integral calculus. (As seen in Tables 1 and 2, this is where the topics were inserted in the
sequence.)

Indeed, the conceptual framework for a treatment of differential equations is present after
single variable calculus and many texts ([St] among them) offer a short chapter on first-order
differential equations at this point. Higher order constant coefficient differential equations are
somewhat more problematic. To find the solution of homogeneous constant coefficient
differential equations the standard approach is to set the solution up as y=eλx  and then find λ,
which could be complex. Naturally for complex exponents the complex exponential function
is needed, which requires knowledge of the power series expansion of ex. With time being of
the essence, it is problematic to develop sequences, series and power series at the end of Math
III (largely equivalent to the second calculus of four) in order to introduce the complex
exponential function and then treat differential equations. The authors’ solution was to follow
the path described in [La] and define ea+ib:=ea(cos(b)+isin(b)). In this fashion a complex
exponential function with the right properties is available to solve differential equations and
in case of complex solutions, linearly independent real solutions can be extracted as always
by taking real and imaginary parts. The series definition of the complex exponential function
thus becomes a theorem later in the sequence. For another approach to linear higher order
differential equations “early”, cf. [HHG].

A similar picture presents itself for statistics. After discussing improper integrals the students
have all conceptual tools available to understand the listed topics. There are two minor
breaches in the order of presentation that the authors decided to accept.

1) Without multivariable calculus it is not easy to prove that the area under the standard
normal curve is indeed 1. The formal proof was postponed to the multivariate integration
part of the course (in [St] as homework exercise 30 in section 12.4) and numerical
estimates were used as statistics was covered. (Formally we knew that with any precision
epsilon we decided to choose the integral was within epsilon of 1.)

2) The proof of the central limit theorem is beyond the scope of all calculus and engineering
statistics texts that the authors surveyed. Thus, no proof was presented by the authors
either.

The only other mentionable departure from a traditional calculus sequence that we
encountered was to shift coverage of sequences and series to the beginning of MathVI
(equivalent to the differential equations class). This move was necessary to assure coverage
of vector calculus in time for the second Physics class. Since a portion of the differential
equations class was covered earlier in the sequence, no topics in Differential Equations had to
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be sacrificed. Notes ([Sch]) that support the early coverage of differential equations and
statistics were developed by the first author and are available at [SchHP].

Sample benefits derived from the new content alignment. As the integrated curriculum is
currently taught for the second time, more insights into possible content (re)alignments
emerge. For example, it is more natural to present basic differential equations parallel to
Physics I (impossible in the first iteration as the notes [Sch] were developed after the first
year was taught). This shift is planned in the next iteration as the proposed sequence at the
end shows. In the following we describe some of the alignments that seem to better support
(presently and in the future) the development of needed skills in our students.

1) Functions are presented from more points-of-view than before since functions as
graphical or numerical data frequently occur in the ENGR120-122 sequence parallel to
the first year of mathematics. Thus students see the rule of four (verbal, symbolic,
graphical and numerical presentation of topics) not just as a pedagogical principle, but see
how it is necessary to translate between these presentations, as different representations
occur naturally in different fields.

2) In the first physics course the concept of the derivative is reviewed and its interpretation
as obtaining the velocity from position data is deepened. The definite integral is presented
parallel to the first physics course and the recovery of position data from velocity data is a
common topic. The idea of summing large numbers of infinitesimal quantities is ever-
present in the physics class. Students thus obtain a deeper understanding of the methods
and applications single-variable calculus.

3) The presentation of statistics early in the sophomore year supports the evaluation of
experimental data in the laboratory components of the ENGR220-222 classes. Students
will have the mathematical background to interpret experimental data at a more
sophisticated level than “typical” sophomores.

4) The parallel development of vector calculus and the theory of electric and magnetic fields
will allow mathematical results and physical principles to reinforce each other.

5) The planned presentation of differential equations parallel to the first physics class will
allow the thorough discussion of spring-mass-systems in physics with mathematical
results and physical principles reinforcing each other.

With better support for engineering and science classes through the mathematics sequence
given, these classes can spend less time on mathematics and develop their subject at a deeper
level. However the trade-off is not a one-way street. For example

1) Students work extensively with vectors in physics and mechanics before the subject of
three dimensional vectors, dot and cross products is introduced in mathematics. Thus this
re-introduction can be shortened or changed in focus. Students that know the physical
applications of dot and cross products can now concentrate on more geometric
interpretations (area and volume computations).

2) Uses of calculus that are more sophisticated than what can be found in a typical calculus
class are shown in other classes. For example in mechanics, students had a project in
which they computed how much a given light pole (aluminum, 100ft high, annular cross
section, .5in thick, diameter at the bottom: 10in, diameter at the top: 7in, weight of light
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assembly on the top, approx. 150lb) contracts under its own weight. Their only tools were
calculus and knowledge how a rectangular parallelepiped of aluminum contracts under
axial loading. The reasoning needed to set up the model is a very good exercise for
sophomores.

3) Computer skills in MathCAD and EXCEL are acquired once in one engineering class and
then used throughout the sequence with no (re-)introduction of packages necessary.

Preliminary Evaluation. The presentation so far was deterministic and the mutual support
that courses can give each other should be evident from the presentation.  With small
adjustments the arguments so far should apply to a large number of institutions. While our
objectives could thus be considered achieved, more fine-tuning is certainly needed. For
example, in the current implementation some of the vector calculus needed in the middle of
Physics II is presented at the end of Math V, i.e., some topics are in closer proximity, but not
quite aligned right yet. (Also recall the pending shift of some differential equations topics to
the freshman year.) Therefore further evaluations and realignments will be necessary.
Another issue is to include more conceptual work with differential equations than we do
currently. The designers of the first two Math courses are currently investigating the
feasibility of a combined Precalculus-Calculus I course. A proposed mathematics sequence
(with precalculus and calculus still separate) for our second pilot group of 120 students is
given at the end of this paper. Reader’s comments on further opportunities for better
alignment would be appreciated.

Much harder than questions on content alignment is the question whether the new approach is
more successful than the traditional curriculum. With only data from the first pilot group of
39 students available we clearly cannot draw firm conclusions as the design is not fixed yet
and our sample is quite small. Tables 3 and 4 show the success and retention data for the
students in the first pilot group.

Table 3: Students Earning an A, B, or C in the Integrated Program vs. the Traditional Program
Precalculus Calculus I Calculus II Chemistry I Chemistry II Physics I

Integrated 69.2% 92.0% 95.5% 84.6% 96.0% 87.0%
Traditional 63.2% 49.1% 36.9% 61.5% 64.3% 76.3%

Table 4: Retention data in the integrated pilot group
Students
starting

Remain
integrated

Remain engineering,
not integrated

Remain at Tech,
not in engineering

Left school

Total 39 20 9 8 2
Women 8 3 2 2 1
Minorities 4 3 1 0 0

Success as well as retention data are encouraging. If we accept the premise that after
precalculus all students should have the same basis to start calculus, then the success data in
calculus is outstanding. On the other hand we are comparing a self-selected group (with
probably above average motivation but ACT scores not significantly different from average
precalculus eligible students) with regular calculus students (who however are mostly
engineers). Thus the a priori above average motivation of the pilot group may have tilted the
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scales in favor of the pilot group. The high success rate in the first chemistry class might
support the hypothesis that we started with stronger students. Then again the average success
rate of the pilot group in precalculus shows that we may not have. On retention it is worth
mentioning that most of the attrition occurred after Precalculus (only 24 students total entered
Math II). Again this could be used to argue that only strong students were retained who then
were able to re-enforce each other’s success. The question if the students entered were above
average or if the integrated curriculum “lifted them up” cannot be answered conclusively, as
specific pre- and post-tests (aside from the ACT and course exams) were not administered.

The reader can easily see how the data (like most data that involve a system as complex as
human nature) can be interpreted in many ways. Our concluding statements can thus only be
founded on informal observations in the classroom and comparison to other classes the
authors have taught. The success rate of more than 50% for the whole freshman year exceeds
the success rate of the average calculus course and incidentally also the success rate of most
individual classes the authors have taught. Students are very motivated in class and ask
excellent questions as to how particular mathematics will be applied in engineering. At the
end of a sample problem a common question is what one would do if the parameters in the
original problem were different (the authors do not recall hearing this question too often in a
traditional class). This special type of atmosphere is an underlying feature of the integrated
curriculum that should not depend on the individual group of students. The environment in
each class is geared towards discovery and the answering of “hard” questions. Thus an
uncompromising quest for complete understanding becomes second nature to students fairly
quickly.

Finally content integration can have surprising positive consequences. The following
happened in Math III and can be seen as an incident where the content integration certainly
was very successful. In the introduction of the definite integral the first author gave the
students discrete velocity data and asked how to recover the distance traveled. The intent was
to motivate the use of Riemann sums to lead up to the definition of the definite integral, both
of which weren’t formally introduced yet. One student’s answer was to fit a polynomial to the
data (ENGR 121), use the fact that the derivative of the position is the velocity (Math II,
Physics I) and find the antiderivative (Math III) which then needs to be evaluated at the
starting time and the ending time. The difference is the approximate distance traveled.
Clearly this student has a good understanding of the underlying physics, the possible uses of
curve fitting for approximations and the mathematics of antiderivatives. Now all the first
author had to do was come up (quickly) with another way to direct the class towards Riemann
sums.
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Sequence of Topics AYs1998-2000, Mathematics Sequence,
Integrated Curriculum, Louisiana Tech University

(content may shift  and change slightly in the actual implementation)

Fall, Year 1 Winter, Year 1 Spring, Year 1
Precalculus, [SP]
Ch 1 – Functions, Graphs and
Models
Ch 2 - Linear and Quadratic
Functions
Ch 3 – Polynomial Functions
Ch 4 – Rational Functions
Ch 5 – Exponential and
Logarithmic Functions
Ch 6 – Trigonometric Functions
Ch 7 – Analytic Trigonometry
Ch 8 – Additional Topics in
Trigonometry
Ch 9 – Equations of the Conic
Sections
Ch 10 – Linear Systems and
Matrices

Calculus, [St]
Ch 1 – Functions and Models
Representing functions,
parametric curves, inverse
functions and logarithms
Ch 2 – Limits and Derivatives
Tangent and velocity problem,
limits, continuity, derivatives
Ch 3 – Differentiation Rules
Derivatives of polynomials,
exponential, logarithm and
trigonometric functions,
product, quotient chain rule,
implicit differentiation, linear
approximation

Calculus, [St]
Ch 4 - Applications of Differentiation
Related rates, graphing, optimization,
L’Hospital’s rule, Newton’s method
Ch 5 - Integrals
Definite and indefinite integrals,
fundamental theorem of calculus,
substitution, integration by parts, partial
fractions, numerical integration,
computer algebra systems
Differential Equations, [Sch] Ch 1 –
Differential Equations
Basic definitions, spring-mass systems,
LRC circuits, solvable first order DEs
(mostly separable), Euler’s method
Ch 2 – Linear Differential Equations
Existence and uniqueness of solutions,
linear independence, constant coefficient
equations, undetermined coefficients,
variation of parameters

Connections to
All courses – data representation,
problem solving, modeling (these
connections emphasized
throughout)

Connections to
Physics – velocities,
acceleration

Connections to
Physics – spring mass systems, forces,
moments, pendulum
EE – differential equations that later on
occur in LRC circuits
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Fall, Year 2 Winter, Year2 Spring, Year 2
Calculus, [St]
Ch 5 – Integrals (remainder)
Areas, volumes, improper
integrals
Statistics, [Sch]
Ch 3 – Single Variable Continuous
Statistics
Probability distributions and
density functions, uniform,
exponential, normal, Student’s t
Distributions, mean, variance,
sample statistics, central limit
theorem, measurement errors,
confidence intervals, hypothesis
testing, single sample t-test.
Calculus, [St]
Ch 9 – Vectors, Geometry of
Space
Vectors (review), lines, planes,
functions, surfaces, cylindrical and
spherical coordinates
Ch 11 – Partial Derivatives
2d-, 3d-limits, partial and total
derivatives, chain rule, gradient,
extrema, Lagrange multipliers
Ch 12 – Multiple Integrals
Double integrals over arbitrary
regions and in polar coordinates

Statistics, [Sch]
Ch. 4– Multivariable Statistics
Joint distributions, independent
random variables, chi-square test for
independence
Calculus, [St]
Ch 12 – Multiple Integrals (cont.)
surface area, applications (statistics,
mechanics), triple integrals in
rectangular, polar and cylindrical
coordinates
Ch 10 – Vector Functions
Space curves and their derivatives,
arc length, curvature, parametric
surfaces
Ch 13 – Vector Calculus
Vector fields, line integrals, curl,
divergence, Green’s and Stokes’
theorems, divergence theorem
Ch 8 – Infinite Sequences and Series
Sequences, series, convergence tests
Statistics, [Sch]
Ch 5 – Discrete Statistics
Discrete Probability, Bernoulli,
binomial, Poisson, geometric
distribution, discrete hypothesis tests,
normal approximations

Calculus, [St]
Ch 8 – Infinite Sequences and Series
(cont.)
Power series, Taylor series, binomial
series, series used to solve
differential equations (introduction)
Differential Equations, [Zi]
Ch 6 – Series Solutions of Linear
Equations
Ordinary points, singular points,
Bessel and Legendre equation
Ch 7 – Laplace Transform
Definition, inverse transform,
transforming derivatives, integrals,
periodic functions, Dirac delta
function, linear systems
Ch 8 – Systems of Linear First-Order
Differential Equations
Theory, homogeneous linear systems
with constant coefficients

We expect to have some time left at
the end of this sequence. In this time
further topics could be discussed or
(preferably) we will stretch the
sequence a little to allow more
thorough coverage of individual
topics.

Connections to
All courses – measurement,
statistical evaluation of data
Statics, Physics – moments,
centers of mass

Connections to
Physics – vector fields, Maxwell’s
equations
All courses – statistical evaluation of
data

Connections to
 EE – transform techniques, use of
circuit theory problems as examples
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