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Measuring the Effect of Intervening Early  

With at Risk Students in a CS1 Course 

 
Abstract 

We recently converted a CS1 (Introduction to Computing) class to use the Python language in 

place of C++. Among other reasons, we hoped that the new language would help students who 

typically struggled with the course. Our typical drop+fail rate was around 25%-30% for C++, 

and we hoped the conversion would reduce this number. Though it did reduce slightly, 15%-

25%, it was not as significant as we had hoped. We therefore tried an early intervention strategy 

to help those students whom we could identify as struggling. We provided extra tutoring for only 

those students. We then calculated statistics on the effects this extra tutoring. The results were 

not good: we found no significant difference between the group of students who used the 

tutoring and those that did not. We review some of the potential reasons for this result. 

 

Background, Why Python 

A CS1 course is a first course in computer science, and usually emphasizes an introduction to 

programming.  It is also a course on problem solving and applying a programming language to 

solving a problem. As a result, the choice of programming language can have a significant 

impact on the implementation of the course (see Pears et al.
8 

for an excellent survey). A recent 

survey of the top thirty Ph.D. CS degree-granting programs showed a distinct preference for Java 

[Forbes and Garcia
3
]. For fifteen years C++ has been the language for our CS1-CS2 sequence—a  

long time in the computer science world. 

 

As in some other institutions, non-CS majors have found our CS1 course to be useful.  We find 

that now the majority of students in the course are non-CS majors who are not required to take 

the course. STEM students (Science, Technology, Engineering, Mathematics) are naturally 

drawn to the course, but we have found students from all majors in our CS1 course.  As the 

impact of computing has grown across all fields there has been an increasing need for students in 

all majors to develop some programming skills. In particular, a computing course that, after one 

semester, develops students into effective programmers is needed.  We found that C++ did not 

adequately satisfy that need within one semester, and we were not convinced that its sibling 

languages, Java and C#, satisfied that need significantly better. 

 

Languages such as Alice [Powers et. al.
9
] and Scratch [Malan and Leitner

7
] have proven to be 

attractive introductions to computing, especially for non-majors. Media computation [Guzdial
4
] 

has also been effective. Non-language approaches such as the Principles of Computation 

[Cortina
1
] have also proven to be effective.  However, many such approaches are for "CS0" 

courses. Such courses are valuable, but we are working with a course that must prepare students 

for CS2, and it has not yet been demonstrated that those approaches satisfy that goal. 

  

Python features a mixture of readability and practicality—nice features for an introductory 

language. It is also an interpreted language that encourages experimentation—a great learning 

aid.  It has a number of immediately available data structures (strings, lists, dictionaries a.k.a. 

associative arrays, and sets) with associated functions and methods to easily manipulate those 

structures. It is object-oriented which helps in preparation for both solving complex problems 

and other languages.  It is a free language that runs under most environments including, but not 
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limited to, Microsoft Windows, Mac OS-X, and Linux. It includes many modern programming 

language features together with a seemingly limitless set of modules that extend it.  Finally, 

Python interacts well with other languages.  

 

In short, Python can be described as a best-practices language, providing practical tools to do a 

job with a minimum of effort. Taken together these features allow a novice to focus more on 

problem solving and less on language issues.  In addition, the built-in language features make 

data manipulation particularly easy allowing students to more easily work on real data. As a 

result, not only do students solve more challenging problems, but they also have a tool that can 

be used in subsequent courses, research or even personal use.  

 

Subsequently, a textbook that incorporates our approach is available: “The Practice of 

Computing Using Python” [Punch and Enbody
10

], a textbook for using Python in a CS1 course. 

 

For these reasons, Python reduced our drop+fail rate, but the question remained: how can we 

reduce it further?  To understand the issues, we need to explain the course. 

 

CS1 course 

Our CS1 course is a fairly standard course covering problem solving, data structures, and basic 

programming concepts. The course has a weekly closed lab where students, with the aid of a 

teaching assistant, work exercises.  Of greater importance is the weekly programming 

assignment—there are eleven such projects throughout the semester. We have observed that 

students were struggling more with the problem than with the implementation in Python.  That 

is, once they understood the problem, the solution came relatively easily.  

 

A preliminary indication from three offerings is that Python is an improvement for our CS1 

students—we are working on data to better establish those indications.  However, the kinds of 

problems the students can address have changed. Students have been able to download real data 

from the Web and analyze it (fitting the ideas of  [Jukic and Gray
5
]). Examples include building 

a simple classifier for breast-cancer data, finding cycles in sunspot data, and simulating DNA 

transcription.  The idea is to grab some real data, parse it into useful form, and analyze it—ideal 

problem solving skills for scientists.  Text analysis such as building a concordance or tag-cloud 

is quite simple in Python, and provides a tool that humanities students can use in their courses. 

 

Overall Goals 

Overall, the goals we had for the conversion were: 

1. Learning to program for the first time presents two problems a student must address 

simultaneously: improving student ability to solve problems and translating that ability 

into a programming language. While the first is typically the most challenging, the 

second is a significant issue. 

2. Our CS1 class is typically 25% CS majors, 25% other Engineering majors, and 50% 

other. The class should serve all groups: allowing majors to progress in their subsequent 

studies while also providing a practical foundation for non-majors. Our opinion was that 

all students should have the following thought subsequent to the course. When presented 

with a problem, they would think “Hey, I’ll just write a program for that”.  P
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3. The typical drop+fail rate in the previous version of the class (taught in C++) hovered 

around 25%.  On the one hand this was commensurate with our sister institutions, but on 

the other that value seemed rather high. We hoped the change would reduce this number 

 

We have run the course in Python for four semesters and can report on our progress. First, 

Python has proven to be a syntactically simpler but still full-featured language.  As a result we 

are able to cover more real-world problems in the course, giving students good scaffolding for 

addressing problems they are likely to see again (file processing, statistics, graphing, etc.) 

 

Second, we have published results showing that majors who took CS1 in Python do as well in 

later courses as those who took CS1 in C++[Enbody and Punch
2
]. Subsequent courses taught in 

C++ have required few changes to the courses with no change in student performance. 

Anecdotally, non-majors have reported to us the utility of the course in both their academic work 

and in their subsequent employment. Many of these reports focus on simple manipulation of data 

for various projects. 

 

Finally, the drop+fail rate is lower, though only slightly. It now hovers around 20%. 

 

What could still be improved 

This is all good news. However, we wondered if there were still some things that could be 

improved. In particular, the drop+fail  rate proved to be relatively unchanged. Though it would 

fluctuate, the rate remained roughly 20% over the now five offerings of the Python CS1 course 

and approximately 1000 students.  

 

The students had multiple opportunities for programming and for help in the present course 

setup. Every week a lab was conducted on the topic of the week. These labs are broken down 

into groups of approximately 20 students. An exercise is provided that the students collaborate to 

solve, along with help from a Teaching Assistant. No grading is done in the lab, only attendance 

is taken. This topic is then used as a homework assignment for the week, forcing the students to 

work on their own on the weekly topic. Approximately 18 hours of help room hours are also 

provided during the week where students can stop in and ask for further help with the weekly 

homework. And still, we have a 20% drop+fail rate. 

 

An Intervention Approach 

One idea was to try and identify those students who might be at risk for doing poorly in the class. 

If we could intervene with those students early, help them catch up on the topics with which they 

struggled, we could have an effect on the drop+fail rate. In particular, our thinking was as 

follows. Students who are struggling with the course often cannot master a particular topic 

(functions, classes, lists, etc.). Once they cannot get past that topic, they seem to remain stuck 

and never recover. If we can intervene with the “stuck” problem, perhaps we could push them 

along further, even all the way through the course.  

 

Approach 

We looked back through the previous four offerings of the CS1-Python for an indicator that 

showed up relatively early in the course and indicated potential poor performance. By the time of 

the first midterm, approximately one third of the way into the course, the students had completed 
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4 homework assignments, 5 labs and the midterm itself. Though no great indicator was found, 

the best we could find was student performance on the multiple-choice part of the first midterm 

(there is also a “write a program” part of the midterm). A grade of 65% or less was selected as 

the indicator. Previous semesters showed that approximately 80% of the students with 65% or 

less on the first midterm multiple-choice part scored less than a 2.0 for the course or dropped. 

 

We sent those students who did receive a 65% or less on the first midterm multiple choice part 

an email. The message indicated to them what they already knew; that they did not do well on 

the exam and were in danger of not doing well in the course. We tried to sound a bit dire while at 

the same time not sounding defeatist, hoping to get their attention and spur them to action. We 

then offered them some help. We would conduct two weekly tutorial sessions on topics that were 

proving difficult for only those students who were struggling. We selected this subgroup for two 

reasons: 

• We had some evidence that; indeed, these students would not do well if they did not do 

something else. 

• We thought that having students who were all in the same boat would feel freer to ask 

questions and more fully explore what they did not understand. 

We hired two undergraduate students to conduct these sessions, staring with an overview of 

functions. Again, we hired undergraduates to change the approach: we thought they would relate 

better to other students (as opposed to faculty). We conducted these voluntary sessions through 

the remainder of the semester.  

 

Results 

The offer was made to 50 of the 211 students in the class as described. However, as the sessions 

were voluntary, the attendance was poor. We never had more than ten students show up at once 

and often just one or two. At the end of the semester, we ended up with two groups: the emailed  

students who showed up for at least one sessions and the emailed students who did not attend a 

session. These two groups constituted our population. We compared the results of those two 

groups to see if attendance at the sessions had an effect on their final grade. Of the 50, 16 

students did not take the final exam and therefore did not complete the course. Those students 

were therefore not used in the comparison. That left 13 students who completed the course and 

actually attended at least one session and 21 students who completed the course and never 

attended a session. The results are shown in Table 1 below. 

 

 Count Course 

Grade 

Average 

 

Standard  

Deviation 

Attended a session 13 51.3% 15.4% 

Did not attend a 

session 

21 54.8% 13.2% 

 

Table 1. Students who completed the course and did or did not attend a help session. 

 

Discussion 

The results were not encouraging. The average final grade for those that attended the sessions 

was actually lower than those that did not, though the results did not prove to be significant 
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(p=0.50). A linear regression model of the relation between the attendance and the final grade 

also showed no relation (p=0.84). The low attendance numbers and lack of significance make it 

difficult to provide reasons for the results (or lack thereof). However, we can speculate. 

 

1. The students who attended more often were in worse straits than those who did not. The 

“did not attend” students had more confidence in being able to dig themselves out of their 

hole. We could confirm this with access to more data (GPA, ACT results). We plan on 

doing this in the near future. 

2. The “direness” of the email and the offer of help was not enough to encourage students to 

come for more help. It is a tricky thing to motivate dedicating even more time to a course 

that has such high workload. 

3. The kind of help provided, going over existing class material, was not seen as valuable. 

In fact, our experience is that struggling students have little patience for reviewing 

material. They want direct help on solving the problems they are encountering in the 

present homework problem. If the students do not receive help that they perceive to be 

directly affecting the current problem, they stop using that help. This is a level of 

maturity issue that, despite our best efforts, will continue to occur in an early 

undergraduate course. 

4. Intervening at the end of the first third of the class was too late. Students who were 

struggling were already defeated and therefore unmotivated to try and solve their 

predicament.  

5. For whatever reason, usually reasons of time, the students we are trying to help will 

continue to struggle given their present circumstances. This could indicate a lack of 

maturity; lack of time (many students must work to go to school in these economic 

times), or more controversially, a lack of ability [Kramer
6
]. 

 

Conclusions 

We identified students in a CS1 course at the one-third point of the semester who were struggling 

and in danger of doing poorly in the course. We informed them of the problem and offered them 

extra help only for students in the same situation. The motivation of helping with their problems 

motivated less than half the students to attend these sessions, and the overall results of attendance 

did not seem to affect the final outcome. We are working on tuning the approach. In particular, 

we are looking for a better motivator to attract students who are struggling and help them in a 

way that they feel more directly addresses their problems. 
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