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ABSTRACT 
A great deal of literature focuses on innovations that are designed to improve educational 
performance. Although some innovations are designed and implemented to address learning in a 
very specific domain, others influence student learning more generally as they are applicable 
regardless of specific content (e.g., mechanisms for delivering new content, new strategies for 
student-student interactions, and application of new technologies). Many instructors form the 
hypothesis that a particular innovation will enhance student learning and, consequently, the 
ability to achieve desired learning objectives. Testing such a hypothesis can be troublesome 
when confounding factors exist in the student body’s learning environment such as scheduled 
breaks, social stressors, and activities occurring in other courses. Multiple baseline testing is a 
promising strategy for statistically controlling the influence of confounding factors when 
innovations are implemented consistently across multiple groups of students. This strategy 
involves measuring student performance, implementing the innovation at a randomly selected 
time, and continuing to measure student performance as the innovation is integrated within the 
course. The impact of the innovation treatment can be measured using time series regression. 
This paper presents the proper mechanics of multiple baseline testing, discusses the relatively 
small body of research on this method that exists outside the medical and biological fields, and 
provides clear recommendations for managing threats to validity in engineering education 
research. 
 
Introduction 
In much of pedagogy literature authors attempt to describe a pedagogical innovation and 
demonstrate its impact on student learning. These studies include qualitative measurements of 
improvement such as student feedback in learning logs 1 and quantitative measurements such as 
performance on examinations 2. The vast majority of researchers assess the impacts of new 
teaching methods primarily using correlational or comparative studies. They often gather 
empirical data to understand if there is an improvement combined with qualitative feedback in 
student reflections to understand why the intervention was successful or unsuccessful. Nearly all 
of these pedagogical studies aim to measure the improvement in learning resulting from an 
intervention. These studies essentially aim to perform a hypothesis test (i.e., testing to see if the 
implementation of intervention X yields a statistically significant improvement in achievement 
of learning objectives) to infer causal relationships. The problem with such causality inference 
approaches is that these methods can inherently be susceptible to limitations in internal and 
external validity as there are numerous confounding factors that may influence achievement of 
learning objectives including instructor effectiveness, social stress, time of the year, and others.  
 
Although several correlational studies have claimed to indicate causal relationships in education 
research 3,4, several researchers rightly question the legitimacy of such studies 5-8.  According to 
these researchers, a causal inference can only be inferred if the following criteria are warranted: 
 

 Sufficient evidence that the effect or outcome variable occurs as a consequence of 
introducing a specific treatment variable; 
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 Clear indication of the absence of any alternate plausible explanation for the effect 
observed; and 

 Evidence  that the causal factor or treatment variable precedes the occurrence of the 
observed effect 
 

In light of the above requirements, researchers posit that correlation based cross-sectional 
research that measures outcome variables at a single point in time inherently fails to provide 
adequate evidence for causal inference. In fact, it is impossible to provide evidence to assert that 
the causal factor preceded the occurrence of the observed effect 8. Also, such studies do not 
adequately control for extraneous or alternate plausible explanations for the observed effect 9. 
Ironically, results from a 2004 survey of five teaching and learning journals by Robinson et al. 
(2007) indicate that 43% of non-intervention studies contained causal statements6. Such trends 
have led Hsieh et al. (2005)5, Seethaler and Fuchs (2005)10, and Robinson et al. (2007)6 to 
express concern with research rigor. They encourage education researchers to reinvigorate their 
intervention research undertakings. Fortunately, there are experimental and quasi-experimental 
methods that can achieve validity and should be used to make valid causal inferences. As noted 
by Thompson et al. (2005)11, randomized controlled intervention experiments are a requirement 
for providing definitive answers to causal questions. 
 
Randomized controlled intervention studies are true experiments in which subjects are randomly 
assigned to at least two conditions, namely the intervention or treatment group and a control 
group. The researcher intentionally manipulates or introduces the treatment variable to the 
intervention group 12. The control group, which does not receive the intervention, is compared to 
the treatment group to compute effects of the independent variable. Accordingly, causal 
inferences based on the difference in the observed outcome between the treatment and the 
control group can be attributed to the intervention. As such, randomized controlled intervention 
studies systematically account for or eliminate alternate plausible explanations enabling 
definitive casual inferences 13.  
 
In educational research, contrary to intuition, it has been established that the number of articles 
based on randomized experiments have considerable declined over the years. According to Hsieh 
et al. (2005) 5, the results from surveying 4 educational journals indicate that the percentage of 
educational articles featuring randomized experiments decreased from 47% in 1983 to 34% in 
1995, and to only 26% in 2004. In another study conducted by Snyder et al. (2002) 14, in a 
review of 450 group quantitative studies, only 10% represented randomized controlled 
experiments. This decline in randomized experiment studies may partly be attributed to the 
following factors: (1) randomized designs rarely duplicate real-life situations 15; (2) practical 
conditions for randomized experiments are generally not satisfied 16; (3) the randomization 
process may be especially challenging in an educational setting where study groups may not be 
altered to form comparable intervention and control groups; and (4) ethical considerations 
emerge when a promising or potential educational intervention is provided to the intervention 
group while the control group is denied of its benefits 17. Interestingly, the decline in proportion 
of experimental education studies has occurred despite the fact that several legislations (e.g. No 
Child Left Behind - NCLB 2001) and authors have elevated randomized experiments as being 
the “gold standard” for conducting scientifically credible research 6,13,18. 
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One major reason for the decline in the number of intervention studies is the perception among 
researchers that the required methodological rigor to conduct scientifically credible conclusions 
is impractical in an educational setting 5,19,20. As discussed, however, correlation-based studies 
have been criticized because definitive causal inferences cannot be established. Therefore, there 
is an imminent need in the field of educational research to understand how to conduct rigorous 
research that yields valid causal interferences that is also practical. 
 
A method with great potential in the pedagogical domain for experimental research is multiple 
baseline testing (MBT). This experimental technique allows a researcher to conduct a controlled 
and internally valid experiment when a longitudinal assessment strategy is practical. Although 
MBT is time intensive, the method is rigorous because its inherent structure limits threats to 
validity and reliability and allows the researcher to make valid causal inferences 21. This highly 
potential research design remains underused despites its ability to produce scientifically 
reinforced results in educational research 22. The objective of this paper is to describe the MBT 
method, how to form hypotheses that are appropriate for MBT, how to structure a proper MBT 
experiment, methods for promoting validity and reliability during the MBT process, proper 
statistical approaches for time series data subject to autocorrelation. We present this guidance in 
the context of six experiments conducted in professional research and two experiments 
conducted in the classroom. We expect that the guidance provided can be used by future 
investigators to increase the rigor of their pedagogical research and to serve as a foundation for 
experimental research for establishing causal relationships. At the present time, there is no 
singular resource for the proper use of MBT for educational research despite its utility, 
practicality, and rigor for drawing causal inferences regarding improvements resulting from 
pedagogical innovations. Thus, this paper should be of interest for researchers across all 
pedagogical domains. 
 
Background and Rationale of MBT 
The MBT design methodology was first introduced in the Journal of Applied Behavior and 
Analysis by Baer et al. (1968) 23 where the authors argued that the effects of experimental 
manipulations, if any, could be definitively illustrated with the MBT structure (as cited in 24,25. 
Since then, several research methodologists have recommended the use of the MBT design to 
evaluate the effectiveness of interventions in various fields 26-29. The medical and biological 
fields in particular have realized the benefit of MBT 30,31. Unfortunately, it remains underused in 
education research 22.  
 
Several methods exist to test the effects of pedagogical interventions. Since the implementation 
of true randomized experiments that deprive the control group of potential interventions is often 
considered unethical 13, researchers are forced to use quasi-experimental techniques involving 
repeated measures that provide each participant the benefits of the intervention. As a result, 
methods that include pure control groups such as ‘Pretest–posttest randomized or non-
randomized experimental control group’ designs are often disregarded while conducting 
pedagogical intervention experiments 32,33. Further, the use of a simple pre-test and post-test 
design methods do not portray change over time because data are gathered at only two instances 
in time (before and after). These designs, known as AB designs, provide very poor internal 
validity as unrelated confounding variable that occurred during the intervention could potentially 
distort results 34 
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Currently, there is a visible increase in the use of single or group time-series designs. In such 
designs, repeated longitudinal data are gathered over time. This method permits researchers to 
make reliable causal inferences based on the baseline logic 35. According to this logic, repeated 
measures taken under at least two different conditions: baseline and intervention phase could be 
compared to measure effect changes. In fact, according to several authors, longitudinal data are 
the most reliable and rigorous approach to measure change 6,36,37. Moreover such methods are 
attributed to possess several advantages such as increased internal validity as inter-participant or 
group differences do not systematically distorted inferences and repeated measures reduce 
measurement errors 38. 
 
The MBT design, illustrated in Figure 1, involves multiple A-B (before and after) design studies 
that are conducted simultaneously to enhance validity and reliability of inferences 39,40. 
Specifically, repeated baseline measurements are simultaneously gathered across independent 
groups of students to represent the performance prior to the introduction of the intervention.  
Following this, interventions are introduced to each student group on a staggered basis 41-43. That 
is, after gathering adequate baseline measurements for one student group, the intervention is 
introduced to the group while the other group(s) are maintained at their baselines. This process is 
repeated until all groups are introduced to the interventions. As such, all students participating in 
the study receive the potential intervention, thus avoiding any ethical considerations 44.    
 
 

  
Figure 1: Schematic representation of the MBT design (Yt: proportion of hazards recognized) 
 
The MBT design methodology not only allows comparison of the dependent variable within 
baselines, but also allows comparisons among baselines. Therefore, while one group is 
introduced to the treatment, the other groups perform as controls. Also, the measurements at the 
baseline phase for each group provides an additional control during the intervention phase 29. As 
such, the simultaneous baseline measurements allow the researcher to verify that changes in the 
dependent variable occurs only as a result of introducing the intervention or treatment variable. 
Thus, inferences are reinforced by the observed changes in the dependent variable across 
multiple baselines 27. Finally, exchangeability or equivalence of the groups in the study is not a 
concern as comparisons of effect change is made against the performance of the group in the 
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baseline phase. Such a design also excludes between subjects sources of variability, thus 
providing better estimates of effect size 45. 
 
Implementation of MBT in Applied Settings 
Practical methods of experimental research such as the single or group time-series designs have 
been published for years in reputed medical and behavioral journals 46. However, true 
experiments that draw causal inferences are less common in education research 47. This 
knowledge gap leads to the frequent and inappropriate use visual analysis in lieu of statistics, 
which do not yield scientifically credible results 29,48,49. In fact, Huitema and Mckean (2000) 
claim that most inferential techniques currently used are egregious. MBT offers a potential 
solution for the applied research domain because the technique provides valid inferences while 
being intuitive. The challenge with MBT is determining if MBT is the correct method for a 
specific hypothesis or research question, proper design, and statistical techniques. 
 
Analysis Method Considerations 
The most simple and intuitive analytical method for MBT is to consider each baseline as 
independent two- phase AB studies and measure effect sizes across student groups. Therefore, 
for each baseline, data in the pre-intervention phase provides information regarding the level of 
performance and associated variability prior to intervention introduction. Similarly, in the post-
intervention phase, the level of performance and its associated variability may be observed, 
which resulted due to the intervention. In addition to the change, level slope trend and the 
existence of serial dependency may also be observed from both phases.  
 
Once the longitudinal data are collected the researcher may test several hypotheses to determine 
if there is sufficient statistical evidence to infer that a change in performance has occurred as a 
result of the intervention. In order to test such hypotheses, the researcher must consider two main 
effect sizes: level change and slope change 50. Both of these estimates for intervention analysis 
can be computed by several methods but literature predominantly uses ARIMA Intervention 
Models or Time-Series Regression Models. Since ARIMA models require a minimum of 50 to 
100 observations to make valid inferences, it may be impractical in small classroom settings.  
Thus, the remainder of the paper focuses Time-Series Regression Models because they apply to 
both large and small samples. 
 
Effect size determination 
Level change (β1) as shown in Figure 1, refers to immediate changes in the dependent variable 
once the intervention has been introduced. It is the difference between the dependent variable 
computed by extrapolating data form observations in phase 1 and the expected value of the 
dependent variable computed from the phase 2 dataset at a specific time, t. In other words, level 
change is the difference between the predicted value of the dependent variable based on the pre-
intervention regression line and the post intervention line at time, t. It is important to note that 
the comparisons are made based on the same point in time, which usually corresponds to the first 
observation after intervention introduction. 
Slope change (β3), on the other hand, refers to delayed effects. That is, slope change the 
difference in slope between the best fit baseline and post-intervention line, which is estimated by 
linear regression. These two effect sizes are adequate to describe changes in performance P
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between the pre-intervention and post-intervention phase. It is common to have interventions that 
depict both level change (β1) and slope change (β3) as depicted in Figure 1. 
 
Development Research and Statistical Hypothesis 
Every inferential study begins with developing the research and the statistical hypothesis. These 
are often assumptions that need to be tested. Researchers that are interested in testing the effects 
of an intervention, typically design their intervention based on knowledge and established 
literature to provide strong theoretical evidence that the hypothesis may be true. The statistical 
hypothesis consists of the null hypothesis that states the negation of what the researcher expects 
to observe, while the alternate hypothesis states that the predicted results are probabilistically 
true. For example, a study involving a pedagogy intervention would be designed to test a null 
hypothesis that: the introduction of the intervention will not result in higher degree of retention 
than the traditional method. Statistical analytic methods are designed to establish the probability 
of the null hypothesis being true. If the probability of the null hypothesis to be true is shown to 
be improbable (based on acceptable probability, α), then the alternate hypothesis is accepted. 
 
For testing the effects of a specific intervention, based on the above listed effect sizes, the two 
statistical hypotheses that will essentially be of interest in an MBT study are shown as Equation 
1 and 2. 
 
Null hypothesis: β1 = 0; Alternate hypothesis:  β1   0                              (1) 
 
Null hypothesis: β1 =β3 = 0 = 0; Alternate hypothesis:  β1=β3     0          (2) 
 
As indicated in Equation 1, the null hypothesis assumes that there is no level change indicating 
the absence of an immediate change after the intervention is introduced. Similarly, in Equation 2, 
the null hypothesis assumes that there is no slope in either the pre-intervention phase or the post-
intervention phase. If a slope does exist in either phase, the null hypothesis is rejected and the 
alternate hypothesis is accepted. Then, based on the mathematical model used for analysis the 
estimates for  β1and β3  are computed and the sum of the two would yield the slope in the post-
intervention phase. 
 
Models for analyzing Time-Series Regression Intervention Analysis 
As described above, the analysis procedure will treat each baseline as an independent two-phase 
AB design and the overall effect size for the MBT design will be determined by integrating 
results from individual baselines. The first step in the analysis involves the selection of an 
appropriate statistical model to represent the observed data. Of several mathematical models in 
literature the model suggested by Huitema and McKean 43 ,51 shown in Equation 3 is specifically 
appropriate for the determination of the effect sizes. In cases where the null hypothesis (β1 =β3 
= 0) is satisfied, the equation can be reduced to Equation 4. Hence, if  β1 =β3 = 0, then 
modeling the data based on Equation 4 would yield  higher power for analysis purposes. 
 
If the data do not meet the assumption of independence (i.e., they are autocorrelated), then a 
modified relationship must be considered as shown in Equation 5 52. Observations are said to be 
autocorrelated if errors at a given time is associated or can be used to predict errors at a future 
time. Similar to the above case, if the null hypothesis β1 =β3 = 0 is satisfied, then the equation 
can be reduced to as shown in Equation 6. 
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Yt = β0 + β1Tt + β2 Dt + β3 SCt + εt                                                                                                                                               (3) 
 
Yt = β0 + β2 Dt + εt                                                                                  (4)                                         

 

Yt = β0 + β1Tt + β2 Dt + β3 SCt + φ1εt−1 + ut                                                                                                                                     (5) 
 
Yt = β0 + β2 Dt + φ1εt−1 + ut                                                                                     (6) 

 

Where, Yt is the dependent variable at time t; β0 is the intercept of the regression line at t = 0; β1 is the slope at the 
baseline phase; β2 is the level change measured at time n1+1; β3 is the change in slope from the baseline phase to the 
intervention phase; Tt is the value of the time variable T at time t; Dt is the value of the level-change dummy 
variable D (0 for the baseline phase and 1 for the intervention phase) at time t; SCt is the value of the slope-change 
variable SC defined as [Tt -( n1 + 1)]D; n1 is the number of observations in the baseline phase; εt is the error of the 
process at time t; φ1 is the lag-1 autoregressive coefficient; ut is Yt - (β0 + β1Tt + β2 Dt + β3 SCt + φ1εt−1) at time t. 
 
Analysis Methodology 
 
Step 1: Test of Assumptions for Regression Analysis 
Before beginning regression analysis as with most statistical procedures, the underlying 
assumptions need to be verified. Violations of these assumptions can yield biased or spurious 
results. Specifically, assumptions of homoscedasticity of residuals, normality of errors and, 
independence of errors (autocorrelation) is to be tested. Methods to test and remedy violations 
for each assumption can be found in any elementary regression analysis textbook, and hence is 
not addressed here. However, if the assumption of independence of errors is violated, then 
Equation 5 or 6 can be utilized to account for autocorrelation. Tests such as the Durbin-Watson 
test statistic and the Huitema-McKean test of autocorrelation can be effectively used to test the 
lag-1 autocorelation among the observations. 
 
Step 2: Selection of Mathematical model 
As mentioned above based on the test for autocorrelation, the appropriate models is to be chosen. 
That is, if the test for autocorrelation (ρ=0) is accepted, Equations 3 and 4 must be compared to 
choose the appropriate model .On the other hand if ρ 0, Equation 5 and 6 are to be compared. 
For example, if ρ=0 is accepted, the parameters of the regression Equation 3 and 4 are computed 
by regressing the dependent variable (Y) on the respective predictor variables. Once the 
parameters of the two equations (3 and 4) are computed the hypothesis, β1 =β3 = 0 is tested 
using the test statistic shown in Equation 7. 
 
 

	 	 	

	
																																																																																																																																									  

 
If the hypothesis β1 =β3 = 0 is rejected, then Equation 3 is selected as being the most 
appropriate model for the data; else Equation 4 is selected. The same procedure is followed for 
the autocorrelated models. Finally, the regression coefficients of the selected model represent 
level change (β1) and (β3), if any. 
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Step 3: Computation of the Overall Effect size for the MBT study 
Based on the effect sizes determined for all the individual groups/students an aggregate measure 
of level change can be determined using equation 8. Similarly, an overall slope change can be 
determined by substituting the individual slope-change coefficients instead on the level change 
coefficients. 
 

∑

∑
																																																																																																																																																						  

Where J is the nmber of crews;  is the level change coefficent estimated for the jth crew;  is the estimated 

standard error for the jth level change coefficient 
 
Guidelines to conduct a successful MBT study 
 
Preservation of construct validity 
Construct validity deals with the legitimacy of using the test or observations to measure a 
theoretical concept that it intends to evaluate15. In other words, construct validity ensures that the 
measurement scale really measure what it claims to measure. The first step in experimentally 
testing a hypothesis with MBT is to select the appropriate unit of analysis. For example, if 
individual student learning achievement is the targeted improvement, the unit of analysis would 
be each individual student, which would then be aggregated for each time step. Alternatively, if 
group performance is targeted, learning achievement for the groups would constitute the unit of 
analysis. It is important to establish a proper unit of analysis and remain consistent with the 
measurements throughout the longitudinal period because deviations or inconsistencies may 
yield unsubstantiated conclusions.  
 
The response variable, also referred to as achievement in MBT studies, will vary widely 
depending on the learning objectives of the exercise. Of course, the learning objectives must be 
measureable actions that students are able to perform as a result of the educational module. For 
example, in the author’s recent research the learning objective was for participants to be able to 
identify the safety hazards in planned construction environments. Throughout the longitudinal 
experiment, the assessment variable remained constant and standard; however, the context of the 
assignment or the problem to be solved must change. For example during each assessment 
session, participants were asked to review different construction environments. This could be 
easily facilitated by using non-repeated randomly selected high resolution photographs of 
construction environments. 
 
Preservation of Internal Validity 
Internal validity is the certainty with which causal inferences can be warranted from the 
experiment conducted. Threats to internal validity are discussed in several publications. Practices 
and methods that preserve internal validity are listed in Table 1.  
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Table 1: Preservation of Internal Validity 
 
Threat to internal validity Description 

History 
Use of several baselines and staggered introduction of intervention 
provides control. Each experimental unit’s pre-intervention phase 
provides additional control 21. 

Maturation 
Relatively short period of study ensures maturity effects are not 
significant53 

Withdrawal reaction  Intervention is not withdrawn in MBT studies 39. 

Testing 
No feedback of previous performance is provided. Different tests testing 
the same construct are to be used. Stability in repeated measures in the 
pre-intervention phase verifies the absence of testing effect 31.  

Instrumentation/Reporting 
Avoidance of this threat by using stringent evaluation technique and 
training personals. Repeated measures increase confidence 31. 

Regression-to-mean 
Longitudinal nature of study limits regression to mean to a single phase 
54. 

Mortality 
Providing contingency through increasing the number of 
participants/groups 53. 

 
Preservation of External Validity 
External validity is concerned with the generalizability of research finding to the target 
population of subjects and settings (Johnson and Christensen 2010). Every research study needs 
to include appropriate or representative samples of the target population to be able to make 
generalizations. MBT studies through inter-subject replication enhance external validity. Also 
literature suggests whenever necessary to use of clustered groups based on demographics or 
behavior and to reduce systematic variability 27 through which logical generalizations can be 
made. 
 
Finally, each study is conducted on a sample of subjects in a specific setting. In order to ensure 
generalization beyond the sample to the target population, sufficiently large samples 55 must be 
randomly assigned to the study and the study must be conducted under sufficient different 
settings 31.  
 
Preservation of Reliability 
A measurement value always consists of two parts, the true value and the measurement error. 
Further, the measurement error consists of systematic error which affects validity, while random 
error will influence reliability 56.Therefore, measures that are valid have a low degree of 
systematic error while measurements that are reliable have a low degree of random error. 
Generally, experiments involving repetitive measures such as the MBT are allow researchers to 
ensure reliability as measurement error is reduced with repeated measures 57.  
 
Case illustration using MBT Design 
In this section the authors illustrate the application of the MBT design using data that were 
collected for testing the effects of an intervention. Although more baselines were used to gather 
reliable and valid data, for illustration and simplicity sake, we present data only for two 
baselines. The study involved several Student groups that were provided an intervention along 
with its associated training to improve hazard recognition skills. Table 2 provides a brief 
description of the experimental elements. Thus, the null hypothesis being tested was: The 
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introduction of the visual cues organized in simple mnemonics will result in higher proportion of 
hazards recognized in a student population. 
 
Table 2: Experimental elements for case illustration 

Experimental elements Description       

Unit of analysis Student groups       

Learning objective Identifying hazards in construction environment 

Dependent variable Proportion of hazards identified 

Intervention Visual cues and mnemonics 

Testing method Recognizing hazards different environments and associated tasks 
 
As illustrated previously, baseline measurements were concurrently gathered during the baseline 
phase and the intervention was introduced in a time-lagged or staggered basis. Figure 2 
summarized the proportion of hazards that were identified through time for the two groups in 
consideration. The analysis results using the method described above are exhibited in Table 4.  

 
(a) Student Group 1 

 
(b) Student Group 2 

 
Figure 2: Results of case illustration 
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Table 2: Tabulation of results of case illustration 

Student Group 1 Student Group 2 

Reg eqn 37.528+0.352T+14.967D+0.91SC Reg eqn 41.809+0.357T+18.137D+1.293SC 

Predictor Coef 
Std. 
Error t p Predictor Coef 

Std. 
Error t p 

β0 37.53 3.123 12.016 0 β0 41.81 1.894 22.251 0 

β1 0.352 0.802 0.439 0.669 β1 0.357 0.303 1.18 0.261 

β2 14.98 3.694 4.052 0.002 β2 18.14 2.737 6.625 0 

β3 0.91 0.883 1.03 0.323 β3 1.24 0.724 1.787 0.099 
                    
Std. Error of est. 3.3549     Std. Error of est. 2.75053     
R-sq 93.50%     R-sq 96.10%     
R-sq (adj) 91.80%     R-sq (adj) 95.20%     

SSReg 1928.27     SSReg 2259.38     

MSRes 11.26     MSRes 7.57     
 
 
Step 1: Test of Assumptions for Regression Analysis 
The analysis procedure began with the test of the underlying assumptions. The Levene’s test for 
homoscedasticity of error variance considering α=0.05 for the Student Group 1 yielded a p-value 
of 0.511; while the Anderson-Darling test for normality of errors yielded a p-value of 0.5. 
Similarly, the underlying assumption of constant variance and normality of the residuals of 
Student Group 2 were accepted. In the case the underlying assumptions were not achieved, then 
various transformations provided in most elementary regression textbooks may need to be used 
to transform the obtained data before further analysis. Considering autocorrelation using the 
Durban-Watson test indicated no evidence of the presence of autocorrelation. 
 
Step 2: Selection of Mathematical model 
Since the ρ=0 was accepted in the previous step, the parameters of Equation 3 (Tt, Dt, and SCt) 
and 4 (Dt) were determined by regressing the dependent variable (Y) on the respective predictor 
variables. Following this, Equation 7 was used to compare the two models based on Equation 3 
and 4. The obtained value of F (Fobtained) was compared with the critical value using a liberal 
alpha level (α = 0.10) and the respective degrees of freedom (df = 2,12) indicated that the 
alternate hypothesis was to be accepted. Since the values of β1and β3  were not determined to be 
‘zero’,  Equation 3 was appropriate for the observed data. Similarly, Student Group 2 was also 
appropriately modeled using Equation 3. This implied that both the Student groups exhibited 
both a level change and a slope change. 
 
From Table 3, we see that Student Group 1 shows a level change (β2) improvement of 14.98% 
(p<0.001) that occurred just after the intervention was introduced. This level change is the 
difference between the predicted value of the dependent variable based on the pre-intervention 
regression line and the post intervention line at the first observational point following the 
introduction of the intervention. In other words, the projected regression line based on the 
baseline data for t=7 is 39.99%  (b0+b1 (T)) and based on the post-intervention data is 54.96%. 
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The difference between the two phases, then is 14.98% (54.96-39.99%). Similarly, from Table 3, 
it can be seen that the level change for Student Group 2 was 18.14% 
 
The slope change coefficient from Table 3 for Student Group 1 is 0.91. This value indicates that 
the value of the slope between the baseline and post-intervention phase changed by 0.91. This 
means that the slope in the post-intervention phase is equal to the slope in the baseline phase and 
the observed slope change which is equal to 1.26 (0.352+0.91). This indicates that with each 
subsequent test, the proportion of hazards recognized increased by 1.26%. Similarly, the Student 
group 2 exhibited an improvement of 1.65% with every subsequent test. 
 
Step 3: Computation of the Overall Effect size for the MBT study 
Finally, the overall level change was computed using Equation 8 based on the reciprocal of error 
variance, which was computed to be 17.59% (p=0). Similarly, the overall slope change 
coefficient was determined to be 1.14 (p=0.040). Hence, based on the MBT study the level 
change (β2) for the two Student groups, the improvement in the achievement of the stated 
learning objective can be summarized to be 17.59% with a slope change improvement of 1.14 in 
the post-intervention phase.  
 
Conclusion 
The objective of this paper was to provide a reliable and rigorous methodology for researchers to 
test the effects of introducing pedagogical interventions. Such methods are essential to 
understand how various interventions affect student learning and retention. A rationale was 
provided for adopting the MBT technique for this purpose and a clear protocol to test 
intervention related research and statistical hypotheses was discussed. At the present time, there 
is no singular resource for the proper use of the MBT technique in education research. Thus, a 
rigorous analysis methodology was presented based on which valid inferences can be made. 
Finally, the discussions were concluded with methods to preserve validity. A case illustration 
was provided to indicate how the authors have used the MBT method to make valid causal 
inferences regarding the effects of an intervention to improve student hazard recognition skills.  
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