
Session 1359

COMPUTER CONTROL OF MACHINES AND PROCESSES

George A. Perdikaris, Ph.D.
University of Wisconsin-Parkside

Abstract

A method is presented for controlling machines and processes by a microcomputer. Examples
of a motor drive plant (machine) and a heating plant (process) are presented. The computer
controlled systems are designed and simulated using the language SIMULINK.1 The motor
control system is implemented in the laboratory. Results obtained from computer simulation are
compared with laboratory findings.

I. Introduction

Industrial automation incorporating computers is becoming increasingly important in the
production of goods and services. Automation systems are used to make paper, metal, wood,
plastic, and other types of products; similar systems are also used to control the speed and fuel
injection of an automobile or the temperature and humidity of an office building.

The basic premise of modern automation systems is efficient manufacturing. What this means is
that manufacturers can bring new products to the market faster, keep inventories low, make
products of consistently high quality, and have flexible facilities which allow for the
manufacture of a variety of products. Furthermore, such systems help improve communication
within the company as well as with its customers and suppliers.

It is a highly sophisticated job to design and build automation systems that operate and
coordinate manufacturing processes. Quite often, such systems involve the application of
computers to control the speed or position of the shaft of a motor, in real time. The “spinning”
of motors intelligently is a high-tech marvel, fundamental to quality manufacturing. In the
metal processing industry, for instance, the doors of refrigerators, washers, and dryers are
formed out of steel, which is cut to size from large coils of metal and then pressed into shape by
large presses, usually controlled precisely by computers. In the paper, plastics, or wood
industries, as another example, consumer products ranging from toilet paper and baby diapers
to office furniture and automobiles are also made by controlling machines and processes by
computers.

This paper presents practical and systematic methods for modeling, simulation, and real-time
control of two types of industrial systems. First, a method is presented for designing a computer
controlled system that can be used to control the speed or position of a motor drive plant.
Results obtained by computer simulation are verified experimentally. Next, a method is
presented for designing a temperature (process) control system. The Ziegler-Nichols method for
tuning the relevant proportional-plus-integral (PI) controller is illustrated and verified by
computer simulation.

1 SIMULINK is a registered trademark of MathWorks, Inc.

P
age 5.449.1

II. Computer Controlled Systems

Controlling a plant, machine or process, by a computer implies that the computer is an integral
part of a feedback control system. In this configuration, the computer samples the response of
the plant at certain instants of time and compares its findings with prescribed values stored
internally. Any deviation from the desired behavior initiates corrective action as dictated by the
control algorithm (controller), which is also stored in the computer.

When designing a digital control system, it is often practical and convenient to design the
analog prototype control system first. This motivation comes from the fact that successful
designs of analog controllers are well established. The analog control system is then converted
into its digital counterpart by adding appropriate interfaces and adjusting the controller gains.

A closed-loop digital control system is shown in Fig. 1. As can be seen from the diagram,
digital-to-analog converter (DAC) and incremental encoder or motor pulse generator (MPG)
interfaces have been assumed. Specifically, the output of the digital controller (manipulation) is
in digital form and must be converted to analog form before it can be communicated to the
analog plant. A device that accomplishes this is the DAC or D/A. On the other hand, it is
common to control the speed (velocity) and/or position (displacement) of the shaft of a motor
by using a transducer that converts the shaft rotation into a signal that can be read by the
computer. A transducer that does this is the MPG.

The shaft velocity is determined by counting pulses from a device register every T seconds,
where T is the control sampling time. The signal from the pulse generator is proportional to the
change in position from the previous sample. Thus, the pulse generator acts as a differentiator.
For instance, if the input to the MPG represents position in radians (rad), the units of its gain
are (pulses/rev=pulses/2πrad). Therefore, after differentiation, the velocity signal c(k) is
(pulses/T). Specifically, a 2000 pulses/rev MPG has a gain given by

Kdt =
#pulses

rev =
2000

2

()

()

pulses

radπ

A SIMULINK simulation diagram for the overall control system is shown in Fig. 2. Using the
graphical models, the wordlength of interface devices such as the DAC and MPG can be varied
interactively and relevant system responses can be observed graphically or stored for further
evaluation. The designer can also tune (interactively) controllers such as the proportional-
integral-derivative (PID), integral with proportional-derivative-feedback-plus-feedforward
(PDFF) – shown in Fig. 1, or other types of controllers [1][2]. The computer simulation
diagram of Fig. 2 includes blocks for modeling the DAC and MPG interface devices as well as
a block for a trapezoidal profile generator.

A. Modeling an Industrial Motor Plant

It is assumed that the position of the motor shaft is monitored by an incremental encoder
(MPG), which returns change of position (i.e., velocity) per sampling time T; also, the
controller output is communicated to the analog plant via a DAC.

P
age 5.449.2

A motor drive plant is often modeled by a double-integrator transfer function

Gp(s) =
)(

)(

sM

sΘ
=

2s

Km
(1)

where the analog position plant gain Km depends on motor drive parameters. If the DAC and
MPG gains Kda and Kdt are taken into consideration, the digital position plant transfer function
is found to be

Θ()

()

z

M z
= Z[

1
2

− −e

s

K

s

sT
θ

] =
()()

()

K T
z

z

θ
2

2
2

1

1

+

−
 (2)

where the position plant gain Kθ is given by

Kθ = (Kda)(Km)(Kdt) (3)

Kθ can be calculated from given motor drive and interface parameter values or it can be
determined experimentally.

The digital velocity plant transfer function can be determined by differentiating the digital
position plant transfer function. That is,

Ω()

()

z

M z
=

()()()

()

K T
z z

z z

θ
2

2
2

1 1

1

+ −

−
=

()()

()

K T
z

z z

ω

2
1

1

+

−
 (4)

where Kω is the digital velocity plant gain defined by

Kω = TKθ (5)

Like Kθ, Kω can also be determined analytically from motor parameter values or, better yet, it
can be determined experimentally. Kω represents the slope of the unit-step response of the
motor drive plant, which is normally a ramp function.

B. Velocity and Position Control

The motor drive plant is a PWM-powered direct current (DC) motor with current-loop
feedback. The experimentally measured open-loop velocity gain is Kω=5.35, which, assuming a
sampling time of T=0.005 sec, corresponds to a position loop gain of Kθ=1070.

The plant is controlled according to the control strategy of Fig. 1. Note that the block marked
"software" in Fig. 1 denotes software integration if the value of the parameter Kr=1. If Kr=0, on
the other hand, the software integrator is essentially bypassed, which is required if velocity,

P
age 5.449.3

rather than position, is to be controlled. Using the PDFF algorithm, instead of the more
conventional PID, the "software’ integrator can also be changed into a first-order lag term by
adjusting Kr in the range if 0< Kr <1. This can prove useful if the position plant model is not a
double integrator, but a first-order lag followed by a single integrator. Another advantage of the
block diagram of Fig. 1 is that it can be used to control velocity or position using velocity
command and feedback. It can be easily modified, however, for position command and/or
feedback.

For velocity control, the method chosen for tuning the digital controller uses the Bessel filter
form described in Reference [1]. Using this tuning criterion and assuming a system bandwidth
of ωn=50 rad/sec, with a sampling time of T = 0.005 sec, we obtain the controller gains

Kp =
3ω

ω

n

K
= 16.187, Ki =

T

K
nω

ω

2

= 2.34

The other gains are Kv=0, Kd=0, and Ka = 0.

The motor control system was implemented in the laboratory using a Pentium microcomputer.
The relevant signals were "captured" in real-time and downloaded into a data file for plotting.
Simulation and experimental results are shown in Fig. 3.

Note that the 200 (pulse/T) for the step size of the trapezoidal profile shown in the figures
corresponds to 300 RPM. That is, since the rated speed of this motor is 1000 RPM, and the
sampling time is T=0.005 sec, the rated speed in (pulses/T) becomes

1000(RPM)8000(pulses/rev)
0.005 sec

T =667 (pulses/T)

Thus, for 300 RPM, instead of 1000 RPM, the speed becomes 200 (pulse/T).

For position control, the criterion chosen for tuning the digital controller is the ITAE filter
form, also described in Reference [1]. Using this tuning criterion and assuming a position
bandwidth of ωn=30 rad/sec, with T = 0.005 sec, we obtain the controller gains

Kp =
θ

ω
K

n
215.2

=1.81, Ki =
θ

ω
K

T n
3

=0.126, and

Kd =
θ

ω
TK

n75.1
=9.8; also, Kv=0, and Ka = 0.

Simulation and experimental results are shown in Fig. 4, left and right, respectively.

P
age 5.449.4

C. An Algorithm for Process Control

When designing an algorithm to control a process such as the temperature of a building, the
main objective is to find a set of tuning values so that the control system meets transient and
steady-state specifications for tracking reference inputs and/or for rejecting disturbances. Some
applications require a relatively slow response without overshoot; in other cases, speed of
response is essential and oscillations may not be a problem. The tuning problem may be
approached systematically, as in the previous motor control examples, but every problem, new
or old, brings with it new challenges for the designer, particularly in the digital control field.

A method suitable for tuning control algorithms such as the PID was proposed by Ziegler and
Nichols in 1942 [3]. It is called the ultimate method because it requires finding the so-called
ultimate gain (Ku) and the ultimate period (Tu) for the control loop. To find the ultimate gain
Ku, we use the following approach. With only proportional control in operation, increase the
proportional gain until the response oscillates, that is, until the system becomes marginally
stable. The maximum value of the proportional gain for which the system oscillates is the
ultimate gain Ku. The period of the sustained oscillations is the ultimate period Tu.

Ziegler and Nichols used the ultimate gain and ultimate period values to calculate controller
settings for the following form of the PID controller, which is sometimes referred to as the ideal
noninteracting PID controller,

m(t) = KC[e(t) + ∫ dtte
Ti

)(
1

 + Td dt

tde)(
] (6)

A more conventional form of the PID controller, also known as the three-mode controller or the
ideal parallel PID controller, is given by

m(t) = KPe(t) + KI ∫ dtte)(+ KD dt

tde)(
(7)

Thus, the proportional gains are the same for both controllers and the integral and derivative
gains are related by

 KI =
iT

K
C , and KD = KCTd (8)

According to Ziegler and Nichols, the corresponding controller gains can be calculated from
the relationships expressed by equations (9)-(12).

1. (P): KC = 0.5Ku ; Kp = 0.5 Ku (9)

2. (PI): KC = 0.45Ku, and Ti =
Tu

12.
; Kp = 0.45 Ku, Ki =

u

p

T

TK2.1
(10)

3. (PD): KC = 0.6Ku, and Td =
Tu

8
; Kp = 0.6 Ku, Kd =

T

TK up

8
(11) P

age 5.449.5

4. (PID): KC = 0.6Ku, Ti = 0.5Tu, Td =
Tu

8
; Kp = 0.6Ku, Ki =

u

p

T

TK2
, Kd =

T

TK up

8
(12)

Note that the right-hand, lower-case-subscript gain relationships for Kp, Ki, and Kd are for digital
controllers, and that T is the control sampling time. In some cases, sustained oscillations are not
allowed and the ultimate method cannot be used to tune the algorithm. The Ziegler-Nichols
method is illustrated next by an example.

D. A Temperature Control System

A typical heating plant for a building is characterized by two time constants and a deadtime.
For this example, assume time constants of 100 seconds and 10 seconds, and a deadtime of 40
seconds. A plant gain of 1 and a sampling time of 10 seconds are also assumed. It is required to
design a digital PI controller using the Ziegler-Nichols method of tuning.

For the given parameter values, the plant transfer function can be written as

Gp(s) =
)1100)(110(

40

++

−

ss

e s

=
)01.0)(1.0(

)001.0(40

++

−

ss

e s

For simulation and/or analysis purposes, the pulse or digital transfer function of this plant is

GhGp(z) = Z[
s

e sT−−1
Gp(s)] =

(. .)

. .

0 0355 0 02465

12727 0 332871

3

2

z z

z z

+
− +

−

The temperature control system was simulated using only proportional control action first. The
proportional gain was increased until the response oscillated continuously. The ultimate gain
observed is Ku=4.14 and the ultimate period is Tu=170 seconds. From Eq. (10), the PI
controller gains are

KC = 0.45Ku = 1.863, and Ti = 2.1
u

T
=

2.1

170
 = 141.67

For the conventional (analog) PI controller, then, the gains are

KP = 1.863, and KI =
i

C

T

K
=

67.141

863.1
= 0.0132

Thus, the corresponding digital PI controller gains become

Kp = 1.863, and Ki = TKI = 10*0.0132 = 0.132

Simulation results showing the reference and feedback signals are shown plotted in Fig. 5. The
results seem reasonable and, if desired, can be used as a starting point for fine-tuning the
control algorithm.

P
age 5.449.6

III. Conclusions

A practical algorithm for controlling industrial machines and processes has been presented. The
overall control systems can be simulated and implemented in real time using a microcomputer.

Using computer simulation, a designer can change the specifications of the interface devices,
substitute the pulse generator by an ADC, or test the control algorithm when external
disturbances enter the control loop. In the motor control case, the computer simulation results
and the actual/experimental system performance characteristics are in close agreement.

The concepts presented/implied are general and can be applied to design other types of digital
control systems.

Bibliography
[1] G. A. Perdikaris, Computer Controlled Systems: Theory and Applications, Kluwer Academic Publishers, 1991,

reprinted in 1996.
[2] D. Y. Ohm, “A PDFF Controller for Tracking and Regulation in Motion Control,” Proc of the PCIM

Conference on Intelligent Motion, 1990.
[3] J. G. Ziegler and N. B. Nichols, “Optimum settings for Automatic Controllers,” Trans ASME, Vol. 64,

pp.759-768, Nov 1942.

GEORGE A. PERDIKARIS
George Perdikaris is currently a Professor of Engineering and Computer Science at the University of Wisconsin-
Parkside. He received his B.S.E.E. from the University of Illinois in Champaign-Urbana and his M.S.E.E. and
Ph.D. from the University of Missouri-Columbia. Dr. Perdikaris has been actively involved in joint research with
industry in the area of digital/computer control of machines and processes. He teaches in Computer Engineering.

v a
-1K + K (1-z)

z
z-Kr

Ki

K p

motor
drive2(z-1)

(z+1)+ +

-

D
A
C

M
P
G-

d

-

+

K (1-z)-1

(software) (plant)
e(k) c(k)m(k)

r(k)

P
age 5.449.7

Fig. 1. Block diagram of the digital PDFF control system

 Fig. 2. Computer simulation diagram for the PDFF motor control system

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5

manipulation

error

Time (sec)

output (PG)

 Fig. 3. Simulation (left) and experimental (right) results for motor velocity control system

0 0.5 1 1.5 2 2.5
-300

-200

-100

0

100

200

300

Time (sec)

Motor Plant Model

reference & feedback

err

1-z -1

1

deriv_frwd

1-z -1

1
deriv_fbk

Vel_Error

1/s

Vel
Sum2

Sum1Sum

1

1-Krz -1

Soft_int

Sig_Gen

ProfGen

Prof_Gen

1/s

Pos

Km

Plant_gain

Mux

Mux1

Mux

Mux

MPG

MPG

Kv

Kv_gain

Kp

Kp_gain

Ki

Ki_gain

Kd

Kd_gain

Ka

Ka_gain

z

z-1
Integr

DAC

DAC

 manip & output

P
age 5.449.8

 Fig. 4. Simulation (left) and experimental (right) results for motor position control system

 Fig. 5. Simulation results for temperature control system

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5

manipulation

output (PG)

Time (sec)
0 0.5 1 1.5 2 2.5

-300

-200

-100

0

100

200

300

Time (sec)

0 200 400 600 800 1000 1200 1400 1600 1800
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

in
pu

t
&

 o
ut

pu
t

Simulation: Temperature Control System

P
age 5.449.9

