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Abstract 

 

To transform the STEM learning environment and make it more effective, exciting and experien-

tial, hands-on learning needs to be implemented in the classroom. This is the long term goal in a 

set of NSF projects, one a new IUSE project and a continuing TUES/CCLI project enhanced 

through a USAID/NSF PEER and TUES supplement. The objectives are to build and dissemi-

nate light weight, low-cost Desktop Learning Modules (DLMs), with interchangeable Fluid Me-

chanics, Heat Transfer and Biomass Conversion cartridges. The TUES laid a foundation result-

ing in a marketed technology being used in classrooms around the world in universities, commu-

nity colleges and high schools, while the IUSE seeks to extend the technology to an ultra-low-

cost format through design-for-manufacture with 3D printing and vacuforming. 

 

Studying the impact of these DLMs is crucial to the success of this research to determine educa-

tional effectiveness. Assessment strategies are being refined, and we have now added a pre-/post 

motivation survey to add to our technical assessment centered on pre-/posttest written explana-

tions to provide a more subjective grading rubric. 

 

DLM cartridge options are also being expanded to include biofuels options. However, gasifica-

tion is highly exothermic resulting in high temperatures that can create high pressure if gases are 

confined in small spaces. Therefore, the biogasifier DLM design requires special safety specifi-

cations so class demonstrations do not pose risks for students and instructors. Considerations in-

clude gasifier placement into a polycarbonate shielded container for easy visualization, reducing 

reactor size to mm-diameter quartz tubes to create a classroom safe system that limits total ther-

mal energy, directed thermal heating through electrical resistance wires, and providing unique 

conversion measurement means such as a small syringe cylinder / piston unit where the piston 

expands along a graduated strip to read volumes of reaction gases while holding pressures at near 

atmospheric levels. Syngas cleanup will be accomplished by passing products through a fiber-

glass filter to reduce tar, bubbling through olive oil to remove any remaining tar and cool the gas 

stream, absorption of acidic CO2 and H2S gases in mono-ethanol amine, and collecting final 

product gas in the syringe. Gas production from specified products will be pre-determined 

through GC analysis and relating conversion to final gas volumes, after knowing reaction condi-

tions, and the nature of side-product removal processes. To make such systems relevant to edu-

cating students about gasifier design in resource limited environments, the team is working inter-

nationally with Ahmadu Bello University and the National Research Institute for Chemical 

Technology in Zaria, Nigeria. This enhances the education of US students by providing experi-

ences with a transnational collaborative team. 

 

In this paper we will present technical aspects surrounding development of a number of new 

learning cartridges, both low-cost vacuformed models already fabricated and classroom tested 

and those in the planning stages including a Solid Works image and COMSOL model of a new 

simplified Shell and Tube Heat Exchanger and the Biomass cartridge explained above. We will 
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also focus on our new pre-/post motivation survey and planned implementations of the hands-on 

learning modules to undergraduate and high school students at a small number of institutions. 

 

Introduction 

 

Hands-on teaching methods have a long history, but generally these are in the form of science-

based laboratory classes that accompany lecture courses or capstone laboratory courses such as 

the chemical engineering unit operations laboratory.  

 

While STEM instruction is considered mature, engineering students graduate with a surprising 

lack of understanding of core concepts, even though seasoned professors teach the material. A 

marked reversal occurs with team activities as Washington State University (WSU) students who 

used miniaturized desktop learning modules (DLMs) registered a gain of 0.57 (1.0 possible) with 

70% of the students achieving minimum competency.
1
 This is compared to a respective 0.26 gain 

and 39% competency for a control group taught by lecture, with an average effect size of d = 

0.98. Substantive affective gains accompany results every time DLMs are implemented, whether 

in the US,
2
 or internationally, e.g., at Ahmadu Bello University.

3
 DLMs are designed to demon-

strate industrial fluid flow and heat transfer concepts within a standard classroom
4
 allowing stu-

dents to visualize how processes work and immediately tie mathematical models to physical real-

ities. However, a recently commercialized DLMX costs $18,000 per station, albiet with 7 

interchangeable cartridges for various fluid mechanics and heat transfer learning applications. 

These, however, are not affordable for every institution, and certainly not for an individual 

student, nor are they light and compact enough to be taken home. What is needed now is to offer 

alternatives for these special cases in the form of ultra-Low Cost LC-DLMs, affordable by every 

student, to broadly disseminate DLMs and demonstrate efficacy in enhancing conceptual 

understanding, recruitment and retention at universities, community colleges and high schools 

across the US. 

 

Given preliminary success with commercialization of the DLMX we have moved to design-for-

manufacture efforts using 3-D printers to make molds used to vacuform matching halves of fluid 

flow and heat transfer equipment that are then assembled, tested and introduced into the class-

room. Our objectives are to build and broadly disseminate light-weight, portable LC-DLMs with 

interchangeable Fluid Mechanics and Heat Transfer cartridges with a per-unit cost about that of a 

textbook ($100 – $200), and study their longitudinal impact on educational effectiveness, 

recruitment from high schools and community colleges, and retention in engineering programs. 

We also are developing biomass conversion systems, though not amenable to vacforming, that 

are inexpensive and light-weight and which consist of miniature, safe, low-energy content 

pyrolysis and gasification units. In this paper we highlight recent progress on the LC-DLMs, a 

Solid Works image and COMSOL model of a shell and tube heat exchanger, a new motivational 

survey and near term plans for implementing sets of the hands-on learning modules within pro-

grams at branch campus, a nearby private university and regional high schools. 
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LC-DLM system with base and hydraulic system 

 

We demonstrate a new approach to introduce low-cost experiments into engineering classes to 

enable active learning by students to help them master concepts in fluid mechanics and heat 

transfer. The approach is based on previous work by our group on developing in-class engineer-

ing experiments called Desktop Learning Modules or DLM’s.
5,6

 More recent work on applying a 

design-for-manufacture approach that leverages flexible manufacturing tools such as CAD, 3-D 

printers and vacuforming machines has resulted in the possibility of producing an array of simple 

and easy-to-use experimental hardware at very low cost.
7,8

 The present work introduces several 

sets of experimental hardware that have been developed and implemented in undergraduate en-

gineering courses. We have developed Venturi Nozzle experiments designed to exercise students 

understanding of the Bernoulli equation and Pipe Flow experiments designed to help students 

master principles of head loss. The experimental devices to be demonstrated here have been fab-

ricated using a four step approach as shown in Figure 1. First, commercial CAD software is used 

to define the geometry of an experiment. Second, a rapid prototyping machine is used to 3-D 

print a plastic mold of the design. Third, a vacuformer is used to form thin plastic sheets around 

the 3-D printed mold. Finally, the vacuformed sheets are assembled together to produce multiple 

copies of the experiment. The Venturi (Figure 2) and Pipe Flow/Head Loss experiments have 

been implemented in a junior-level Mechanical Engineering Fluid Dynamics course as well as a 

junior-level Chemical Engineering Fluid Mechanics and Heat Transfer Course. To date, more 

than 150 students have tried out these low cost experiments in active learning experiences. The 

results of these first implementations indicate the value of this approach for making possible a 

wide variety of experimental activities for classroom use, for take home homeworks, and for dis-

tance education. 

 

                      

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Design for manufacture process for LC-DLMs. 
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Figure 2. Venturi DLM. 

 

LC-DLM Shell and Tube Heat Exchanger 

 

To manufacture an ultra-low-cost shell and tube heat exchanger, based on the calculations done 

using Kern’s method, two halves of the shell were designed in SolidWorks and 3-D printed in 

ABS plastic, with grooves on each mold prepared for insertion of baffles. Tube plates were also 

3-D printed using ABS materials; however, to reduce expense all baffles were made by laser cut-

ting PETG plastic of 0.02” thickness. Then, using a vacuforming machine and the two 3-D print-

ed molds, each half of the shell was formed from a PETG thermoform plastic sheet. After pass-

ing the tubes through the tube plates and baffles, the two halves were glued together with adhe-

sive to form the final assembly (Figure 3). 

 

The first design of the ultra-low-cost shell and tube heat exchanger was made with 5 tubes per 

pass (10 tubes total). The entire system, including pumps, tubing, batteries, etc. cost less than 

$80. To reduce the cost even more, our plan is to re-design the heat exchanger into a smaller ge-

ometry with fewer tubes. A summary of calculations for the second generation design with just 3 

tubes per pass is found in Table 1. As shown in this table, the most cost-effective design, which 

also allows for a turbulent tube side velocity, may be made using 0.25" OD / 0.12 ID" tubing. 
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Figure 3. Shell and tube heat exchanger. 

 

LC-DLM 2D Heat Exchanger 

The goal in this aspect of the project is to design a very simple shell and tube heat exchanger 

which clearly shows the flow pattern on the shell side, again of small size and with low cost ma-

terials. This instrument will help students to have a better understanding of heat transfer and fluid 

mechanics principles.  We began by designing the heat exchanger in SolidWorks, shown in Fig-

ure 4, as a system with 4 tubes of 0.25” diameter and 6” in length. The tubes are arranged linear-

ly in 4 rows, and the shell is rectangular, 2” in height and 5” in length. COMSOL modeling was 

used to model the system in counter-current mode. We set the inlet temperature for the tube and 

shell sides to be 320 K and 290 K, respectively. The flow rate was set at 500 ml/min on the shell 

side, and for tube side we applied different flow rates from 100 to 600 ml/min with COMSOL 

results shown in Figure 5 for the highest tube side flow rate. 

 

Figure 4. SolidWorks Model, Shell and Tube Heat Exchanger (2 pass tube-side). The tubes have 

an outer diameter of 0.25” and length of 6”, and are located in 4 rows. The shell is a rectangle 2” 

in height and 5” in length. Four baffles are mounted with a 0.75” baffle spacing.   P
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Figure 5. COMSOL 3-D Model with temperature distribution in the Shell and Tube Heat Ex-

changer with hot fluid in the tube side and cold fluid on the shell side with a flow rate of 600 

ml/min on the tube side and 500 ml/min on the shell side. The inlet flow temperatures were set at 

320 K and 290 K for the tube and shell sides, respectively. The out flow temperatures obtained 

were 312 K for the tube side and 301 K for the shell side which shows an 8 degree decrease on 

the tube side and an 11 degree increase on the shell side. 

 

 

Gasification reactor and syngas cleanup system 

 

A miniaturized biogasification system for use in resource limited environments and for applica-

tions in the engineering classroom is being developed through collaboration between WSU, and 

Table 1. A summary of calculations for second generation design with just 3 tubes per pass. 

Uo, assumed 

 [
𝑾

𝒎𝟐𝑲
] 

Tube Price 

 

Ut

[
𝑾

𝒎𝟐𝑲
] 

 

Ret 
Pt

[𝑚𝑚 𝐻𝑔] 

Us 

[
𝑾

𝒎𝟐𝑲
] 

Res 
Ps 

[𝑚𝑚 𝐻𝑔] 

 

Uo,cal

[
𝑾

𝒎𝟐𝑲
] 

 

Er-

ror 

1026 
5/16" OD 

0.243" ID 

6 ft: 

$11 
0.33 2586 640 0.05 422 289 577 43% 

1282 
1/4" OD 

0.194" ID 

6 ft: 

$29 
0.52 3239 1740 0.08 524 872 958 25% 

1465 
7/32" OD 

0.188" ID 

28 in: 

$19 
0.55 3343 2000 0.1 597 1686 1010 30% 

1282 
1/4" OD 

0.12" ID 

6 ft: 

$19 
1.36 5237 15,000 0.08 524 872 988 22% 
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the National Research Institute for Chemical Technology (NARICT) and Ahmadu Bello Univer-

sity both in Zaria, Nigeria. The current system uses a resistance wire to provide energy to a 

quartz reactor of 1mm ID, 3 mm OD, where air acts as the gasifying agent in the reaction. The 

current biomass being used in the reaction consists of toothpicks, and the syngas from the system 

is collected and analyzed with a gas chromatograph. A syngas cleanup system (Figure 6) consist-

ing of two flasks, one with olive oil to remove tar, and a second with MEA to remove carbon di-

oxide was designed by the NARICT, fabricated in the US, and is currently being tested. The sys-

tem will be implemented in a thermochemical conversion classroom, highlighting concepts sur-

rounding the changing syngas composition from pyrolysis and gasification reactions with the 

volumetric syringe at the outlet, noting the change in volume from the solid biomass to the gase-

ous vapors.  

 
Figure 6. Gasification reactor and Syngas cleaning system. 

 

Motivation Survey 

 

Various reports published during the past decade highlight a wide range of problems with engi-

neering curricula, especially the lecture-dominated form of transmitting core engineering con-

cepts to students.
9-13

 These reports also indicate motivation for learning engineering concepts is 

waning among college students. To enrich student learning experiences, instructional methods 

need to be engaging and should seek to promote meaningful learning. While cognitive outcomes, 

such as recall and transfer measures, etc., might be indicators of success in such endeavors, non-

cognitive variables are proxies that provide a more holistic picture of the students’ learning pro-

cess.
14,15

 Hence, we are exploring a program of research to examine how the use of DLMs in 

classrooms influences student motivation and learning strategies. Preliminary investigations have 

used the Motivation Strategy for Learning Questionnaire (MSLQ)
 15

 assess differences in moti-

vation and learning strategy due to learning with the DLMs. The MSLQ is comprised of 81 items 

measuring six motivational and nine learning strategy constructs on a 7-point rating scale. We 

administered 43 items covering eight constructs measured by the instrument with a question 

sample set shown in Table 2. We plan to use the data to make group comparisons, as well as to 

model predictors of cognitive learning outcomes. Our findings are expected to provide insights 

for the evaluation of DLM implementations. Our long-term goal is to improve future implemen-
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tations to maximize the teaching and learning benefits of DLMs in engineering and science class-

rooms. 

 

Table 2. Sample Motivational Survey Questionnaire. 

Sample Questions Target Construct 

The use of DLMs could encourage me to try and 

work with other students from this class to com-

plete the course assignments.  

Peer Learning 

Despite the use of DLMs I often missed im-

portant points because I'm thinking of other 

things.  

Metacognitive Self-Regulation 

I work hard to do well in this class even if I don't 

like what we are doing.  
Effort Regulation 

I try to apply ideas from course readings in other 

class activities such as lecture and discussion.  
Elaboration 

Getting a good grade in this class is the most sat-

isfying thing for me right now.  
Extrinsic Goal Orientation 

 

Institutions Involved 

Table 3 lists the institutions involved as well as expansion sites where LC-DLMs are expected to 

be implemented.  
 

Table 3. Institutions involved in LC-DLM effort. 

Institute Department Class Term 

WSU-Pullman Mechanical Engineering Fluid Mechanics Fall 2014 

WSU-Everett Mechanical Engineering Fluid Mechanics Fall 2014 

WSU-Bremerton Mechanical Engineering Fluid Mechanics Fall 2014 

WSU-Pullman Mechanical Engineering Fluid Mechanics Spring 2015 

WSU-Pullman Mechanical Engineering Thermal System Design Spring 2015 

WSU-Pullman Chemical Engineering Fluid Mech. & Heat Transfer Spring 2015 

WSU-Everett Mechanical Engineering Heat Transfer Fall 2015 

WSU-Bremerton Mechanical Engineering Fluid Mechanics Fall 2015 

Gonzaga University Mechanical Engineering Fluid Mechanics Fall 2015 

Gonzaga Prep. High School Mechanical Engineering Heat Transfer Fall 2015 

Pullman High School Science Physics and Basic Science Fall 2015 

 

Conclusions 

 

Our goal as stated is to develop ultra-low cost hands-on learning equipment affordable to every 

student. To date, we have made a base unit, vacuformed Hydraulic Loss and Venturi cartridges 

and implemented them initially in mechanical and chemical engineering classrooms. A simple, 

safe and inexpensive biomass conversion unit also is in progress, as well as a vacuformed shell 

and tube heat exchanger for which a preliminary design has been built. Pre-/post quizzes have 

been implemented as well as a motivational survey. As continual efforts are underway for im-
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plementation and assessment in various chemical and mechanical engineering classes, more de-

tails will be reported at the 2015 ASEE meeting. 
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