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Introduction 
Cycloids are curves traced by a point on the circumference of a circle that rolls on a 
straight line or another circle. The latter category is often referred as trochoids. 
Mechanisms with cycloidal geometry include cams, gears, gear trains, rotary engines, and 
blowers.  
 
Cycloidal gears, whose teeth have cycloidal profiles, are now almost obsolete, replaced 
by involute gears because of manufacturing costs. The Wankel engine, with its rotor and 
chamber based on cycloidal curves, has leakage problems and has not gained wide 
acceptance. Cams with cycloidal displacement are being replaced by those with 
polynomial function displacement. Consequently, most textbooks in kinematics do not 
cover these topics or cover them with limited scopes. Students and practicing engineers 
therefore do not have proper exposure of these subjects.  
 
With new ways of gear manufacturing like injection molding, cycloidal gears are 
reemerged as an option. Additionally, cycloidal gears should also play an important role 
in the emerging field in Micro Electro-Mechanical Systems (MEMS) [1]. Moreover, 
there is a renewed interest [2] in the Wankel engine for hybrid vehicles with hydrogen 
fuel.  
 
To help students understand and visualize the motion of these mechanisms, the author has 
developed courseware on cycloidal gears, cams, and other mechanisms, with simulation 
files generated from MATLAB, Working Model 2D, and visualNastran 4D.  
 
Animations of different cycloidal curves can be found at Eric Weisstein’s World of 
Mathematics, a Wolfram Web Resource [3,4,5]. An interactive Java program Spirograph 
[6] is available on the web. However, computer simulation of cycloidal mechanisms 
cannot be found.   
 
All curves shown in this paper are generated with MATLAB, and each MATLAB file 
can generates animated simulation. Working Model 2D files, based on the geometry 
generated from these MATLAB files, help students visualize the motion of these 
cycloidal mechanisms. The simulation files are hyperlinked with text files containing 
background information and cycloidal equations.  
 
Cycloids, Trochoids, and Spirograph 
Cycloid is a curve traced by any point rigidly attached to a circle of radius a, at distance b 
from the center, when this circle rolls on a straight line. The equation is: 

P
age 7.875.1



 
sin

cos
x a b
y a b

θ θ
θ

= −
= −

        (1) 

where θ  defines the angle of the moving radius. The curve is called prolate or curtate if b 
< a or b > a, as in Figure 1 and 2 respectively. When b = a, as in Figure 3, it is the special 
case of the cycloid.  
 
Cycloid is a subset of trochoids, and sometimes is treated as a synonym of trochoid. 
Trochoids [7,8] are curves generated by tracing the path of one point on the radius of one 
circle (the driven circle) as the circle rolls on another circle (the base circle). It should be 
noted that the point lies on the same rigid body as the circle, but is not confined to the 
circumference of the circle, and sometimes even lies outside the extents of the circle. 
 
The epitrochoid (sometimes referred as epicycloid) is a curve traced by any point rigidly 
attached to a circle of radius a, at distance b from the center, when this circle rolls 
without slipping on outside of a fixed circle of radius c. The epitrochoid equations is:  
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where θ  defines the angle which the moving radius makes with the line of centers. The 
curve is called prolate or curtate if b < a or b > a, as in Figure 4 and 5 respectively. When 
b = a, as in Figure 6, it is the special case of the epitrochoid.  
 
The hypotrochoid (sometimes referred as hypocycloid) is a curve traced by any point 
rigidly attached to a circle of radius a, at distance b from the center, when this circle rolls 
without slipping on inside of a fixed circle of radius c. The hypotrochoid equations is:  
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where θ  defines the angle which the moving radius makes with the line of centers. The 
curve is called prolate or curtate if b < a or b > a, as in Figure 7 and 8 respectively. When 
b = a, as in Figure 9, it is the special case of the hypotrochoid. Figure 10 shows the 
epitrochoid and hypotrochoid in each of the three cases. 
 
Spirograph, as shown in Figure 11, is a popular toy based on cycloids. A set of ridged 
plastic circles with ridged edges (like gear teeth) creates the intricate curves when a pen 
traced the path of the small circle as it rolled along inside or outside of a bigger circle, as 
shown in Figures 12 and 13. 
 
Wankel Engine 
Wankel engine, a rotary engine, has a rotor shaped like an equilateral triangle with curved 
side and moves within a stator, as shown in Figure 14. This mechanism allows for 
volume changes within the combustion chamber.  In theory, a rotary engine should be 
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smooth and much more efficient than a conventional reciprocating piston engine.  
Furthermore, the number of moving components is greatly reduced in comparison to a 
conventional engine.  This results in a considerable reduction in weight, an improvement 
in efficiency and a reduction in manufacturing costs.   
 
The rotor has an internal gear cut into it, and as the rotor moves around the chamber, its 
ring gear drives a pinion on eccentric output shaft.  Thus the pinion and ring gear become 
the base and driven circles (respectively) in the peritrochoid as shown in Figure 15. The 
peritrochoid curve, as shown in Figure 16, is used as the bore of the Wankel engine. 
 
The peritrochoid is a curve traced by any point rigidly attached to a circle of radius a, at 
distance b from the center, when this circle rolls without slipping on outside of a fixed 
circle of radius c. The peritrochoid [9] is similar to the epitrochoid except that in 
peritrochoid, the smaller base circle is inside the driven circle. The peritrochoid equation 
is: 
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where θ   is the angle which the moving radius makes with the line of centers. a is the 
radius of moving circle; b is the distance from the traced point to the center of moving 
circle; c is the radius of base circle.  
 
Another form of the equation can be represented: 
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       (5) 

θ  in this equation is defined as the angle which the fixed radius makes with the line of 
centers. 
 
Notice that to get a closed curve, one must maintain a certain relationship between the 
two circles. Namely, the radii of the base and the driven circles are constrained as: 

( 1)  1,c a Nλ λ λ λ= − ∀ ≠ ∈        (6) 
 
Peritrochoidal curves have “lobes”, with the number of lobes in the curve being equal to 
γ. Although Wankel engines can be produced from any trochoid, the two-lobed 
epitrochoid is the preferred profile for the outer chamber. 
 
To find the interior envelope of a given trochoidal bore, one can invert the Wankel engine 
mechanism. When the pinion rolls inside the ring gear, every point on the peritrochoid 
(which is still rigidly fixed to the pinion) traces out some curve in space. The collection 
of all these curves has both an outer and an inner profile. Figure 17 illustrates the locus of 
curves generated by rotating a two-lobed peritrochoid. 
 
The equation for contour of these curves is: 
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where a is the radius of moving circle; b is the distance from the traced point to the center 
of moving circle; c is the radius of base circle, η  is from 0° to 360° as shown in Figure 
18. 
 
The rotor profile, as in Figure 19, is the interior portion of the contour in Figure 18. It is 
obtained by plotting the positive roots over the range η = [30°, 90°], [150°, 210°] and 
[270°, 330°]. 
 
Figure 20 shows both the rotor (Figure 19) and chamber (Figure 16). This geometry is 
exported to Working Model 2D to produce the geometry for motion simulation, as show 
in Figure 14. 
 
Cams with Cycloidal Displacement 
The displacement s of the cam follower is the projection of a point of cycloidal curve, 
which is generated by rolling a circle on a line, to the s-axis (y-axis), as shown in Fig 21.  
The equation of cycloidal displacement is: 
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where h is the total rise or lift; θ  is the camshaft angle; β  is the total angle of the rise 
interval. Note that Equation (8) is in the same form as Equation (1). The velocity, 
acceleration and jerk equations are: 
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The s v a j diagrams are shown in Fig. 22. The cam profile created is then shown in 
Figure 23. 
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Cycloidal Gears 
The cycloidal tooth profile [10] of a gear is generated by two circles rolling on the inside 
and outside of the pitch circle for the hypocycloidal flank and the epicycloidal face 
respectively, as shown in Fig 24. Figure 25 shows the curves superimposed on a gear. 
Note that in generating one side of a tooth, the two generating circles roll in opposite 
directions. Note that these two circles are of the same size and the generating circle’s 
radius is 1/3 of the radius of the base circle. 
 
The cycloidal tooth profile was extensively used for gear manufacture about a century 
ago because it is easy to form by casting. Involute gears have completely replaced 
cycloidal gears for power transmission as involute gears can be produced accurately and 
cheaply using hobbing machines.  
 
Nevertheless, cycloidal gears are extensively used in watches, clocks, and certain 
instruments in cases where the question of interference and strength is a prime 
consideration. A cycloidal tooth is in general stronger than an involute tooth because it 
has spreading flanks in contrast to the radial flanks of an involute tooth. In watches and 
clocks, the gear train from the power source to the escapement increases its angular 
velocity ratio with the gear driving the pinion. In a watch, this step up may be as high as 
5000:1. It is therefore necessary to use pinions having as few as six or seven teeth. In the 
field of Micro Electro-Mechanical Systems (MEMS), large speed reduction is expected, 
and therefore cycloidal gears can play an important role. 
 
Roots Blowers 
A Roots blower is a positive displacement machine that uses two or more rotating lobes 
in a specially shaped rotor, usually shaped like the figure-8, as shown in Fig. 26. The 
lobes intermesh with each other and are driven by a pair of meshing gears of equal size 
on the back of the case. As the rotors turn, a fixed quantity of air is drawn in from the 
opening at the inlet trapped between the rotor and the casing, and then forced out the 
discharge. There is no actual compression ratio built into the machine, it is simply an air 
mover. 
 
The rotors are cycloids, and the cycloidal curves are combination of the epicycloidal and 
epicycloidal curves, just as in cycloidal gears. Note that both moving circles are of the 
same size and the radius of the moving circle is ¼ of the radius of the base circle. 
 
In the modern application, the Roots blower has three lobes on each rotor, as shown in 
Fig. 27, and is used for a low-pressure supercharger on diesel engines. Note that the 
moving circles are of the same size and the radius of the moving circle is 1/6 of the radius 
of the base circle. 
 
Epi-Cycloidal Gear Trains 
The epicycloidal gear train, as shown in Fig. 28, is similar to the planetary gear train 
shown in Fig. 29, except that the ring gear is replaced by a second sun gear. The gear 
train is coaxial and offers high reduction ratios. 
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Discussion 
Mathematical terms of trochoidal curves and their applications in different mechanisms 
are reviewed in this paper. These topics do not get sufficient coverage in a typical 
textbook, and visualizing them in motion is very challenging. Each cycloidal mechanism 
discussed in this paper has a motion simulation file developed using MATLAB, Working 
Model 2D, and visualNastran 4D files.  
 
These simulation files are part of a multimedia handbook of mechanical devices [11] with 
over 300 simulation files. In this multimedia resource, hyper-linked text files and 
simulation files in MATLAB, Working Model 2D and visualNastran 4D will assist 
students and working professional gain sufficient information in a just-in-time mode. The 
multimedia courseware is now under contract with McGraw-Hill for publication in 2003.  
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Figure 1 Prolate Cycloid    Figure 2 Curtate Cycloid   

 
Figure 3 Cycloid  
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Figure 4 Prolate  Epitrochoid  Figure 5 Curtate Epitrochoid  Figure 6 Epitrochoid  

 

       
Figure 7 Prolate Hypocycloid    Figure 8 Curtate Hypocycloid     Figure 9 Hypocycloid  

 

 
Figure 10 Hypocycloid and Epitrochoid – Prolate, Curtate, and Special Case  

 

 
Figure 11 Spirograph 
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   Figure 12 Spirograph- Epitrochoid       Figure 13 Spirograph- Hypotrochoid 

 

 
Figure 14 Wankel Engine 

 

               
 

Figure 15 Base and Driven Circles            Figure 16 Two-Lobed Peritrochoid  
 
 
 

   
Figure 17 Inversion of the Peritrochoid     Figure 18 Contour of the Inversion 
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Figure 19 Interior of the Contour as the Rotor      Figure 20 Rotor and Chamber 

 

 
Figure 21 Cycloidal Displacement of a Cam 
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                                                 Figure 22  s v a j diagrams 
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Figure 23 A Cam with Cycloidal Displacement 

 
 

 
Figure 24 A Cycloidal Gear Tooth Profile   

 
Figure 25 A Cycloidal Gear with Cycloidal Curves 

 
 

 
Figure 26 A Roots Blower with Two Lobes 
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Figure 27 A Roots Blower with Three Lobes 

 

   
Figure 28 Epi-Cycloidal Gear Train   Figure 29 Planetary Gear Train         
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