
Paper ID #12554

Motivating non-electrical and computer engineering students to learn C Pro-
gramming

Dr. Nicholas A Baine, Grand Valley State University

Nicholas Baine, Ph.D., is an Assistant Professor in the School of Engineering. His expertise is in the
design of electrical control systems and sensor data fusion. As an instructor, he specializes in teaching
freshman courses as well as control systems and design of digital and embedded systems. While at
Wright State University, he was part of the group which developed a new model to teach mathematics
to engineering students. As a new faculty member at Grand Valley State University, he is working with
faculty to develop and improve the relatively new freshman design courses.

Dr. Hugh Jack, Grand Valley State University

Dr. Jack is a professor of Product Design and Manufacturing Engineering at Grand Valley State University
in Grand Rapids, MI. His interests include robotics, automation, and design.

c©American Society for Engineering Education, 2015

P
age 26.1171.1

Motivating non-electrical and computer engineering students
 to learn C Programming

Abstract

All too often, non-electrical and computer engineering students (in particular, manufacturing and
mechanical engineering students) perceive computer programming as irrelevant to their studies 1,

2. This is not surprising in that computer programming is taught almost exclusively with non-
manufacturing examples. To address this problem a programming project was created for a
freshman class. The project focused on a tolerance stack with a gap specification. The paper
outlines the tolerance problem, core programming concepts, and the final solution. The
programming assignment and a sample solution are provided in the appendices for reuse or
modification for other engineering schools.

Introduction

The freshman year at Grand Valley State University is common for all disciplines: Computer,
Electrical, Mechanical, and Product Design and Manufacturing Engineering. In the first
semester, the students take a course, EGR 106 Introduction to Engineering Design I, the first of a
course sequence that combines basic CAD/CAM design with C programming. In the second
semester, students take EGR 107 Introduction to Engineering Design II, and EGR 220
Engineering Measurement and Data Analysis. The project described in this paper was used in
EGR 107. Students in the course have intermediate programming abilities. In addition, they were
taught a tolerance stack analysis technique earlier in the semester of the same course.
Simultaneously the students have been exposed to statistical variations in EGR 220. Up to this
point many of the freshmen see the topics as disconnected. Anecdotally this attitude persists for
many students until the junior year.

The remainder of this paper outlines the assignment provided in Appendix A, and the solution
provided in Appendix B. Other resources include kinematics, structures, and digital logic 3, 4.

Tolerance Stacks and Simple Analysis

The tolerance analysis problem chosen was a linear stack of parts with nominal dimensions and
statistical variation. The first problem-solving step is to identify a tolerance loop in an assembly.
A table of values is constructed including the nominal dimension and tolerance for each part. The
table also indicates whether each part has a positive or negative effect on the characteristic
feature, often a gap. In addition, all parts are identified as fixed or variable based on the cost of
specification modification. Eventually the variable parts will be changed to make the design
match the gap specification. A sample tolerance case is shown in Figure 1.

P
age 26.1171.2

Figure 1 - A sample tolerance stack problem (lecture slide)

As always the first step for students is to convert the problem to a normalized form. In this case
the tolerance table shown in Figure 2. The dimensions of the part and bilateral tolerances are
listed in columns 1 and 3. Note that D2 was a given as a unilateral tolerance, but was converted
to a bilateral tolerance for the table. The sensitivity is a sign that dictates whether a dimension
adds or subtracts from the characteristic feature (gap). D1 and D2 have negative sensitivity
because if they get larger the gap becomes smaller. However when D3 becomes larger the gap
does too, so the sign is positive. Two of the parts, D1 and D2, are made in-house and will cost
less to change, so they are marked a ‘V’ variable. The outside part, D3, is ‘F’ fixed because is
made elsewhere and would have a higher cost to change. The table is then used to calculate the
gap size and tolerance based on the part dimensions only. It is important to note that this is not
the gap specified. At this point, there is a difference between the gap specified (0.000” to 0.080”)
and the resultant gap (0.025” +/- 0.085”). Therefore, the tolerances on the individual parts are too
large and the resultant gap will not satisfy the specified gap.

Figure 2 - Tolerance table with values and gap values (lecture slide)

P
age 26.1171.3

The assignment specifies that students must read a tolerance table from a file in the format
below. The numbers in the files, and in the following examples are based on the example in
Figure 1. During this step, the students work with basic file pointers, string reading, and parsing.
They must also create a basic data structure. The example program in Appendix B does this,
using standard C functions.

PART,2.000,-1,0.050,V
PART,0.975,-1,0.025,V
PART,3.000,+1,0.010,F
GAP,0.000,0.080

Once the data array has been populated, a simple analysis is done, including the calculation seen
in Figure 2. The sample output below shows that the upper and lower specified limits are both
violated. Essentially the part tolerances and dimensions will not satisfy the gap specification.

Actual Gap Mean: 0.025”
Actual Gap Tolerance: 0.085”
The Maximum Gap (0.110”) is (Greater) than specified
(0.080”)
The Minimum Gap (-0.060”) is (Less) than the specified
(0.000”)

Tolerance and Dimension Correction

In a very good design, the part dimensions and tolerances would sum up to equal the specified
gap values. In this case the total is larger than the specified gap, and the tolerances will have to
be reduced. In this case the students must change the ‘V’ variable part dimensions and
tolerances. Figure 3 shows the equations for recalculating dimensions and tolerances. The
example decides to only change D2. D1 could have also been changed, but was fixed for
simplicity. The tolerance equation shows that x1 + x2 = 0.030 for an exact solution. It is then up
to the student to select a solution.

P
age 26.1171.4

Figure 3 - Fixed versus variable constraint equations (lecture slide)

Ideally, the new dimensions and tolerances will exactly match the specification. The worst
acceptable case would be to set all variable tolerances to zero. To add complexity, sometimes the
fixed part dimensions and tolerances make it impossible to meet the specifications. This step of
the process solution allows the most flexibility and technical problem solving on the part of the
students. The example provided in Appendix B adds or subtracts the same amount from all
variable tolerances to meet the specification. Likewise the same value is added/subtracted from
all nominal dimensions to meet the mean gap value. Sample output from the program is shown
after the correction routine.

Actual Gap Mean: 0.040000"
Actual Gap Tolerance: 0.040000"
The Maximum Gap (0.080000") is (Equal) to specified
(0.080000")
The Minimum Gap (0.000000") is (Equal) to specified
(0.000000")

Parts table
 PART 0 : dimension = 1.992500 +/- 0.027500, sensitivity =
-1.000000, type = Variable
 PART 1 : dimension = 0.967500 +/- 0.002500, sensitivity =
-1.000000, type = Variable
 PART 2 : dimension = 3.000000 +/- 0.010000, sensitivity =
1.000000, type = Fixed
Gap min=0.000000, max=0.080000

P
age 26.1171.5

Monte Carlo Simulation

The final stage of the assignment is to do a statistical analysis of the tolerance stack using
random variation. The students were provided with a function that would take the part dimension
and tolerance and return a random value. It was assumed that the tolerance was equal to 3
standard deviations. The function uses the Box-Muller technique to generate a Gaussian
distribution given that the random number generator included in standard C libraries is limited to
a uniform distribution.

void random_dimension(double nominal, double tolerance,
double *random_value){
 double r1, r2, w, r;

 do {
 r1 = 2.0 * ((rand() % 10001) / 10000.0) -
1.0;
 r2 = 2.0 * ((rand() % 10001) / 10000.0) -
1.0;
 w = r1 * r1 + r2 * r2;
 } while (w >= 1.0);
 r = sqrt(-2 * log(w) / w);
 *random_value = nominal + (tolerance/3) * r * r1;
}

The programming required for this technique is trivial, but it reveals the important properties of a
non-uniform distribution. Students are able to simulate the statistical distributions before and
after the correction algorithm. The assignment requires students to output gap values to a text file
and then use other software to graph the results. The two distributions from the program in
Appendix B are shown in Figure 4.

Figure 4 - Statistical Distribution of Tolerance Stack Data

P
age 26.1171.6

Discussion

Most engineering students learn programming in isolation of engineering problems. This is
mitigated by using resources and texts for problem solving with programming. Most of these
texts have resources that relate to either mechanical or electrical engineering, but there is little to
no resources for manufacturing engineering students. This paper walked through a detailed
programming project that can be used to improve manufacturing student motivation to learn
programming. It also illustrates to students of other disciplines how versatile programming is and
how important a tool it is for an engineer.

Conclusions

The project outlined in this assignment was developed by manufacturing engineering faculty but
used by electrical and computer engineering faculty to teach C programming. All too often
faculty teaching programming fundamentals meet student resistance based on their perception of
irrelevance to their chosen discipline. This assignment provides a resource for those
programming instructors. The intent is for this to be shared with faculty teaching
manufacturing/mechanical students to program.

References

1. Cole, W., Finn., C.W.P., “MET Graduate Survey Results”, ASEE Annual Conference, June
1998, [web PDF - Accessed Mar., 5, 2015].
2. Sun, W., Sun, X., “Teaching Computer Programming Skills to Engineering and Technology
Students with a Modular Programming Strategy”, ASEE National Convention, June 2011, [web
PDF - Accessed Mar., 5, 2015].
3. Myszka, D., “Motivating Students in an Introduction to Computing Course by Requiring
Animated Solutions”, ASEE National Conference, June 2006. [web PDF - Accessed Mar., 5,
2015].
4. Bowen, J.D., “Motivating Civil Engineering Students to Learn Computer Programming with a
Structural Design Project”, ASEE Annual Conference, June 2004, [web PDF - Accessed Mar., 5,
2015].

P
age 26.1171.7

Appendix A - Tolerance Analysis Programming Project

Background

Computer Aided Engineering (CAE) is an important part of the design process. There are many different software
packages used for design analysis. Mechanical engineers often use Finite Element Analysis (FEA). Electrical
engineers will use programs like Spice to simulate circuits. Computer engineers use simulated operating systems and
hardware to test design programs. PDM engineers will use software to simulate control systems. This software is
always based on a solid mathematical model of real problems. An engineer will extract the critical elements of the
design for the input to the software. The CAE software is then used to test various application cases. The outputs
from these simulations are used to verify design decisions, or guide redesign.

This project will focus on the creation of CAE software for tolerance analysis. The basis of this analysis was taught
at the beginning of the semester. The project is being broken into steps, as is done with any software engineering
project. The result of the first stage will be a program that will load a tolerance table and estimate gap sizes and
tolerances. The second stage will suggest options for changing tolerances and dimensions to meet the design
specification, the characteristic feature. The third stage will be a statistical analysis that will numerically determine
the distribution of the variances.

Project Description

Part I

The input to the program will be a text file containing the information for a tolerance table. An example
follows using the values from the first lecture on tolerance analysis. These values will be stored in a text
file. The data is comma delimited, which means that each data field is separated by a comma. If the first
word is ‘PART’ the following values are the nominal size, +/- impact, tolerance, and fixed/variable. If the
first word is ‘GAP’ the following values are the minimum and maximum sizes. (Note: assume all units are
inches.)

PART,2.000,-1,0.050,V
PART,0.975,-1,0.025,V
PART,3.000,+1,0.010,F
GAP,0.000,0.080

These values will be processed using the method taught in class. A sample output for the first stage is
given.

Actual Gap Mean: 0.025”
Actual Gap Tolerance: 0.085”
The Maximum Gap (0.110”) is (Greater) than specified (0.080”)
The Minimum Gap (-0.060”) is (Less) than the specified (0.000”)

Part II

The second phase extends the Stage 1 analysis. In this stage the program will suggest various combinations
of part dimensions and tolerances to meet the gap specifications. Some of the options for suggestions
include:

P
age 26.1171.8

1. For each variable (V) part find the largest tolerance value, and new nominal value. Note: This is
done for one part at a time.

2. For all variable parts use a scaling factor to reduce/multiply all tolerance values to fit. Use the
results from the previous step to determine the largest and smallest scaling factors that make
sense. Then use those values as upper and lower bounds for a search for the best scaling factor.

Part III

The third stage involves a statistical analysis called Monte Carlo simulation. Basically each of the
dimensions is varied randomly and the gap is calculated. This random calculation is repeated hundreds or
thousands of times. For each iteration, the individual gap value is calculated and stored in an array and in a
file. The array of values will be used to compute the mean and standard deviation of the gap. The file will
be opened using a spreadsheet program to graph a histogram, calculate an average, and calculate the
standard deviation, which should match the result from your program. These values will then be used to
estimate the number of rejected assemblies during production.

It is reasonable to assume that the tolerance for a part is 3 standard deviations (99.73% of parts will fall
within the tolerance). So for any part, we can generate random realistic values by taking the nominal value
and adding/subtracting a random number, which represents variations due to the tolerance. To do this, we
will need to generate a specific type of random numbers.

The standard random number function in most programming language (rand() in C included) has a
uniform distribution. This means that if we are finding random numbers from 0.0 to 1.0, the probability of
getting 0.5 is the same as getting 0.1. This is not realistic for our application, since it will be more likely
that we have our dimensions change by 0.1 than it is 0.5. For this reason, we need to modify the numbers
from the rand() function so that they have a Gaussian (Normal) Distribution, which is sometimes
referred to as the “bell curve”. This can be accomplished by using the Box-Muller Transformation.
Although it sounds complicated, this transformation can be easily done and applied to generate a random
dimension with the code below.

void random_dimension(double nominal, double tolerance, double *random_value){
 double r1, r2, w, r;

 do {
 r1 = 2.0 * ((rand() % 10001) / 10000.0) - 1.0;
 r2 = 2.0 * ((rand() % 10001) / 10000.0) - 1.0;
 w = r1 * r1 + r2 * r2;
 } while (w >= 1.0);
 r = sqrt(-2 * log(w) / w);
 *random_value = nominal + (tolerance/3) * r * r1;
}

Deliverables

Part I (2 weeks)
Demonstrate and submit the program for basic gap analysis. (Note: You are encouraged to work ahead, but
the grading will focus on the work for the stage.)

Part II (2 weeks)
Demonstrate and submit the program to make suggestions for changes to part nominal sizes and
dimensions.

P
age 26.1171.9

Part III (2 weeks)
Demonstrate and submit the final program with a menu that allows the user to select the Stage 1, Stage 2,
or Stage 3 analysis. Don’t forget that Stage 1 must be done before Stage 2.

Appendix B - Source Code Solution

// A tolerance analysis program for EGR 107
// The program is written at a secondary level of C programming.
// Note: gap is used for description, but a -ve gap is an overlap of material.
// H. Jack - 3_1_15

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h> // this is only being added to get a seed value for random numbers

// These matrices store the basic tolerance table values for the parts
#define MAX_PARTS 10 // Set a maximum matrix size, increase for more parts
double part_nominal[MAX_PARTS];
double part_sign[MAX_PARTS];
double part_tolerance[MAX_PARTS];
char part_variability[MAX_PARTS];
int part_cnt = 0; // how many parts are in the table

// gap/overlap range - note that -ve values indicate overlap
double gap_min, gap_max; // the specified gap range
double gap_mean, gap_tolerance; // the gap mean and tolerance calculated from parts

// Some definitions to keep things orderly
#define INPUT_FILE_NAME "tolerances.csv"
#define OUTPUT_FILE_NAME "simulation.csv"
#define SIMULATION_STEPS 1000
#define ERROR 1
#define NO_ERROR 0
#define TRUE 1
#define FALSE 0

// Prototypes so that we can have a main function at the top of the program
int load_parts();
int parse_input_file(FILE *fp);
int dump_table();
int update_gap();
int simple_analysis();
int adjust_parts();
int monte_carlo();
void random_dimension(double nominal, double tolerance, double *random_value);
int random_gap(double *gap_random);

P
age 26.1171.10

int main(){
 int error = NO_ERROR;
 char menu_choice;

 printf("\nTolerance Program\n");
 printf("1=load, 2=simple_analysis, 3=adjust_tolerances, 4=monte_carlo, 5=print_parts,
0=quit\n");

 while(error == NO_ERROR){

 scanf("%c", &menu_choice);

 switch(menu_choice){
 case '0':
 return NO_ERROR;
 break;
 case '1':
 error = load_parts();
 break;
 case '2':
 error = simple_analysis();
 break;
 case '3':
 error = adjust_parts();
 break;
 case '4':
 error = monte_carlo();
 break;
 case '5':
 error = dump_table();
 break;
 case '\n':
 break;
 default:
 printf("Input not recognized");
 printf("1=load, 2=simple_analysis, 3=adjust_tolerances, 4=monte_carlo,
5=print_parts, 0=quit\n");
 }
 }

 return ERROR;
}

//////////////////////////////////
// Functions for Phase I

int load_parts(){
 FILE *fp_in;

 printf("\nLoading Parts\n");
 if((fp_in = fopen(INPUT_FILE_NAME , "r")) != NULL){
 parse_input_file(fp_in);
 fclose(fp_in);
 } else {
 printf("Error: File would not open\n");
 return ERROR;

P
age 26.1171.11

 }
 printf("Parts loaded\n");
 return NO_ERROR;
}

// this function reads the file one line at a time and populates the parts matrices
int parse_input_file(FILE *fp){
 int max_string_length = 30; // cap the string length - please no buffer overflow hacks
 char new_line[max_string_length + 1];

 part_cnt = 0;
 for(int i = 0; i < MAX_PARTS; i++){
 if(fgets(new_line, max_string_length, fp) != NULL){
 // got a string from the file, time to parse
 if(strncmp(new_line, "PART", 4) == 0){ // got a part line
 // Reads a line from the file in PART format
 sscanf(&(new_line[5]), "%lf, %lf, %lf, %c\n",
 &part_nominal[part_cnt], &part_sign[part_cnt],
 &part_tolerance[part_cnt], &part_variability[part_cnt]);
 part_cnt++;
 } else if(strncmp(new_line, "GAP", 3) == 0){ // got a gap
 // reads a line from the file in GAP format
 sscanf(&(new_line[4]), "%lf, %lf", &gap_min, &gap_max);
 } else if (strlen(new_line) <= 1){ // allow for a <cr> or <lf>
 // empty line, do nothing
 } else {
 printf("ERROR: unexpected input file content \n");
 return ERROR;
 }
 }
 }

 return NO_ERROR;
}

// this prints the contents of the tolerance table, mainly for debugging
int dump_table(){
 printf("\nParts table\n");
 for(int i = 0; i < part_cnt; i++){
 printf(" PART %d : dimension = %lf +/- %lf, sensitivity = %lf, type = ", i,
 part_nominal[i], part_tolerance[i], part_sign[i]);
 if(part_variability[i] == 'F'){
 printf("Fixed \n");
 } else {
 printf("Variable \n");
 }
 }
 printf("Gap min=%f, max=%f\n", gap_min, gap_max);

 return NO_ERROR;
}

int update_gap(){
 gap_mean = 0.0;
 gap_tolerance = 0.0;

P
age 26.1171.12

 for(int i = 0; i < part_cnt; i++){
 gap_mean += part_nominal[i] * part_sign[i];
 gap_tolerance += part_tolerance[i];
 }
 return NO_ERROR;
}

int simple_analysis(){
 printf("\nAnalysis of current tolerances\n");
 update_gap();
 printf("Actual Gap Mean: %lf\" \n", gap_mean);
 printf("Actual Gap Tolerance: %lf\" \n", gap_tolerance);
 if(gap_mean+gap_tolerance > gap_max + 0.000001){
 printf("The Maximum Gap (%lf\") is (Greater) than specified (%lf\")\n",
gap_mean+gap_tolerance, gap_max);
 } else if (gap_mean+gap_tolerance < gap_min - 0.000001){
 printf("The Maximum Gap (%lf\") is (Less) than specified (%lf\")\n",
gap_mean+gap_tolerance, gap_max);
 } else {
 printf("The Maximum Gap (%lf\") is (Equal) to specified (%lf\")\n",
gap_mean+gap_tolerance, gap_max);
 }

 if(gap_mean-gap_tolerance < gap_min - 0.000001){
 printf("The Minimum Gap (%lf\") is (Less) than specified (%lf\")\n", gap_mean-
gap_tolerance, gap_min);
 } else if (gap_mean-gap_tolerance > gap_min + 0.000001){
 printf("The Minimum Gap (%lf\") is (Greater) than specified (%lf\")\n", gap_mean-
gap_tolerance, gap_min);
 } else {
 printf("The Minimum Gap (%lf\") is (Equal) to specified (%lf\")\n", gap_mean-
gap_tolerance, gap_min);
 }

 return NO_ERROR;
}

///////////////////////
// Functions for Phase II

int adjust_parts(){
 double gap_tolerance, gap_tolerance_min, gap_tolerance_max;
 int variable_part_cnt;
 double wiggle_room;
 int i, j;

 printf("\nAdjusting parts values\n");

 // getting numbers first
 gap_tolerance = (gap_max - gap_min) / 2.0;
 gap_tolerance_min = gap_tolerance_max = 0.0;
 variable_part_cnt = 0;

P
age 26.1171.13

 srand(time(NULL)); // changing the seed so that the random numbers are not the same each
time.

 for(i = 0; i < part_cnt; i++){
 // gap_nominal += part_nominal[i] * part_sign[i];
 gap_tolerance_max += part_tolerance[i];
 if(part_variability[i] == 'F'){
 gap_tolerance_min += part_tolerance[i];
 } else {
 variable_part_cnt++;
 }
 }
 if(gap_tolerance_min > gap_tolerance){
 printf("Error: The tolerance sum of the fixed parts is too large to work\n");
 return ERROR;
 }

 // Adjust the tolerances
 wiggle_room = (gap_tolerance_max - gap_tolerance) / variable_part_cnt;
 for(i = 0; i < part_cnt; i++){
 if(part_variability[i] == 'V') part_tolerance[i] -= wiggle_room;;
 }

 // now that the tolerances are adjusted, time for the dimensions
 wiggle_room = ((gap_max - gap_min)/2.0 - gap_mean) / variable_part_cnt;
 for(i = 0; i < part_cnt; i++){
 if(part_variability[i] == 'V') part_nominal[i] += wiggle_room * part_sign[i];
 }
 update_gap();

 return NO_ERROR;
}

///////////////////////
// Functions for Phase III

int monte_carlo(){
 FILE *fp_in, *fp_out;
 double gap_size;

 printf("\nDoing Monte Carlo Calcs and dumping to file [%s] \n", OUTPUT_FILE_NAME);
 if((fp_out = fopen(OUTPUT_FILE_NAME , "w")) != NULL){
 for(int i = 0; i < SIMULATION_STEPS; i++){
 random_gap(&gap_size);
 fprintf(fp_out, "%lf\n", gap_size);
 }
 fclose(fp_out);
 } else {
 printf("Error: File would not open\n");
 return ERROR;
 }
 return NO_ERROR;
}

P
age 26.1171.14

// Calculates a random dimension size given the nominal and tolerance
// This algorithm uses the Box-Muller transformation
void random_dimension(double nominal, double tolerance, double *random_value){
 double r1, r2, w, r;

 do {
 r1 = 2.0 * ((rand() % 10001) / 10000.0) - 1.0;
 r2 = 2.0 * ((rand() % 10001) / 10000.0) - 1.0;
 w = r1 * r1 + r2 * r2;
 } while (w >= 1.0);
 r = sqrt(-2 * log(w) / w);
//printf("rand %f \n", r * r1);
 *random_value = nominal + (tolerance/3) * r * r1;
}

int random_gap(double *gap_random){
 double dimension_random;
 *gap_random = 0.0;

 for(int i = 0; i < part_cnt; i++){
 random_dimension(part_nominal[i], part_tolerance[i], &dimension_random);
 *gap_random += dimension_random * part_sign[i];
 }

 return NO_ERROR;
}

P
age 26.1171.15

