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Multi-core Processor Learning using a 

Simulator and Pin Tools 

 

Abstract: 

 

In this paper, we propose a simple simulation model for multi-core 

processor learning, which will provide students effective ways of 

learning cache memory architecture through computer architecture 

labs including new cache designs. The proposed pedagogical 

approach is based on the Kolb experiential learning cycles. In our 

approach, it is recommended to use the Simple Simulator and Pin 

Tool. We developed the Simple Simulator, while the Pin Tool is 

open-source (from Intel) to build a trace file for any benchmark 

programs. The Simple Simulator can implement any detailed 

characteristics for a cache scheme, such as replacement policy, 

mapping function, average memory access time, coherence 

protocol, amount of bus traffics, power consumption, etc. After 

PIN Tool builds trace files, those files will be inserted into the 

Simple Simulator to collect the outputs to measure performance of 

cache scheme. 

 

Introduction: 

 

For a computer architect, cache memory is a key functional unit to 

consider in both increasing system performance and lowering 

power consumption for multi-core processors [1]. Therefore, multi-

core cache scheme has been a popular research and teaching topic 

in computer architecture communities. In this paper, we present 

how to design and implement a multi-core cache memory using the 

Simple Simulator and Pin Tool for senior- and/or graduate-level 

computer architecture labs and designs. Until now, many open-

source cache memory simulators (such as SimpleScalar [2], 

Multi2Sim [6], or Gem5 [4]) have been used to design and 

evaluate performance for single-core and multi-core cache 

memories. For example, SimpleScalar (open-source) has been 

popular to perform accurate simulation for a modern processor, 

such as RISC architecture [2, 7], using benchmark programs. For 

reference, SPEC benchmark programs [3] have been popular to 

evaluate CPUs and cache memories in the computer architecture 

community. However, those simulators are very complicated to 

implement multi-core cache schemes for students. Therefore, there 

have been reasonable demands to develop a flexible and simple 

multi-core cache memory simulator, which can design and 

implement any cache schemes without learning how to use those 

simulators in detail. To meet such demands, this paper proposes the 



Simple Simulator to implement a multi-core cache scheme for 

students, which can design it through simple running methods using 

Pin Tool. The proposed Simple Simulator is a trace-driven 

simulator since it needs to read traced instructions and data along 

with memory addresses and functions, such as load, store, and other 

instructions. The Pin Tool collects the traced instructions and data 

by executing real application programs (or benchmark programs) 

[5, 8]. However, the cache scheme design is not easy since students 

need to know both CPU and cache memory in detail, such as how 

to access and process data in a cache scheme. Therefore, it can be a 

challenge for a student to learn, design, and implement a multi-

core cache memory. In addition, in the aspect of teaching computer 

architecture, a practical teaching methodology is needed. Since the 

traditional classroom lecture-based teaching has many limitations 

on the learning capability, team-based learning methodologies 

have been adapted in many disciplines in the areas of science and 

engineering. For the disciplines of computer science and computer 

engineering, project-based learning has been used as a popular 

methodology in helping students to understand course materials 

and to apply theoretical knowledge to solve real-world problems 

effectively.  

However, it is still difficult for students to implement their 

computer architecture labs with their own design specifications, 

such as replacement policy, writing policy, etc. This brings about 

the issue of how to guide students in the right direction. Based on 

our long-term experience of conducting research and teaching in 

the field of computer architecture, we developed and proposed a 

new multi-core processor learning methodology, which elevates 

students’ knowledge and training based on the Kolb experiential 

learning cycles to complete their cache memory design labs.  

The rest of this paper is organized as follows. First, we describe the 

proposed multi-core processor learning through the Kolb 

experiential learning cycles. Second, simulating conventional 

cache schemes for experience-based learning is introduced. Third, 

designing a new cache scheme and cache coherency for design-

based learning is introduced. Then, we present a simulation 

methodology, benchmark programs, and experimental results.  

 

Multi-core processor learning using the Simple Simulator and Pin 

Tool through the Kolb Experiential Learning Cycles: 

 

Figure 1 introduces four modified steps (2 steps for experience-

based learning and 2 steps for design-based learning) of Kolb 

experiential learning cycles [9], which are highly effective 

pedagogies in teaching multi-core processor learning using several 

labs as follows:  



 

Two steps for experience-based learning: 

• Concrete observation consists of running the Simple Simulator 

and Pin Tool to get some results as an experience; and 

• Reflective observation consists of reviewing the simulation 

results and reflecting on how to design a cache memory with a 

new idea. 

 

Two steps for design-based learning: 

• Abstract conceptualization consists of designing a new idea by 

porting the code into the Simple Simulator to implement; and  

• Active experimentation consists of finalizing the design after 

analyzing the simulation results.    

 

 
 

Figure 1. Flowchart of Kolb Experiential Learning Cycles. 

 

Simulating conventional cache schemes for experience-based 

learning: 

 

The Simple Simulator’s purpose is to design and implement multi-

core cache memory schemes for computer architecture labs for 

senior- and/or graduate-level students. Figure 2 shows the major 

steps to implement the Simple Simulator, which has five stages as 

follows: 1) Getting input/output parameters from a command line; 

2) Fetching a line from a trace file; 3) Decoding the data and 



calculating memory address; 4) Implementing cache hit and cache 

miss; and 5) Collecting output results. 

For the Kolb experimental learning cycles, experience-based 

learning needs to use the entire 5 stages by using the Simple 

Simulator and Pin Tool, which already have the functions for 

conventional cache memory schemes (e.g. direct-map and n-way 

set-associative). Through these stages, students will learn how to 

simulate conventional cache schemes using the Simple Simulator 

and Pin Tool to get outputs in stage 5 in Figure 2.  

 
Figure 2. Five steps to implement cache memory using the Simple 

Simulator and Pin Tool 

 

The five stages in Figure 2 are as follows: 

• Getting I/P Parameters from a Command Line (1st step): The 

Simple Simulator reads the cache memory parameters from the 

command line. The parameters are the cache size, block size, 

set-associativity, write policy, number of cores, coherence 

protocol, etc.  

• Fetching a Line from a trace file using Pin Tool (2nd step): 

Figure 3 shows an example of a trace file: The first column 

represents a number of thread or core, such as ‘0’ for single core 

and other numbers for cache coherence (i.e., multi-core). The 

second column shows the type of address, such as ‘r’ for load 

memory address (reading), ‘w’ for store memory address 

(writing), and ‘O’ for other instructions. In addition, the third 

column shows memory addresses to access for each instruction. 

For reference, the Pin Tool (version 3.2) is an open-source 



software tool (provided by Intel) to generate a trace file to feed 

into the proposed cache simulator using benchmark programs.  

• Decoding the data & calculating memory address (3rd step): 

After decoding a fetched data, the memory address should be 

placed or updated into cache memories, such as L1 and L2 

cache memories. In order to update cache memories, it is 

necessary to check cache hit/miss before the update according to 

the following four cases: 1) cache hit for instructions except 

Store; 2) cache hit for Store instruction; 3) cache miss for 

instructions except Store; and 4) cache miss for Store 

instructions. 

 

  Figure 3. A trace file generated by the Pin-tool. 

 
Figure 4. Snoopy coherence transition diagram [10]. 



• Implementing cache hit and cache miss (4th step): Cache 

hit/miss is determined based on a cache-coherence protocol (e.g. 

Snoopy) for multi-core cache schemes. Figure 4 shows the 

transition diagram for Snoopy cache coherence protocol [10] as 

an example. Snoopy protocol contains three different states, 

such as Modified, Shared, and Invalid. 

• Collecting output results (5th step): After running a trace file, the 

simulator produces the following results per core like outlined 

in Figure 5, which provides a total number of load, store and 

other instructions, number of cache hits, cache miss rates, etc. 

 

 
 

Figure 5. Output results. 

After completing the above 5 steps, students learn how to simulate 

conventional cache memory schemes using the Simple Simulator 

and Pin Tool. Therefore,  we expect they can design and 

implement their own cache scheme by porting their cache code 

into the Simple Simulator at the design-based learning stage, such 

as the ‘Abstract conceptualization and Active experimentation‘ 

stages. 

 

Designing a new cache scheme and cache coherence for design-

based learning: 

 

For experience-based learning, students just use the conventional 

cache schemes and Snoopy cache coherency for learning how to 

simulate cache schemes for multi-core processor through 5 steps 

using the Simple Simulator and Pin Tool. Then, at the design-

based learning stage, students will design their own cache scheme 

and cache coherency (option) for multi-core processor using the 

Simple Simulator and Pin Tool. For doing this, students need to 



design (and program using C++) their cache scheme for a new 

replacement policy, mapping function, and write policy. Then, they 

need to port their code into the Simple Simulator. There are four 

cases for implementing cache hit or miss: 1) cache hit for 

instructions except Store; 2) cache hit for Store instruction; 3) 

cache miss for instructions except Store; and 4) cache miss for 

Store instructions. Figure 6 shows the Simple Simulator coding for 

cache scheme along with a replacement policy (e.g., Least 

Recently Used or LRU) and a write policy (e.g., write through or 

write back). For example, if students want to design a new cache 

scheme, such as 2-way skewed-associative, then they need to port 

mapping function and replacement policy into the Simple 

Simulator. The red boxes in Figure 6 show the porting codes for 2-

way skewed-associative cache on top of the Simple Simulator. 

 
Figure 6. Four cases for implementing cache hit or miss including 

2-way skewed-associative cache scheme. 

 

The red boxes in Figure 6 are for Pseudo LRU (PLRU, pseudo 

least replacement used) policy and the PLRU works as follows: 

The 2-way skewed-associative uses an XORing mapping function 

for 2 banks; for Bank 0, it uses un-hashed indexed; for Bank 1, it 

uses a hashed indexed function. It employs Pseudo-LRU 

replacement policy [11]. The replacement control bit is located at 



each cache line in Bank 0; if the data is missed in Bank 0, then 

control bit value will be set to ‘1’ after replacement from the lower 

memory. The ‘1’ means, for the next cache miss in that line, the 

data will be updated to Bank 1 (then, the control bit is updated to 

‘0’).  

 
Figure 7.  Snoopy coherency protocol including MESI protocol 

(red-boxes) 

 

Like the same way, students can port their cache coherency 

protocol for multi-core shared memory as well. For example, if 

students want to port MESI (Modified-Exclusive-Shared-Invalid) 

protocol, they can port four states for MESI into the Simple 

Simulator as follows: 1) Modified state: For read miss, the current 

state will be changed into Exclusive state. For read hit (bus), the 

current state will be moved to Shared state. In the case of ‘Bus 

invalidation signal,’ the state will be transferred to Invalid state. 

For read/write hit (local), the state will stay at the current state; 2) 

Exclusive state: For read hit (bus), the current state will be changed 

into Shared state. For write hit (local), the state will be changed 

into Modified state, and for ‘Bus invalidation signal,’ the state will 

be changed into Invalid state, and for read hit(local), the state will 

remain the same state; 3) Shared state: For write hit (local), the 

current state will be moved to Modified state. For ‘Bus 



invalidation signal,’ it will be changed into Invalid state.  For read 

hit (local or bus), the state will remain at the current state; and 4) 

Invalid state: For read miss (ex), the current state will be moved to 

Exclusive state. For read miss (sh), the current state will be moved 

to Shared state. For write miss (local), it will be moved to 

Modified state.  

Figure 7 shows the flowchart for the Snoopy cache coherency 

protocol, which is a conventional protocol, and the Simple 

Simulator already has this protocol as a default one. The red boxes 

in Figure 7 have the ported codes for MESI protocol with Snoopy. 

The red boxes mean: 1) Check the Status bit whether it is Modified 

or Exclusive. If then, the MESI will do ‘UPDATE LRU’; 2) Doted 

box ‘b’ is for ‘STATUS BIT is EXCLUSIVE,’ when the fetched 

instruction is ‘read miss and not found in other threads’; and 3) 

Doted box ‘c’ is for the case that the instruction is ‘read miss but 

hit in other thread’. If then, check the STATUSBIT OF HIT 

THREAD. If it is not SHARED, then update it to SHARED, and 

update lower memory as well such that the status bit is modified. 

 

Simulation methodology, benchmark programs, and experimental 

results: 

 

For the experiments, SPEC 2006, Parsec, and SPLASH2x 

benchmark programs [3, 12] are used to evaluate performance for 

various multi-core cache memories. The steps for experimental 

methodology are as follows: 1) SPEC, Parsec and SPLASH2x 

benchmark programs are compiled by using GCC compiler (or 

other compilers) to make execution file (binary code or machine 

language); 2) the execution file will be run on a Linux machine 

(Ubuntu-15.04) using the Pin Tool to collect trace files; 3) Then, 

trace files are inserted into the proposed cache simulator to get the 

outputs. Here, students can port their designed multi-core cache 

scheme into the Simple Simulator; and 4) they can get the outputs 

for their performance analyses.   

 
Table 1: List of Trace files for SPEC2006 Benchmark Programs. 

Programs Instruction # 

 (Input: Train) 

Instruction # 

 (Input: ref) 

401.bzip2 142 BILLIONS 348 BILLIONS 

456.hmmer 314 BILLIONS 2,164 BILLIONS 

465.tonto 1,351 BILLIONS 3,466 BILLIONS 

471.omnetpp 265 BILLIONS 701 BILLIONS 

 

Table 1 and Table 2 show the SPEC-2006, Parsec, and SPLASH2x 

benchmark programs [3, 13] with the input data (train, ref, 

simsmall, simmedium,  and simlarge) and number of instructions 

during run time. The Pin Tool was used to collect the following 



data, which are listed in Table 1 and 2. For example, 401.bzip2 is a 

SPEC2006 benchmark program, which has 142 BILLIONS 

dynamic instructions (train input). 
 

Table 2: List of Trace files for Parsec and SPLASH2x Benchmark 

Programs. 

Programs 

 

Instruction

# Input: 

simsmall 

Instruction 

# Input: 

simmedium 

Instruction

# Input: 

simlarge 

bodytrack 1,415 M 4,520 M 15,873 M 

freqmine 993 M 3,026 M 9,259 M 

raytrace 2,151 M 13,926 M 55,082 M 

fmm 2,541 M 10,890 M 44,336 M 

radiosity 1,438 M 1,438 M 1,438 M 

  

Figures 8 to 9 show the experimental results from the following 

multi-core cache parameters: 1) Multi-core parameters: number of 

cores (8 cores), set-associative (4-way and 8-way), block size (32 

bytes and 64 bytes), cache sizes (2KB, 4KB, 8KB, 16KB, 32KB, 

and 64KB), and MESI cache coherence protocol; 2) Results: Miss 

rates (read and write cache misses), WHP (write-hit private), RHP 

(read-hit private), WHS (write-hit shared), RHS (read-hit shared), 

and RM (read miss). Figure 8 shows the miss rates based on the 

cache sizes, such as from 4 KB to 256 KB using 4 benchmark 

programs and the results are similar to the ones on [13, 14]. In 

general, cache miss rates would be reduced according to the cache 

memory sizes. In Figures 9, all the number of local hits are counted 

as ‘private.’ In addition, all the number of ‘Bus’ hits are counted as 

‘shared.’ From the figures, we can claim that the Simple Simulator 

works appropriately since the experimental results are similar to 

the results on [13, 14]. 

 

 
 

Figure 8. Miss rate (MESI) 
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Figure 9. WHP, RHP, WHS, RHS, and RM for Multi-Core cache 

schemes (8 cores) 

 

Conclusion: 

We proposed a multi-core processor learning model using the 

Simple Simulator and Pin Tool for teaching computer architecture 

labs. The pedagogical approach for this paper is based on the Kolb 

experiential learning cycles, which consist of four modified steps as 

follows: 1) two steps for experience-based learning are ‘Concrete 

observation’ and ‘Reflective observation’; and 2) two steps for 

design-based learning are ‘Abstract conceptualization’ and ‘Active 

experimentation.’ The Simple Simulator has 5 stages of operational 

flow as follows: 1) Getting input/output parameters from a 

command line; 2) Fetching a line from a trace file; 3) Decoding the 

data and calculating memory address; 4) Implementing cache hit 

and cache miss; and 5) Collecting output results. From the 

experience-based learning stages, students learn how to simulate 

conventional cache schemes using the Simple Simulator and Pin 

Tool. Then, from the design-based learning stages, students can 

design their own cache scheme and cache coherency protocol for 

multi-core processor using the Simple Simulator and Pin Tool. 

Students (graduate or senior) have used the Simple Simulator and 

Pin Tool for doing their team projects at the contemporary 

microprocessor design (CMD, advanced computer architecture 

course) class since fall 2016. The project used to design a low-power 

cache memory for a single-core or multi-core. Actually, before 2016 

(such as fall 2015), there were five teams for doing their projects in 

the CMD class using two traditional open-source simulators, such 

as Simplescalar and Modelsim2. At that time, four teams failed to 

complete their designs since those simulation programs were 

difficult to implement their designs. However, after fall 2016, most 

teams could implement their low-power cache designs without any 

problems by using the Simple Simulator and Pin Tool. Therefore, 
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we could say that this new learning model is very effective since 

most students in the class clearly understood the concept of low-

power cache memory design through the modified Kolb experiential 

learning cycles. In addition, from the experimental results, we would 

like to conclude that the Simple Simulator is functionally correct and 

works well as a simple and effective tool for computer architecture 

labs. 

 

References 

 

[1]   M. A. Vega Rodriguez, et al., “Simulation of Cache Memory 

Systems on Symmetric Multiprocessors with Educational 

Purposes, ” Proc. of the I International Congress in Quality 

and in Technical Education Innovation, vol. III, pp. 47-59. 

Donostia-San Sebastián, Spain. 4-6 September 2000. 

[2]   D. Burger, and T. Austin, “The SimpleScalar Tool Set, 

Version 2.0,” University of Wisconsin-Madison Computer 

Sciences Department Technical Report #1242, June 1997. 

[3]   Standard Performance Evaluation Corporation, “SPEC CPU 

2006 [online],” Available: https://www.spec.org/cpu2006. 

[4]   M. Al-Manasia and Z. Chaczko Z, “An Overview of Chip 

Multi-Processors Simulators Technology,” Advances in 

Intelligent Systems and Computing, vol 366. pp. 877-884, 

Springer, Cham, 2015 

[5]   C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, 

S. Wallace, V. J. Reddi and K. Hazelwood, “Pin: Building 

Customized Program Analysis Tools with Dynamic 

Instrumentation, ” ACM SIGPLAN Conference on 

Programming Language Design and Implementation (PLDI), 

Chicago, IL, USA, 2005. 

[6]   R. Ubal, et al., “Multi2Sim: A Simulation Framework for 

CPU-GPU Computing,” the 21st IEEE International 

Conference on Parallel Architectures and Compilation 

Techniques (PACT), Minneapolis, MN, USA, pp. September 

2012.  

[7]   C. Price, MIPS IV Instruction Set, revision 3.1. MIPS 

Technologies, Inc., Mountain View, CA, January 1995. 

[8]   C. McCurdy and C. Fischer, “Using Pin as a memory 

reference generator for multiprocessor simulation,” 

SIGARCH Computer Architecture News 33, 5 (Dec. 2005), 

39-44. 

[9]   D. A Kolb, “Experiential Learning: Experience as the Source 

of Learning and Development,” Upper Saddle River, NJ: 

Pearson Education, 2015. 



[10] J. Hennessy and D. A. Patterson, Computer Architecture: A 

Quantitative Approach, Waltham, MA, USA: Morgan 

Kaufmann, Elsevier, 2012. 

[11]  A. Seznec, A case for 2-way skewed-associativity cache, the 

20th International Symposium on Computer Architecture 

(ISCA), San Diego, USA, May 1993. 

[12] C. Bienia, S. Kumar, and K. Li, ”PARSEC vs. SPLASH-2: A 

Quantitative Comparison of Two Multithreaded Benchmark 

Suites on Chip-Multiprocessors, ” In Proceedings of IISWC 

2008, pages 47–56, Sept. 2008. 

[13] M. Elver and V. Nagarajan, “RC3: Consistency directed cache 

coherence for x86-64 with RC extensions,” Proceedings of 

2015 IEEE International Symposium on Parallel Architecture 

and Compilation Techniques (PACT), Washington, DC, 

U.S.A., 2015. 

[14] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed 

cache coherence for TSO,” Proceedings of 2014 IEEE 20th 

International Symposium on high Performance Computer 

Architecture (HPCA), Orlando, Florida, U.S.A., 2014.  

 

 

 


