
Paper ID #25112

Multi-core Processor Learning Using a Simulator and Pin Tools

Dr. Yul Chu, University of Texas, Rio Grande Valley

Dr. Yul Chu is an Associate Professor in the Department of Electrical Engineering at the University of
Texas Rio Grande Valley. He received his Ph.D. in Electrical and Computer Engineering from the Uni-
versity of British Columbia, Canada in 2001 and MS in Electrical engineering from Washington State
University in 1995. His current research interests lie in the area of low-power embedded systems, high-
performance computing, parallel processing, cluster and high-available architectures, computer network-
ing, digital system design, etc.

c©American Society for Engineering Education, 2019

Multi-core Processor Learning using a

Simulator and Pin Tools

Abstract:

In this paper, we propose a simple simulation model for multi-core

processor learning, which will provide students effective ways of

learning cache memory architecture through computer architecture

labs including new cache designs. The proposed pedagogical

approach is based on the Kolb experiential learning cycles. In our

approach, it is recommended to use the Simple Simulator and Pin

Tool. We developed the Simple Simulator, while the Pin Tool is

open-source (from Intel) to build a trace file for any benchmark

programs. The Simple Simulator can implement any detailed

characteristics for a cache scheme, such as replacement policy,

mapping function, average memory access time, coherence

protocol, amount of bus traffics, power consumption, etc. After

PIN Tool builds trace files, those files will be inserted into the

Simple Simulator to collect the outputs to measure performance of

cache scheme.

Introduction:

For a computer architect, cache memory is a key functional unit to

consider in both increasing system performance and lowering

power consumption for multi-core processors [1]. Therefore, multi-

core cache scheme has been a popular research and teaching topic

in computer architecture communities. In this paper, we present

how to design and implement a multi-core cache memory using the

Simple Simulator and Pin Tool for senior- and/or graduate-level

computer architecture labs and designs. Until now, many open-

source cache memory simulators (such as SimpleScalar [2],

Multi2Sim [6], or Gem5 [4]) have been used to design and

evaluate performance for single-core and multi-core cache

memories. For example, SimpleScalar (open-source) has been

popular to perform accurate simulation for a modern processor,

such as RISC architecture [2, 7], using benchmark programs. For

reference, SPEC benchmark programs [3] have been popular to

evaluate CPUs and cache memories in the computer architecture

community. However, those simulators are very complicated to

implement multi-core cache schemes for students. Therefore, there

have been reasonable demands to develop a flexible and simple

multi-core cache memory simulator, which can design and

implement any cache schemes without learning how to use those

simulators in detail. To meet such demands, this paper proposes the

Simple Simulator to implement a multi-core cache scheme for

students, which can design it through simple running methods using

Pin Tool. The proposed Simple Simulator is a trace-driven

simulator since it needs to read traced instructions and data along

with memory addresses and functions, such as load, store, and other

instructions. The Pin Tool collects the traced instructions and data

by executing real application programs (or benchmark programs)

[5, 8]. However, the cache scheme design is not easy since students

need to know both CPU and cache memory in detail, such as how

to access and process data in a cache scheme. Therefore, it can be a

challenge for a student to learn, design, and implement a multi-

core cache memory. In addition, in the aspect of teaching computer

architecture, a practical teaching methodology is needed. Since the

traditional classroom lecture-based teaching has many limitations

on the learning capability, team-based learning methodologies

have been adapted in many disciplines in the areas of science and

engineering. For the disciplines of computer science and computer

engineering, project-based learning has been used as a popular

methodology in helping students to understand course materials

and to apply theoretical knowledge to solve real-world problems

effectively.

However, it is still difficult for students to implement their

computer architecture labs with their own design specifications,

such as replacement policy, writing policy, etc. This brings about

the issue of how to guide students in the right direction. Based on

our long-term experience of conducting research and teaching in

the field of computer architecture, we developed and proposed a

new multi-core processor learning methodology, which elevates

students’ knowledge and training based on the Kolb experiential

learning cycles to complete their cache memory design labs.

The rest of this paper is organized as follows. First, we describe the

proposed multi-core processor learning through the Kolb

experiential learning cycles. Second, simulating conventional

cache schemes for experience-based learning is introduced. Third,

designing a new cache scheme and cache coherency for design-

based learning is introduced. Then, we present a simulation

methodology, benchmark programs, and experimental results.

Multi-core processor learning using the Simple Simulator and Pin

Tool through the Kolb Experiential Learning Cycles:

Figure 1 introduces four modified steps (2 steps for experience-

based learning and 2 steps for design-based learning) of Kolb

experiential learning cycles [9], which are highly effective

pedagogies in teaching multi-core processor learning using several

labs as follows:

Two steps for experience-based learning:

• Concrete observation consists of running the Simple Simulator

and Pin Tool to get some results as an experience; and

• Reflective observation consists of reviewing the simulation

results and reflecting on how to design a cache memory with a

new idea.

Two steps for design-based learning:

• Abstract conceptualization consists of designing a new idea by

porting the code into the Simple Simulator to implement; and

• Active experimentation consists of finalizing the design after

analyzing the simulation results.

Figure 1. Flowchart of Kolb Experiential Learning Cycles.

Simulating conventional cache schemes for experience-based

learning:

The Simple Simulator’s purpose is to design and implement multi-

core cache memory schemes for computer architecture labs for

senior- and/or graduate-level students. Figure 2 shows the major

steps to implement the Simple Simulator, which has five stages as

follows: 1) Getting input/output parameters from a command line;

2) Fetching a line from a trace file; 3) Decoding the data and

calculating memory address; 4) Implementing cache hit and cache

miss; and 5) Collecting output results.

For the Kolb experimental learning cycles, experience-based

learning needs to use the entire 5 stages by using the Simple

Simulator and Pin Tool, which already have the functions for

conventional cache memory schemes (e.g. direct-map and n-way

set-associative). Through these stages, students will learn how to

simulate conventional cache schemes using the Simple Simulator

and Pin Tool to get outputs in stage 5 in Figure 2.

Figure 2. Five steps to implement cache memory using the Simple

Simulator and Pin Tool

The five stages in Figure 2 are as follows:

• Getting I/P Parameters from a Command Line (1st step): The

Simple Simulator reads the cache memory parameters from the

command line. The parameters are the cache size, block size,

set-associativity, write policy, number of cores, coherence

protocol, etc.

• Fetching a Line from a trace file using Pin Tool (2nd step):

Figure 3 shows an example of a trace file: The first column

represents a number of thread or core, such as ‘0’ for single core

and other numbers for cache coherence (i.e., multi-core). The

second column shows the type of address, such as ‘r’ for load

memory address (reading), ‘w’ for store memory address

(writing), and ‘O’ for other instructions. In addition, the third

column shows memory addresses to access for each instruction.

For reference, the Pin Tool (version 3.2) is an open-source

software tool (provided by Intel) to generate a trace file to feed

into the proposed cache simulator using benchmark programs.

• Decoding the data & calculating memory address (3rd step):

After decoding a fetched data, the memory address should be

placed or updated into cache memories, such as L1 and L2

cache memories. In order to update cache memories, it is

necessary to check cache hit/miss before the update according to

the following four cases: 1) cache hit for instructions except

Store; 2) cache hit for Store instruction; 3) cache miss for

instructions except Store; and 4) cache miss for Store

instructions.

 Figure 3. A trace file generated by the Pin-tool.

Figure 4. Snoopy coherence transition diagram [10].

• Implementing cache hit and cache miss (4th step): Cache

hit/miss is determined based on a cache-coherence protocol (e.g.

Snoopy) for multi-core cache schemes. Figure 4 shows the

transition diagram for Snoopy cache coherence protocol [10] as

an example. Snoopy protocol contains three different states,

such as Modified, Shared, and Invalid.

• Collecting output results (5th step): After running a trace file, the

simulator produces the following results per core like outlined

in Figure 5, which provides a total number of load, store and

other instructions, number of cache hits, cache miss rates, etc.

Figure 5. Output results.

After completing the above 5 steps, students learn how to simulate

conventional cache memory schemes using the Simple Simulator

and Pin Tool. Therefore, we expect they can design and

implement their own cache scheme by porting their cache code

into the Simple Simulator at the design-based learning stage, such

as the ‘Abstract conceptualization and Active experimentation‘

stages.

Designing a new cache scheme and cache coherence for design-

based learning:

For experience-based learning, students just use the conventional

cache schemes and Snoopy cache coherency for learning how to

simulate cache schemes for multi-core processor through 5 steps

using the Simple Simulator and Pin Tool. Then, at the design-

based learning stage, students will design their own cache scheme

and cache coherency (option) for multi-core processor using the

Simple Simulator and Pin Tool. For doing this, students need to

design (and program using C++) their cache scheme for a new

replacement policy, mapping function, and write policy. Then, they

need to port their code into the Simple Simulator. There are four

cases for implementing cache hit or miss: 1) cache hit for

instructions except Store; 2) cache hit for Store instruction; 3)

cache miss for instructions except Store; and 4) cache miss for

Store instructions. Figure 6 shows the Simple Simulator coding for

cache scheme along with a replacement policy (e.g., Least

Recently Used or LRU) and a write policy (e.g., write through or

write back). For example, if students want to design a new cache

scheme, such as 2-way skewed-associative, then they need to port

mapping function and replacement policy into the Simple

Simulator. The red boxes in Figure 6 show the porting codes for 2-

way skewed-associative cache on top of the Simple Simulator.

Figure 6. Four cases for implementing cache hit or miss including

2-way skewed-associative cache scheme.

The red boxes in Figure 6 are for Pseudo LRU (PLRU, pseudo

least replacement used) policy and the PLRU works as follows:

The 2-way skewed-associative uses an XORing mapping function

for 2 banks; for Bank 0, it uses un-hashed indexed; for Bank 1, it

uses a hashed indexed function. It employs Pseudo-LRU

replacement policy [11]. The replacement control bit is located at

each cache line in Bank 0; if the data is missed in Bank 0, then

control bit value will be set to ‘1’ after replacement from the lower

memory. The ‘1’ means, for the next cache miss in that line, the

data will be updated to Bank 1 (then, the control bit is updated to

‘0’).

Figure 7. Snoopy coherency protocol including MESI protocol

(red-boxes)

Like the same way, students can port their cache coherency

protocol for multi-core shared memory as well. For example, if

students want to port MESI (Modified-Exclusive-Shared-Invalid)

protocol, they can port four states for MESI into the Simple

Simulator as follows: 1) Modified state: For read miss, the current

state will be changed into Exclusive state. For read hit (bus), the

current state will be moved to Shared state. In the case of ‘Bus

invalidation signal,’ the state will be transferred to Invalid state.

For read/write hit (local), the state will stay at the current state; 2)

Exclusive state: For read hit (bus), the current state will be changed

into Shared state. For write hit (local), the state will be changed

into Modified state, and for ‘Bus invalidation signal,’ the state will

be changed into Invalid state, and for read hit(local), the state will

remain the same state; 3) Shared state: For write hit (local), the

current state will be moved to Modified state. For ‘Bus

invalidation signal,’ it will be changed into Invalid state. For read

hit (local or bus), the state will remain at the current state; and 4)

Invalid state: For read miss (ex), the current state will be moved to

Exclusive state. For read miss (sh), the current state will be moved

to Shared state. For write miss (local), it will be moved to

Modified state.

Figure 7 shows the flowchart for the Snoopy cache coherency

protocol, which is a conventional protocol, and the Simple

Simulator already has this protocol as a default one. The red boxes

in Figure 7 have the ported codes for MESI protocol with Snoopy.

The red boxes mean: 1) Check the Status bit whether it is Modified

or Exclusive. If then, the MESI will do ‘UPDATE LRU’; 2) Doted

box ‘b’ is for ‘STATUS BIT is EXCLUSIVE,’ when the fetched

instruction is ‘read miss and not found in other threads’; and 3)

Doted box ‘c’ is for the case that the instruction is ‘read miss but

hit in other thread’. If then, check the STATUSBIT OF HIT

THREAD. If it is not SHARED, then update it to SHARED, and

update lower memory as well such that the status bit is modified.

Simulation methodology, benchmark programs, and experimental

results:

For the experiments, SPEC 2006, Parsec, and SPLASH2x

benchmark programs [3, 12] are used to evaluate performance for

various multi-core cache memories. The steps for experimental

methodology are as follows: 1) SPEC, Parsec and SPLASH2x

benchmark programs are compiled by using GCC compiler (or

other compilers) to make execution file (binary code or machine

language); 2) the execution file will be run on a Linux machine

(Ubuntu-15.04) using the Pin Tool to collect trace files; 3) Then,

trace files are inserted into the proposed cache simulator to get the

outputs. Here, students can port their designed multi-core cache

scheme into the Simple Simulator; and 4) they can get the outputs

for their performance analyses.

Table 1: List of Trace files for SPEC2006 Benchmark Programs.

Programs Instruction #

 (Input: Train)

Instruction #

 (Input: ref)

401.bzip2 142 BILLIONS 348 BILLIONS

456.hmmer 314 BILLIONS 2,164 BILLIONS

465.tonto 1,351 BILLIONS 3,466 BILLIONS

471.omnetpp 265 BILLIONS 701 BILLIONS

Table 1 and Table 2 show the SPEC-2006, Parsec, and SPLASH2x

benchmark programs [3, 13] with the input data (train, ref,

simsmall, simmedium, and simlarge) and number of instructions

during run time. The Pin Tool was used to collect the following

data, which are listed in Table 1 and 2. For example, 401.bzip2 is a

SPEC2006 benchmark program, which has 142 BILLIONS

dynamic instructions (train input).

Table 2: List of Trace files for Parsec and SPLASH2x Benchmark

Programs.

Programs

Instruction

Input:

simsmall

Instruction

Input:

simmedium

Instruction

Input:

simlarge

bodytrack 1,415 M 4,520 M 15,873 M

freqmine 993 M 3,026 M 9,259 M

raytrace 2,151 M 13,926 M 55,082 M

fmm 2,541 M 10,890 M 44,336 M

radiosity 1,438 M 1,438 M 1,438 M

Figures 8 to 9 show the experimental results from the following

multi-core cache parameters: 1) Multi-core parameters: number of

cores (8 cores), set-associative (4-way and 8-way), block size (32

bytes and 64 bytes), cache sizes (2KB, 4KB, 8KB, 16KB, 32KB,

and 64KB), and MESI cache coherence protocol; 2) Results: Miss

rates (read and write cache misses), WHP (write-hit private), RHP

(read-hit private), WHS (write-hit shared), RHS (read-hit shared),

and RM (read miss). Figure 8 shows the miss rates based on the

cache sizes, such as from 4 KB to 256 KB using 4 benchmark

programs and the results are similar to the ones on [13, 14]. In

general, cache miss rates would be reduced according to the cache

memory sizes. In Figures 9, all the number of local hits are counted

as ‘private.’ In addition, all the number of ‘Bus’ hits are counted as

‘shared.’ From the figures, we can claim that the Simple Simulator

works appropriately since the experimental results are similar to

the results on [13, 14].

Figure 8. Miss rate (MESI)

0

1

2

3

4

5

6

4KB 8KB 16KB 32KB 64KB 128KB 256KB

FFT Raytrace Radiosity Barnes

Cache block size: 32 Bytes, Set-associative: 4-way

Figure 9. WHP, RHP, WHS, RHS, and RM for Multi-Core cache

schemes (8 cores)

Conclusion:

We proposed a multi-core processor learning model using the

Simple Simulator and Pin Tool for teaching computer architecture

labs. The pedagogical approach for this paper is based on the Kolb

experiential learning cycles, which consist of four modified steps as

follows: 1) two steps for experience-based learning are ‘Concrete

observation’ and ‘Reflective observation’; and 2) two steps for

design-based learning are ‘Abstract conceptualization’ and ‘Active

experimentation.’ The Simple Simulator has 5 stages of operational

flow as follows: 1) Getting input/output parameters from a

command line; 2) Fetching a line from a trace file; 3) Decoding the

data and calculating memory address; 4) Implementing cache hit

and cache miss; and 5) Collecting output results. From the

experience-based learning stages, students learn how to simulate

conventional cache schemes using the Simple Simulator and Pin

Tool. Then, from the design-based learning stages, students can

design their own cache scheme and cache coherency protocol for

multi-core processor using the Simple Simulator and Pin Tool.

Students (graduate or senior) have used the Simple Simulator and

Pin Tool for doing their team projects at the contemporary

microprocessor design (CMD, advanced computer architecture

course) class since fall 2016. The project used to design a low-power

cache memory for a single-core or multi-core. Actually, before 2016

(such as fall 2015), there were five teams for doing their projects in

the CMD class using two traditional open-source simulators, such

as Simplescalar and Modelsim2. At that time, four teams failed to

complete their designs since those simulation programs were

difficult to implement their designs. However, after fall 2016, most

teams could implement their low-power cache designs without any

problems by using the Simple Simulator and Pin Tool. Therefore,

0%

20%

40%

60%

80%

100%

12345 12345 12345 12345 12345 12345

2k 4k 8k 16K 32K 64k

RM RHS WHS RHP WHP

1-Barnes,2-FFT, 3-Ocean_cp, 4-Radiosity, 5-Raytrace

Cache block size: 32 Bytes, Set-associative: 4-way

we could say that this new learning model is very effective since

most students in the class clearly understood the concept of low-

power cache memory design through the modified Kolb experiential

learning cycles. In addition, from the experimental results, we would

like to conclude that the Simple Simulator is functionally correct and

works well as a simple and effective tool for computer architecture

labs.

References

[1] M. A. Vega Rodriguez, et al., “Simulation of Cache Memory

Systems on Symmetric Multiprocessors with Educational

Purposes, ” Proc. of the I International Congress in Quality

and in Technical Education Innovation, vol. III, pp. 47-59.

Donostia-San Sebastián, Spain. 4-6 September 2000.

[2] D. Burger, and T. Austin, “The SimpleScalar Tool Set,

Version 2.0,” University of Wisconsin-Madison Computer

Sciences Department Technical Report #1242, June 1997.

[3] Standard Performance Evaluation Corporation, “SPEC CPU

2006 [online],” Available: https://www.spec.org/cpu2006.

[4] M. Al-Manasia and Z. Chaczko Z, “An Overview of Chip

Multi-Processors Simulators Technology,” Advances in

Intelligent Systems and Computing, vol 366. pp. 877-884,

Springer, Cham, 2015

[5] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi and K. Hazelwood, “Pin: Building

Customized Program Analysis Tools with Dynamic

Instrumentation, ” ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI),

Chicago, IL, USA, 2005.

[6] R. Ubal, et al., “Multi2Sim: A Simulation Framework for

CPU-GPU Computing,” the 21st IEEE International

Conference on Parallel Architectures and Compilation

Techniques (PACT), Minneapolis, MN, USA, pp. September

2012.

[7] C. Price, MIPS IV Instruction Set, revision 3.1. MIPS

Technologies, Inc., Mountain View, CA, January 1995.

[8] C. McCurdy and C. Fischer, “Using Pin as a memory

reference generator for multiprocessor simulation,”

SIGARCH Computer Architecture News 33, 5 (Dec. 2005),

39-44.

[9] D. A Kolb, “Experiential Learning: Experience as the Source

of Learning and Development,” Upper Saddle River, NJ:

Pearson Education, 2015.

[10] J. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, Waltham, MA, USA: Morgan

Kaufmann, Elsevier, 2012.

[11] A. Seznec, A case for 2-way skewed-associativity cache, the

20th International Symposium on Computer Architecture

(ISCA), San Diego, USA, May 1993.

[12] C. Bienia, S. Kumar, and K. Li, ”PARSEC vs. SPLASH-2: A

Quantitative Comparison of Two Multithreaded Benchmark

Suites on Chip-Multiprocessors, ” In Proceedings of IISWC

2008, pages 47–56, Sept. 2008.

[13] M. Elver and V. Nagarajan, “RC3: Consistency directed cache

coherence for x86-64 with RC extensions,” Proceedings of

2015 IEEE International Symposium on Parallel Architecture

and Compilation Techniques (PACT), Washington, DC,

U.S.A., 2015.

[14] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed

cache coherence for TSO,” Proceedings of 2014 IEEE 20th

International Symposium on high Performance Computer

Architecture (HPCA), Orlando, Florida, U.S.A., 2014.

