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Abstract

The basic idea of a mixed signal system is explored in this work. A Flash Analog-to-Digital Converter 
(ADC) is developed, simulated and tested. Absolute accuracy error, offset error, gain error and 
differential non-linearity (DNL) are some of the tests conducted with successful results. A simulated 
version of the developed Flash ADC system was used to correlate results.

 1.  Introduction

About 25 years ago, the circuit discussed in this paper was only known as an Analog-to-Digital 
Converter (ADC) – Data converter. The terminology “Mixed-Signal System” was not thought of 
at that time. A mixed signal system can be defined as the interfacing system that connects the 
analog and the digital subsystems in any communication system. In effect, it interfaces the analog 
“world” with the digital “world”. In this paper, the basic idea of a flash ADC system is explored in 
the context of a mixed signal system. ADC is an electronic device, often an integrated circuit that 
converts an analog voltage to a digital value.  Some of the most popular ADC types are: The 
parallel or flash, or simultaneous converter, the successive approximation, and the voltage-to-
frequency converter [1], [2], [3], [4], and [5]. Different types offer varying resolution, accuracy 
and speed specifications.

A Flash ADC is developed, simulated and tested. Absolute accuracy errors, Offset errors, gain errors 
and differential non-linearity (DNL) are some of the tests conducted with successful results. In Section 
2, we discussed the Flash ADC basics, in Section 3; the application to a digital voltmeter is discussed. 
In Sections 4, 5 and 6 we discussed the computer simulation, the physical model and testing work done 
respectively. Sections 7, 8 and 9 are the conclusions, references and acknowledgements respectively.
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2. Flash ADC Basics

The Flash ADC is the fastest and also the simplest of the ADC schemes [2], [3], and [5]. It is 
designed using a voltage divider connected to a series of comparators and an encoder.  Figure 1 
shows how the components in a flash converter are organized. It uses a reference voltage at the 
full-scale (FS) of the input range and a voltage divider. The latter is composed of 2n + 1 resistors 
in series, where n is the ADC resolution in bits. The value of the input voltage is determined by 
using a comparator at each of the 2n reference voltages created in the voltage divider.  Flash 
converters are very fast (up to 500 MHz or more) because the bits are determined in parallel. This 
method requires a large number of comparators, thereby limiting the resolution of most parallel 
converters to 8 bits (256 comparators). Flash converters are commonly found in transient 
digitizers and digital oscilloscopes. 

  

 Figure 1: Block diagram of Flash ADC

The first stage of a Flash ADC is a standard voltage divider and its purpose is to divide the 
voltage so that each comparator has a different voltage at their input.  The comparators compare 
each voltage of their inputs to determine an output of either high (1) or low (0) based on a set of 
threshold value.  Finally, in this particular case, the encoder takes the output of each comparator 
and changes it to a true Binary Coded Decimal (BCD) form. It should be pointed out that not all 
Flash ADCs convert to BCD. In this work, we applied our application to a digital voltmeter.
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3. Application to a Digital Voltmeter

A digital voltmeter is an instrument that measures the voltage of any low power circuit, and 
displays the value on a digital display.  We decided to demonstrate the Flash ADC concept by 
building a single-digit digital voltmeter.  

3.1 Defining the Components

Our process of design included defining the components that would be needed. The following is a 
list of the components:

Voltage Divider •
In order to design our voltage divider we needed a total of eleven 1 kΩ resistors. Since I=V/R, 
with an 11V input and 11 kΩ total, the current = 1mA. Therefore, each resistor drops 1V. The 
noninverting inputs of comparators one through ten are at 1V to 10V successively. See Table 1 
for ideal and measured resistor values.

LM339N Quad Comparator •
The LM339N chip contains four comparators.  For our design, we utilized three chips, which in 
total gave us the ten comparators we needed plus two, which were not utilized.

A 74147 10-to-4 Priority Encoder•
The 74147 encoder converts the output of the comparators to a true binary coded decimal (BCD) 
form.  

A 7404 Hex Inverter•
Since the comparators and encoder are active low, we need an inverter to make each output 
active high. The 7404 Hex Inverter performed that function in our design.

A 7447 BCD to 7-Segment Decoder/Driver•
The 7447 BCD to 7-segment decoder/driver takes the BCD code and decodes it to drive the 7-
segment decoder.

A NTE3068 Common Anode Seven Segment Display•
The seven-segment display takes the code from the decoder and displays the numerical value. The 
entire Flash ADC system was simulated using Multisim as shown in Figure 2.

Table 1:  Resistor Values
Resistors Ideal Ω Actual Ω

1 1k 1.0006k
2 1k .9980k
3 1k .9978k
4 1k .9956k
5 1k .9983k
6 1k .9964k
7 1k .9970k
8 1k .9976k
9 1k .9980k
10 1k .9984k
11 1k .9983k
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Figure 2:  Multisim Simulation

4. Computer Simulation

After defining our voltage divider and the other components needed, we simulated the ADC 
system.  We used Multisim, which is a software for circuit design, to build our digital voltmeter.  
Figure 2 shows the Multisim simulation and Figure 3 shows the designed circuit prototype.
We used the simulated circuit to verify our design and intended application as a digital voltmeter.  
This allowed us to build the physical model (prototype).
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5. Physical Model

Figure 3 shows the Flash ADC physical prototype model with application to a digital voltmeter 
that we developed and simulated to demonstrate the Flash ADC conversion method. 
 

        Figure 3: Developed Flash ADC Prototype

6.  Testing of the ADC Mixed Signal System

Both the simulation and the physical prototype model enabled us to demonstrate the testing of 
some of the key parameters.  Our test set up consists of our dc input ranging from 0-10V.  We 
measured each major node of our circuit and compared each value to the expected value for each 
major node. P
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6.1 Absolute Accuracy Error

Absolute accuracy error is the difference between the theoretical analog input required to produce 
a given output code and the actual analog input required to produce the same code (See Tables 2 
and 3).  The actual input is a range and the error is the midpoint of the measured band and the 
theoretical band.

6.2 Offset Error

Offset error is the constant error or shift from the ideal transfer characteristic of the Flash ADC.  
In a Digital-to-Analog Converter (DAC), it is the output obtained when that output should be 
zero.  In this Flash ADC, it is the difference between the input level that causes the first code 
transition and what that input level should be (See Figure 4).  

                                         Table 2: Active Comparator Voltages

                                       Table 3: Comparing Voltage at the + Input

Comparator 
Node

Ideal (V) Actual (V)

1 1 1.013
2 2 2.009
3 3 3.005
4 4 4
5 5 4.996
6 6 5.991
7 7 6.987
8 8 7.983
9 9 8.981

10 10 9.979

Comparator Ideal (V) Simulation (V) Actual (V)
1 1 1.1 1.023
2 2 2.1 2.081
3 3 3.1 3.115
4 4 4.1 4.143
5 5 5.1 5.160
6 6 6.1 6.201
7 7 7.1 7.216
8 8 8.1 8.249
9 9 9.1 9.281
10 10 10.1 10.301
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Figure 4: Ideal Transfer Curve Used in Testing for the ADC of Offset Error

6.3 Gain Error

Gain Error is the error of the slope of the line drawn through the midpoints of the steps of the 
transfer function as compared to the ideal slope.  It is usually measured by determining the error 
of the analog input voltage to cause a full-scale output word with the ideal value that should cause 
this full-scale output.  This gain error is usually expressed in Least Significant Bit (LSB) or in 
percent of full-scale range (See Figure 5).
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Figure 5: Gain Error Test Chart

6.4 Differential Non-Linearity (DNL)

DNL error is defined as the difference between an actual step width and the ideal value of 1LSB.   
For an ideal ADC, in which the differential nonlinearity coincides with DNL = 0LSB, each analog 
step equals 1LSB (1LSB = VFSR / 2N), where VFSR is the full-scale range and N is the resolution of 
the ADC) and the transition values are spaced exactly 1LSB apart. A DNL error specification of 
less than or equal to 1LSB guarantees a monotonic transfer function with no missing codes. An 
ADC's monotonicity is guaranteed when its digital output increases (or remains constant) with an 
increasing input signal, thereby avoiding sign changes in the slope of the transfer curve. DNL is 
specified after the static gain error has been removed. It is defined as follows:

VD + 1 − VD

DNL =    , where 0 < D < 2Ν − 2

    VLSB − IDEAL − 1 P
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VD is the physical value corresponding to the digital output code D, N is the ADC resolution, and 
VLSB−IDEAL is the ideal spacing for two adjacent digital codes. By adding noise and spurious 
components beyond the effects of quantization, higher values of DNL usually limit the ADC's 
performance in terms of signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR). To 
guarantee no missing codes and a monotonic transfer function, an ADC's DNL must be less than 
1LSB. To get the average LSB size, we first calculate the average code width. For Example:

V+ fs  = 10.301 V (code edge from 9 to 10)         
V− fs  = 1.031 V (code edge from 0 to 1)
LSB = Average Code Width = (V+ fs – V− fs) / 2n – 2 volts
        = (10.301-1.023) / 9
        = 1.031 V
See Table 4 for our actual DNL values.

                                           Table 4: Actual DNL Values

With our Average code width, we can now calculate the exact width of each code.

                        Table 5: Values of Exact Calculated Code Width  

Codes DNL
0 - 1 -0.039
1 - 2 0.0262
2 - 3 0.003
3 - 4 -0.003
4 - 5 -0.013
5 - 6 0.009
6 - 7 -0.015
7 - 8 0.002
8 - 9 0.001
9 - 10 -0.011

Code Calculation Code width (V)

1 1 * 1.031 V 1.031
2 1 * 1.031 V 1.031
3 1 * 1.031 V 1.031
4 1 * 1.031 V 1.031
5 1 * 1.031 V 1.031
6 1.25 * 1.031 V 1.29
7 1 * 1.031 V 1.031
8 .75 * 1.031 V .773
9 1 * 1.031 V 1.031
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Once we have our exact code width of each code, next we calculate the code edges used to 
reconstruct the transfer characteristic curve for our tests.
Code 1 = 1.031 V
Code 2 = 1.031 + 1.031 = 2.062 V
Code 3 = 1.031 + 2.062 = 3.093 V
Code 4 = 1.031 + 3.093 = 4.124 V
Code 5 = 1.031 + 4.124 = 5.155 V
Code 6 = 1.031 + 5.155 = 6.186 V
Code 7 = 1.290 + 6.186 = 7.476 V
Code 8 = 1.031 + 7.476 = 8.507 V
Code 9 = .7730 + 8.507 = 9.28 V
Code 10 = 1.031 + 9.28 = 10.311 V

According to our reconstructed transfer characteristic curve shown in Figure 6, we have very little 
errors in our DNL calculations, which translated to a good digital read-out – the Digital 
Voltmeter.
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Figure 6: DNL Transfer Characteristic Curve
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 Conclusion

The concept of a mixed signal Flash ADC has been successfully developed, implemented and 
simulated. A working prototype was also built after being successfully simulated. The developed 
ADC Flash system was tested for absolute accuracy error offset error and Gain error. The results 
have shown that the developed system not only demonstrated the concept of an ADC Flash 
scheme but also demonstrated how it can be applied as a digital voltmeter. Future work on this 
will be to continue to perform other tests and to expand the read-out to have more than one digit 
reading. 
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