
Paper ID #26001

On the Potential of Evolved Parsons Puzzles to Contribute to Concept Inven-
tories in Computer Programming

Mr. A.T.M. Golam Bari, University of South Florida

ATM Golam Bari, student member IEEE, is a Ph.D. student in Computer Science & Engineering Depart-
ment at University of South Florida, USA. He received the ME and BSc. degree in Computer Science &
Engineering from Kyung-Hee University, South Korea and Dhaka University, Bangladesh, in 2013 and
2007, respectively. His main research interest involves Coevolutionary Algorithms, Dynamic Optimiza-
tion, Bio-data mining.

Dr. Alessio Gaspar, University of South Florida

Dr. Alessio Gaspar is an Associate Professor with the University of South Florida’s Department of Com-
puter Science & Engineering and director of the USF Computing Education Research & Evolutionary
Algorithm Laboratory. He received his Ph.D. in computer science in 2000 from the University of Nice
Sophia-Antipolis (France). Before joining USF, he worked as visiting professor at the ESSI polytechnic
and EIVL engineering schools (France) then as postdoctoral researcher at the University of Fribourg’s
Computer Science department (Switzerland). Dr. Gaspar is an ACM SIGCSE, SIGITE and SIGEVO
member and regularly serves as reviewer for international journals & conferences and as panelist for
various NSF programs. His research interests include Evolutionary Algorithms, Computing Education
Research, and applications to Computer-Assisted Teaching & Learning. His technology interests include
Linux System Administration, Programming, Web App Development, and open source technologies in
general.

Dr. R. Paul Wiegand, University of Central Florida, School of Modeling, Simulation, & Training
Dmytro Vitel

I was born in Ukraine, 1988. In 2011 I finished Taras Shevchenko National University of Kyiv and
obtained degree Master of Science in Applied Physics. In August 2017, I was accepted into MSIT program
at University of South Florida. Eventually, program was changed to MSCS.

Mr. Kok Cheng Tan

Kok Cheng Tan is a present PhD student of Computer Science at University of South Florida. He tends
to work toward data science fields such as machine learning and data mining. He has eight-year teaching
experiences and interested in exploring academical present trends.

Stephen John Kozakoff, University of South Florida

c©American Society for Engineering Education, 2019



On the Potential of Evolved Parsons Puzzles to
Contribute to Concept Inventory Design in Introductory

Programming Courses

ATM Golam Bari1

bari@mail.usf.edu
Alessio Gaspar1

alessio@usf.edu
R. Paul. Wiegand2

wiegand@ist.ucf.edu
Dmytro Vitel1

dvitel@mail.usf.edu

Kock Cheng Tan1

kokcheng@mail.usf.edu
Stephen Kozakoff1

kozakoff@mail.usf.edu

1University of South Florida,
Computer Science and Engineering, 4202 E. Fowler Avenue

Tampa, FL, 33620, USA

2 Institute for Simulation & Training
EECS, University of Central Florida

4000 Central Florida Blvd
Orlando, Florida, 32816, USA

Abstract

Our goal is to investigate whether techniques to automatically generate practice problems have
also potential to assist in constructing Concept Inventories (CI) for computer programming. More
specifically, we focus on a specific type of practice problem, Parsons puzzles, aimed at novice
programmers. In this study, we propose EvoParsons - an automated way of evolving Parsons
puzzle for newbie computer programmers, and more importantly we establish that EvoParsons
can be a stepping stone of automating the process of building CI. EvoParsons is a software tool to
improve students’ learning of computer programming. It is developed, maintained and distributed
by our team. The state-of-the art techniques of building CI largely depends on several iterations
of settings among faculties, interviews and surveys from students. This so called Delphi method
largely depends on knowledge of domain experts, feedback from students, surveys etc.
EvoParsons goal is to automate this process by applying Competitive Coevolutionary Algorithm
(CCoEA) and Interactive Evolutionary Algorithm (IEA). In this paper, we first describe
EvoParsons working mechanism, its benefits over other existing systems of generating Parsons
puzzle. Second, we use EvoParsons’ interaction data with actual student to describe its potential
to contribute for building CI. To do so, we perform data driven analysis of EvoParson’s



misconceptions that are found at the last generational puzzle of the experiment. We also analyze
its interaction log to investigate pedagogical importance of misconceptions in successive
generations. Experimental analysis shows that EvoParsons evolves interesting misconceptions,
discards trivial ones, maintains an order of misconceptions in its subsequent generations of
evolution.

1 Introduction

Parsons programming puzzles1 are family of code completion assignments where codes along
with distractors are given in random order. The task is to sort the code in correct order by
selecting correct code of lines only. Since their inception, several independent studies have
repeatedly illustrated the benefits of Parsons puzzle2,3,4,5,6.

The computing education literature has formalized lists of topics taught in certain courses and
areas of computing into CI. These inventories have been developed for digital logic7, discrete
mathematics8, operating systems9, Algorithms analysis10 and introductory
programming11,12,12,13,14as a few examples

While these studies demonstrate significant impact, current methods for CI creation lack
consensus, have difficulties identifying appropriate distractors, and are overall resource-intensive
to apply.

In this work, we first describe our in-house system of evolving Parsons puzzle; EvoParsons. Then
we perform a data driven analysis of EvoParsons’ interaction with actual student to conclude that
EvoParsons can be a stepping stone to automate CI building process.

In short, EvoParsons is a hybrid system of CCoEA15 16 and IEA17. CCoEA is a population-based
search meta-heuristic. It maintains a co-adaptive interaction between participating populations.
By switching such interactive blend of evolution, EvoParsons opens the door of unprecedented
opportunities to go beyond just adapting to independent learning experiences.

We believe this qualitative innovation brings our algorithms closer to the level of generalization
that also differentiates educational research from teaching practice. As such, evolutionary
techniques may not only benefit individual students, but also unveil insights motivating further
educational research. We investigate EvoParsons to answer the following two research
questions;

• Research Question 1 (RQ1): Does EvoParsons evolve relevant misconceptions18 that
classify student’s errors? By relevant we mean if the interesting and harder misconceptions
are getting priority over trivial misconceptions.

• Research Question 2 (RQ2): Does EvoParsons consistently evolve meaningful
misconceptions?

There have been limited applications of evolutionary techniques to the educational domain, in
general, and to the automated generation of Parsons puzzle in particular. This work also
established the foundations for the study of coevolutionary learning dynamics in populations of
human learner from a game-theoretic perspective19. Even more recently, theoretical results



explaining observed coevolutionary dynamics have been applied to gain insights about the
difficulties encountered by novice programmers in an introductory programming
course20,21.

2 Related Work

The original Parsons puzzle1 were generated using a framework named Hot Potato22. The
framework allows drag-and-drop facility. The puzzle designer needs to provide a question header
describing what the program is intended to do, followed by the drag-able items; i.e., the valid
fragments of code in order, followed by distractors. The correct solutions and distractors are then
shuffled before to be presented to the students.

In23, the authors presented Parsons puzzle for CS1 examination. Each line was rearranged and
presented as two slightly syntactic variations. Students’ task is to select the correct line and
re-arrange the lines.

ViLLE24 is a language independent program visualization tool. It also includes Parsons puzzles
created by its user. It does not support distractors. Students can step through a visualization of
his/her execution and sort some of the line of codes.

js-parsons25 introduces a new family of Parsons puzzle for the Python programming languages. It
was motivated by the student feedback obtained in the original Parson’s puzzle work1. js-parsons
supports two visualization modes; basic mode in which lines of code are sorted and distractors are
not allowed, and left to right mode, in which distractors are allowed.

Ericson’s work on dynamically adaptive Parsons problem26 is one of the most recent and
thorough research on the topic. Adaptive Parsons puzzles are implemented as a variant of
js-parsons and take into consideration learners’ past and current performance in order to tune the
difficulty level of the next puzzles presented to the student.

Another recent work, Epplets27, generates Parsons puzzle as randomized instances of parameters
puzzle templates. A puzzle is written in a specific template notation. The template is then used to
generate an entire program, in the correct order. Distractors are created by a library of bug
specifications which contains a regular expression pattern.

While providing Parsons puzzles to the students, the learning tool should not distribute random or
similar puzzles more frequently. Instead, tools need to consider a balance between interesting,
similar and random puzzles. This is an important policy of puzzle distribution that can improve
learning gradient for the students. Otherwise, learners may lose interest to interact with the
system. We did not find any available tool that give focus such disbursement policy to make the
system engaging for its learners.

In addition, all the studies described so far adapt a single user to improve his/her learning skills.
While this is a great benefit, we should also consider adaptability of the whole user base, not just
a single user. Not any tools described above or found in the literature focus on generalization of
difficulties while solving Parsons puzzles. This is because the single user adaptation in traditional



ITS can’t reveal anything about the general difficulties students struggle during their interaction
with the system.

3 System: EvoParsons

Programs 
Library

Distracters 
Library

4. Removes semicolon
3. “class” to “Class”
10. “void” to “char”

System.out.println("Welcome to Java!")
}
public Class Welcome {
public static void main(String[] args) {
public class Welcome {
System.out.println("Welcome to Java!");
}
public static char main(String[] args) {

5 4 3 10

public class Welcome {
public static void main(String[] args) {
System.out.println("Welcome to Java!");

}
}

𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 𝑃𝑃4

𝑆1 1.26 NA 2.5 2.2

𝑆2 NA NA 1.5 2.1

𝑆3 2.0 1.1 NA NA

Genotypes

Selection

Mut
ation

Cross
over

Parsons Puzzles

Evolutionary Algorithm Broker

Broker sends Puzzle’s fitness to Evolutionary Algorithm
Interaction Matrix

h
ttp

://e
p

p
lets.o

rg
/

Learners

Figure 1: Overall workflow of EvoParsons. Evolutionary Algorithm (EA) sends genotypes to
the Broker. The genotypes are mapped into Parsons puzzles inside the broker. Puzzles are then
distributed to the students, on demand. All the student activities are sent back to the broker and
then EA.

Figure 1 depicts the overall architecture of EvoParsons. It has three modules – EA, broker, and
learner interface. The broker is responsible for mapping genotypes into Parsons puzzles by using
both a “Program” and a “Transform” library. Program library contains several Java programs that
includes concepts for the beginner programmers (e.g., variable declaration, initialization, control
and loop statements). Transform library are used to match valid program lines. Then transform
those valid lines to generate distractors. The puzzles are distributed on-demand one by one to the
students after they log into the system. Students solve their assigned puzzle by identifying and
“trash”-ing the distractors, and putting valid lines into correct order. As soon as a student submits
correct ordering of the puzzle, the broker uses this information to identify the next puzzle to
provide to that student and forwards this information, augmented as relevant, to the EA. The EA
then uses this information to determine the fitness of the genotype that corresponds to this Parsons
puzzle. In EvoParsons, the EA is a variant of Population-based Pareto Hill Climber
(PPHC)28.



3.1 Theoretical Basis of EvoParsons

It maintains the competition between Parsons puzzles and student population such that the
puzzles evolve while students interact with EvoParsons. On the other hand, the evaluation of
puzzles by student evaluators requires crafty user fatigue mitigation techniques? .

3.1.1 PPHC variant: EvoParsons’ Core Algorithm

PPHC28 features two populations; one for candidates and one for tests. Each individual in the
candidate population interacts against each of the test individuals, and vice versa. Each test is
treated as an objective in the sense of multi-objectives optimization29. The outcome vectors of
two individuals (either for candidate or for test) can then be compared using the concept of
Pareto-dominance.

In PPHC, each individual that encodes a Parsons puzzle is referred as parent. A parent is mutated
in order to create a so-called child; another individual, slightly modified, that encodes a new
Parsons puzzle. So, each individual has two forms - parent and child.

The outcome vector of a child (~xc) Pareto-dominates that of a parent ( ~xp), which is denoted by
~xc � ~xp, iff

• fi(~xc) ≥ fi( ~xp) for all i in ~f

• There is at least one i such that fi(~xc) > fi( ~xp)

A child replaces its parent in the next generation if it is strictly better; i.e., if its outcome vector
Pareto-dominates that of parent’s. The candidates are thus evolved based on the concept of Pareto
dominance.

In EvoParsons, we use a variant of PPHC, named PPHC-P. This variant uses Pareto dominance
for both candidate and test evolution30. From the implementation perspective, we leveraged
time-established, software components;

• Amruth Kumar’s latest extension to the Problet tutoring system, Epplets, available at
http://epplets.org/, which allows students to interact with Parsons puzzles and receive
automated feedback.

• Sean Luke’s ECJ Java framework, available at
https://cs.gmu.edu/texttildelow/projects/ecj/, which provides implementations of many EA
variants and that we extend to also implement P-PHC-C.

We extend both components so as to allow them to inter-operate via the broker, and communicate
with the latter using Remote Method Invocation in Java technology.

3.1.2 Evolution of Parsons Puzzle using P-PHC variant

Let us take, as example, the parent genotype PP1 = [5, 4, 3, 10]. P1 mutates and creates its child
genotype PP2 = [6, 3, 4, 11]. Both PP1 and PP2 are mapped from genotype to Parsons puzzles.



The mapping process inside broker starts by retrieving program number 5 from the programs
library and transforms numbered 4, 3, 10 from the transforms library. Similarly, we will assume
that the transforms 4, 3, 10 respectively remove the semicolon after a statement, capitalize the
“class” keyword to “Class”, and replace occurrences of keyword “void” by keyword “char”. For
the sake of this example, we will assume that program 5 simply displays “Welcome to Java”

p u b l i c c l a s s Welcome {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

System . o u t . p r i n t l n ( ” Welcome t o Java ! ” ) ;
}

}

After applying the above transforms in program 5 and shuffling the valid and invalid line of
codes, we get the following Parsons puzzle.

System . o u t . p r i n t l n ( ” Welcome t o Java ! ” )
}
}

p u b l i c C l a s s Welcome {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

p u b l i c c l a s s Welcome {
System . o u t . p r i n t l n ( ” Welcome t o Java ! ” ) ;

p u b l i c s t a t i c c h a r main ( S t r i n g [ ] a r g s ) {

Similarly, PP2 is mapped into a different Parsons puzzle, using the same mapping process. The
puzzle mapped from PP2 may be totally different than that of PP1. Both puzzles of the pair (i.e.,
PP1 and PP2) are evaluated by same set of students.

We use a minimum of two evaluations for each puzzle in the pair. As soon as a pair puzzle have
interacted with same set of minimum number of students, the relative number of moves (ratio of
of required move to solve that puzzle and total line of the puzzle) of parent and child are compared
based on Pareto dominance. For example, two students S1 and S3 both solve PP1 and PP2. They
take 1.26 and 2.0 relative number of moves to solve PP1. So, PP1’s interaction outcome vector is
VPP1 = (1.26, 2.0) (Please see Figure 1). Similarly, PP2’s outcome vector is VPP2 = (1.09, 1.11).
As VPP1 Pareto dominates VPP2 , PP1 is strictly better than PP2. Hence, PP1 is kept in the next
generation. The same pair-wise dominance relation is computed for all the individuals.

The algorithm moves to the next generation when each (parent, child) pair have been evaluated by
the minimum number of unique students. The students are anonymously uniquely identified by
EvoParsons. As it is unethical to force all the students to solve all the paired puzzles, the broker
needs to maintain better selection policy to expedite PPHC-P’s evolution. consider that it has
been properly evaluated (minimum of 2 evaluations).



4 Experiment

EvoParsons was used during Spring 2017 with Information Technology students enrolled in an
online introductory programming course at the University of South Florida (COP2512
Programming Fundamentals for IT). The course is meant as a first introduction to programming
for sophomores and is a state mandated prerequisite for the USF BS in Information Technology
program1

We conducted one experiment at the beginning of the semester after students were exposed to
basic Java concepts; data types, selection and iteration. In the course timeline, this means that it
took place after module [203] (see previously referenced website for details). During this
experiment, students were assigned to use our software and work on evolved Parsons puzzles for
a minimum of 30 minutes as practice. A total of 107 students participated in this first experiment.
The broker had 38 items in its transforms library and 40 Java programs in its program library. The
genotypes were set to a length of 10 and the population size to 10 genotypes. The programs
library covered three Java topics that had been presented early in the course; data types, selection
and iteration from module [201], [202] and [203] respectively. PPHC-P ran for a total of six
generations as students worked on their assignments and explored 79 unique genotypes.

5 Results

We consider the relative number of moves students took to solve each of those 10 puzzles in both
experiments (Please see Table 5). We found that students took fewer moves on average in the
second experiment. Two out of the 10 puzzles showed significant improvement (p < 0.01 for
Palindrome Detector and 0.01 < p < 0.05 for Multiplication Table (variant)). The differences
for other puzzles failed to prove statistically significant.

5.1 EvoParsons’s Evolution of Misconceptions (Answering RQ1)

Identifying misconceptions is the stepping stone of building CI for any discipline. The Delphi
method11 is used to build CI for computer programming. Recently the study of semi-structured
interviews14,18 is also considered to classify students’ misconceptions in introductory C
programming. While Delphi and other state of the arts have identified some misconceptions in
computer programming, these are based on data analysis of previous examinations, and mostly
domain specific knowledge from the educators, faculties and students. While answering the above
question, we investigate if EvoParsons evolve misconceptions that are validated by state of the
arts.

1The course material is freely available at http://cereal.forest.usf.edu/edu/COP2512/ so that the reader may have
access to all details regarding the material to which students were exposed prior to using our software.



Table 1: Mean relative moves for the last generational puzzles evolve by EvoParsons. The moves
are shown for both experiment. Please note that, Experiment #1 is evolved while Experiment #2 is
non-evloved version but with same class.

Name of the puzzle µExp1 µExp2 Remarks
Compute Circle Area, V3.0 3.5 1.9 p > 0.05
HexaDecimal to Decimal 3.41 2.94 p > 0.05
Palindrome Detector 2.62 1.86 p < 0.01
Do while loop with sentinel 1.6 1.15 p > 0.05
Greatest Common Divisor 1.22 1.30 p > 0.05
String Operation 1.38 1.31 p > 0.05
A Simple Quiz for Subtraction 1.31 1.27 p > 0.05
Multiplication Table 1.7 1.65 p > 0.05
Multiplication Table (variant) 1.66 1.35 0.001 < p < 0.05
A Guess Game 1.31 1.35 p > 0.05

5.1.1 Misconceptions Covered by EvoParsons Transform Library

The library of misconception in EvoParsons is compiled mostly for Java programs. More
specifically, we design transforms that captured syntactical and semantic bugs. Table 2 categorizes
some of the misconceptions that can be generated by EvoParsons. Please note that “a”, “b”, “x”
and “xxx”’ are the placeholders for the actual variables used in our program library.

5.1.2 Misconceptions Evolved by EvoParsons vs State of the Arts

EvoParsons’ misconception library is mostly designed from literature of CI18 for C programming
and also from31,32 where authors discussed errors found in C and Java Programs. We focus on the
errors that are common for both C and Java Programs. For example, the “removing semicolon”
error can be applied for both languages. On the other hand, some of the misconceptions in C are
out of scope for Java e.g., pointers-related errors. Also, the rules we follow to design
misconceptions for EvoParsons hinder implementing some of the errors like “out of scope”
error.

However, we also design some misconceptions that we think may help a novice programmer to
learn syntax and semantic errors. Some of them are as follows;

• Converting “%” into “/” found in any expression

• Capitalizing keywords e.g., “int” into “Int”

Adding such new misconceptions in EvoParsons transform library helps us to investigate if they
are found in the last generation of P-PHC or they are discarded by EvoParsons in earlier
generations. We also listed common misconceptions from CIs of computer programming. Figure
2 shows them. Please note that, EvoParson’s transform library is also capable to produce these
misconceptions. As mentioned earlier, this library has some other new misconceptions. We were



Table 2: Type of misconceptions and their examples that can be evolved by EvoParsons’s transform
library

Misconceptions Sub Types Original Line Error Line
if (a <= b) if (a < b)
else if (a > b) else if (a >= b)

Off by One while (a < b) while (a <= b)
char a = x.charAt(0); char a = x.charAt(1);
a = 0; a = 1;

Semantic if (a%b) if (a/b)
Miscellaneous if (xxx) { if (xxx)

while (xxx) { while (xxx)
main Main
class Class

Capitalized Keywords int a, b; Int a, b;
public Public
number = x; number = x

Syntactical Remove Semicolon int a = b; int a = b
System.out.println(”xxx”); System.out.println(”xxx”)
if(xxx) if(xxx

Miscellaneous while(xxx) while(xxx
== =

interested to see if EvoParsons last generational puzzle have those misconceptions. To do so, we
list those misconceptions in Table 3

Table 3: Misconceptions found at the last generation of EvoParsons

Original lines Their distractors
public class TestDoWhile Public class TestDoWhile
public class SubtractionQuiz Public class SubtractionQuiz
hline if (number1 - number2 == answer) if (number1 - number2 = answer)
public static void main(String[] args) public static void Main(String[] args)
while (k ≤ n1 && k ≤ n2) while (k ≤ n1 && k ≤ n2
if (n1 % k == 0 && n2 % k == 0) if (n1 / k == 0 && n2 % k == 0)
guess = -1; number = (int)(Math.random() * 101); guess = -1; number = (int)(Math.random() * 101)
int guess, number; Int guess, number;
else if (guess > number) else if (guess ≥ number)

5.1.3 Discussion

We observed that the misconceptions found in the puzzles from the last generation of P-PHC
include some of the misconceptions already identified by CIs in computer programming. It is also



Error, Percentage of students done that error 

in  Tuugalei et al., 2012 

Variable not found (59%)

Mismatched brackets/parenthesis(6.4%)

; expected(1.2%) in HCS281, 1.4% in HCS286

Possible loss of precision(1.3%)

Incompatible types found (1.4%)

Koenig et al., 1989

Original Line Error Line

if (a == b) if (a =b)

a < b && c < d a < b & c < d

a < b || c < d a < b | c < d

if(a > big)

big =a;

if (a > big);

big = a;

Errors in Caceffo et al., 2018

Error Name Example

Improper initialization of loop counter for (int i = 1; i < 9; i++)

sum = sum + i;

Wrong control flow in a loop for (int i = 0; i <= 9; i++)

sum = sum + i;

Figure 2: Some of the misconceptions aligned with EvoParsons’ Program library. EvoParsons
misconceptions listed in Table 2 can generate these misconceptions.

interesting that those puzzles do not have misconceptions such as float a; − > char a;, &&− > &,
||− > |. The analysis of log shows that these misconceptions are discarded because EvoParsons
selection mechanism decided worthless to evolve.

Please note that, some trivial misconceptions such as “capitalizing keywords” are found in the last
generation of P-PHC. It is interesting to investigate if they propagate to new generations because
the puzzle contains some other interesting misconceptions found in the literature.

5.2 EvoParsons Consistency of Evolving Meaningful Distractors (Answer-
ing RQ2)

We examined the log, over all the generations, of the selection decisions between parent puzzle
and their respective children puzzle. This allowed us to trace the origin of the evolved puzzles in
terms of successive mutations and selections steps. To do so, we took some of the puzzles found
in the last generation of P-PHC and trace them from first generation and built a hierarchy of
misconceptions based on EvoParson’s multi-objective comparison to promote puzzles into next
generation.



5.2.1 Tracing the log of EvoParsons Last Generational Puzzle

• The distractors in “Hex2Dec – Hexadecimal to Decimal Converter” are trickier than that
of its pair puzzles in previous generations.

Hex2Dec has two “Off by One” semantic misconceptions – if a <= b − > if a < b and
char a = x.charAt(0) − > char a = x.charAt(1) – and another miscellaneous one; if(xxx){
− > if(xxx). The generational log shows that these misconceptions are better in
differentiating student’s performance than syntactic misconceptions e.g., (main, int) − >
(Main, Int), removing semicolon and Off by One distractor like while(x != 0) − > while(x
!= 1).

• The misconceptions in “Palindrome detector” has two “Off by One” bugs and one syntax
error; while(xxx) − > while (xxx. On the other hand, its other pairs in previous generations
have all syntactic errors like (class, int, public) − > (Class, Int, Public). It seems that
EvoParsons prioritizes semantic errors over syntactic ones, while promoting better puzzles
in the next generation.

• The “Subtraction Quiz” suggests that the distractor — converting == into = inside a
conditional expression of control statement — is harder to detect than another semantic
distractor (converting 1 into 0 in a variable initialization), and also harder to detect than
any other syntactical distractor considered.

• The context of “Usage of do while loop” to find out summation of all the integers provided
by the user, seems harder than all the pair puzzles in previous generations. The puzzles
were two different programs with different distractors at different generations; First one is
“leap year determiner”: determining if an input year is a leap year or not. The second one is
“addition verifier”: verify the addition of two already initialized integers until correct result
is provided by the user. It can be inferred that the use of a do while loop instead of a while
loop (in “addition verifier” puzzle), along with the use of a sentinel value in the “Usage of
do while loop” program, makes it informatively harder than all of its children.

• The “GCD — Greatest Common Divisor — Calculator” is contextually harder than its
parent “leap year determiner” though the latter had more syntactic distractors than the
former (and same semantic distractor). However, “GCD calculator” wins from generation
#4 though it looses in previous generations against “leap year determiner”. This may be due
to differences in the distribution of student performance between generations #3 and # 4.

Figure 3 shows the hierarchy of misconceptions by analyzing the multi-objective selection
mechanism of EvoParsons. For any puzzle, the misconception at the top is interesting or
contribute more to distinguish student’s performance than its lower misconception. As for
example, the misconception if(a = b) in “Subtraction Quiz” is more important and interesting
than a misconception that focus on syntax error i.e., convert main int Main.



if (a == b) into if (a = b)

for(x;x;x) { into for(x; x; x)

main into Main

int a = 10 into int a = 11;

≻

≻

≻

while( a%b) into while (a / b)

Sys..println(); into Sys..println() 

double bmi; into int bmi;

≻

≻

main into Main 

while(xxx) { into while(xxx { 

int x = y; into int x = y; 

int b; into Int b;

public into Public

int x = 2; into Int x = 2;

≻

≻

int a = 10; into int a = 10

else if (a > b) into else if (a>=b)

Subtraction Quiz GCD Calculator

Guess Game

Figure 3: The distractor in Subtraction Quiz helps this practice problem to be more competitive i.e.,
Pareto dominate than its child Practice problem. The same description applies for GCD Calculator
and Guess game.

5.2.2 Discussion

Analysis of multi-objective selection mechanism of EvoParsons show that the misconceptions
found in the last generational puzzles of EvoParsons promote interesting misconceptions than
trivial ones. This promotion is consistent in successive generations. Please note that, evolution of
such misconceptions while maintaining consistency of evolution make EvoParsons an important
tool to contribute to the design of CI in introductory programming course.

6 Conclusion

We propose a new learning tool for introductory programming course that automate the process of
building CI. The evolution of Parsons puzzle using our tool; EvoParsons and its contribution to
automate the design of CI in introductory programming course will benefit computing education
research community. It alleviates the semi-interview process of sate of the art i.e., Delphi method
to build CI. EvoParsons also captures interesting and generalized misconceptions that maximize
the performance of student population.

Currently this learning software can be used only for Java Programming course. However, it can
be extended for other programming courses e.g., C and Python and even for different courses of
computer science.



Acknowledgments

This material is based in part upon work supported by the Association for Computing
Machinery’s SIGCSE Special Projects 2015 award, and the National Science Foundation under
awards #1504634, #1502564, and #1503834. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Our team acknowledges Dr. Amruth Kumar for allowing our prototype to connect via the
epplets.org user interface, while working on the above-mentioned NSF proposals.

Our team also acknowledges Dr. Anthony Bucci for his valuable feedback to improve
EvoParsons’ coevolutionary interaction mechanism.

Besides the researchers involved in this project, many Information Technology students from the
University of South Florida also significantly contributed to the project;

• Paul Burton implemented the original proof of concept software during his IT Senior
Project in spring 2015, and refined it under OPS contract during summer 2015.

• Stephen Kozakoff extended the prototype and connected it to Epplets.org as part of his
MSIT graduate practicum in fall 2015 and spring 2016.

• Himank Vats contributed to the Docker containerization of the server-side components as
part of his MSIT graduate practicum in 2017.

Our team gratefully acknowledges the received funding support, as well as the participating
students’ dedication and enthusiasm.

References

[1] Dale Parsons and Patricia Haden. Parson’s programming puzzles: A fun and effective learning tool for first
programming courses. In Proceedings of the 8th Australasian Conference on Computing Education - Volume
52, ACE ’06, pages 157–163, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc. ISBN
1-920682-34-1. URL http://dl.acm.org/citation.cfm?id=1151869.1151890.

[2] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. Solving parsons problems versus fixing and writing
code. In Proceedings of the 17th Koli Calling Conference on Computing Education Research, pages 20–29.
ACM, 2017.

[3] Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. How do students solve parsons programming
problems?: An analysis of interaction traces. In Proceedings of the Ninth Annual International Conference on
International Computing Education Research, ICER ’12, pages 119–126, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1604-0. doi: 10.1145/2361276.2361300. URL
http://doi.acm.org/10.1145/2361276.2361300.

[4] Ville Karavirta, Juha Helminen, and Petri Ihantola. A mobile learning application for parsons problems with
automatic feedback. In Proceedings of the 12th Koli Calling International Conference on Computing Education
Research, Koli Calling ’12, pages 11–18, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1795-5. doi:
10.1145/2401796.2401798. URL http://doi.acm.org/10.1145/2401796.2401798.



[5] Barbara J. Ericson. Adaptive parsons problems with discourse rules. In Proceedings of the Eleventh Annual
International Conference on International Computing Education Research, ICER ’15, pages 259–260, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3630-7. doi: 10.1145/2787622.2787740. URL
http://doi.acm.org/10.1145/2787622.2787740.

[6] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial. Subgoals help students solve
parsons problems. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
SIGCSE ’16, pages 42–47, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3685-7. doi:
10.1145/2839509.2844617. URL http://doi.acm.org/10.1145/2839509.2844617.

[7] Geoffrey L. Herman, Lisa Kaczmarczyk, Michael C. Loui, and Craig Zilles. Proof by incomplete enumeration
and other logical misconceptions. In Proceedings of the Fourth International Workshop on Computing
Education Research, ICER ’08, pages 59–70, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-216-0.
doi: 10.1145/1404520.1404527. URL http://doi.acm.org/10.1145/1404520.1404527.

[8] Vicki L. Almstrum, Peter B. Henderson, Valerie Harvey, Cinda Heeren, William Marion, Charles Riedesel,
Leen-Kiat Soh, and Allison Elliott Tew. Concept inventories in computer science for the topic discrete
mathematics. In Working Group Reports on ITiCSE on Innovation and Technology in Computer Science
Education, ITiCSE-WGR ’06, pages 132–145, New York, NY, USA, 2006. ACM. ISBN 1-59593-603-3. doi:
10.1145/1189215.1189182. URL http://doi.acm.org/10.1145/1189215.1189182.

[9] Kevin C. Webb and Cynthia Taylor. Developing a pre- and post-course concept inventory to gauge operating
systems learning. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 103–108, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2605-6. doi:
10.1145/2538862.2538886. URL http://doi.acm.org/10.1145/2538862.2538886.

[10] Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Clifford A. Shaffer. Towards a concept inventory
for algorithm analysis topics. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’17, pages 207–212, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4698-6.
doi: 10.1145/3017680.3017756. URL http://doi.acm.org/10.1145/3017680.3017756.

[11] K. Goldman, P. Gross, C. Heeren, G. Herman, L. Kaczmarczyk, M.C. Loui, and C. Zilles. Identifying important
and difficult concepts in introductory computing courses using a delphi process. ACM SIGCSE Bulletin, 40(1):
256–260, 2008.

[12] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa Kaczmarczyk, Michael C. Loui, and Craig
Zilles. Setting the scope of concept inventories for introductory computing subjects. Trans. Comput. Educ., 10
(2):5:1–5:29, June 2010. ISSN 1946-6226. doi: 10.1145/1789934.1789935. URL
http://doi.acm.org/10.1145/1789934.1789935.

[13] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman. Identifying student
misconceptions of programming. In Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, SIGCSE ’10, pages 107–111, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0006-3. doi:
10.1145/1734263.1734299. URL http://doi.acm.org/10.1145/1734263.1734299.

[14] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. Developing a computer science
concept inventory for introductory programming. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, SIGCSE ’16, pages 364–369, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-3685-7. doi: 10.1145/2839509.2844559. URL
http://doi.acm.org/10.1145/2839509.2844559.

[15] D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure. Artificial Life II,
10:313–324, 1991.

[16] Richard A Watson and Jordan B Pollack. Coevolutionary dynamics in a minimal substrate. In Proceedings of
the 3rd Annual Conference on Genetic and Evolutionary Computation, pages 702–709. Morgan Kaufmann
Publishers Inc., 2001.



[17] Hideyuki Takagi. Interactive evolutionary computation: Fusion of the capabilities of ec optimization and
human evaluation. Proceedings of the IEEE, 89(9):1275–1296, 2001.

[18] Ricardo Caceffo, Raysa Benatti Guilherme Gama, and Rodolfo Azevedo Tales Aparecida, Tania Caldas. A
concept inventory for cs1 introductory programming courses in c. In In Technical Report 18-06, Institute of
Computing, University of Campinas, SP, Brasil, Brasil, 2018.

[19] A. Bader-Natal. The Teacher’s Dilemma: A game-based approach for motivating appropriate challenge among
peers. PhD thesis, Michtom School of Computer Science, Brandeis University, 2008.

[20] R. Paul Wiegand, Anthony Bucci, Amruth N. Kumar, Jennifer L. Albert, and Alessio Gaspar. A data-driven
analysis of informatively hard concepts in introductory programming. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, SIGCSE’16, pages 370–375, 2016. ISBN
978-1-4503-3685-7.

[21] Anthony Bucci, R. Paul Wiegand, Amruth N. Kumar, Jennifer L. Albert, and Alessio Gaspar. Dimension
extraction analysis of student performance on problems. In Proceedings of the 29th International Conference of
the Florida Artificial Intelligence Research Society, FLAIRS’16, 2016.

[22] Petri Ihantola and Ville Karavirta. Two-dimensional parson’s puzzles: The concept, tools, and first
observations. Journal of Information Technology Education, 10:119–132, 2011.

[23] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. Evaluating a new exam question: Parsons problems. In
Proceedings of the Fourth International Workshop on Computing Education Research, ICER ’08, pages
113–124, 2008. ISBN 978-1-60558-216-0. URL
http://doi.acm.org/10.1145/1404520.1404532.

[24] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. Ville: a language-independent program
visualization tool. In Proceedings of the Seventh Baltic Sea Conference on Computing Education
Research-Volume 88, pages 151–159. Australian Computer Society, Inc., 2007.

[25] Petri Ihantola and Ville Karavirta. Two-dimensional parson’s puzzles: The concept, tools, and first
observations. Journal of Information Technology Education, 10(2):119–132, 2011.

[26] Barbara Jane Ericson. evaluating the effectiveness and efficiency of parsons problems and dynamically adaptive
parsons problems as a type of low cognitive load practice problem. PhD thesis, Georgia Institute of
Technology, 2018.

[27] Amruth N Kumar. Epplets: A tool for solving parsons puzzles. In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pages 527–532. ACM, 2018.

[28] Anthony Bucci and Jordan B Pollack. Focusing versus intransitivity geometrical aspects of co-evolution. In
Genetic and Evolutionary Computation Conference, pages 250–261. Springer, 2003.

[29] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms, volume 16. John Wiley & Sons,
2001.

[30] Alessio Gaspar, A.T.M. Golam Bari, Amruth N. Kumar, R. Paul Wiegand, Anthony Bucci, and Jennifer L.
Albert. Evolutionary practice problems generation: Design guidelines. In 28th IEEE International Conference
on Tools with Artificial Intelligence, ICTAI’16, 2016.

[31] IT Chan Mow. Analyses of student programming errors in java programming courses. Journal of Emerging
Trends in Computing and Information Sciences, 3(5):739–749, 2012.

[32] Andrew Koenig. C traps and pitfalls. Pearson Education India, 1989.


