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Abstract 
 

A simplified method is described for designing periodic structures with transformer sections 
connected in series to match impedances or provide transitions from slow wave to fast wave 
transmission lines in acoustical, optical, and microwave waveguides.  For a given bandwidth, 
transformer section characteristic impedances are designed to provide a Chebyshev Polynomial, 
or equal ripple, reflection coefficient response, which reduces reflections to negligible levels.  It 
extends Dolph-Chebyshev antenna theory to transmission line transformers.  The earlier method 
was W.W. Hansen’s Binomial Coefficient design for several transformer sections.  Over a 
bandwidth ratio of f2/f1   = 2.0, the Chebyshev Polynomial method has a VSWR of 1.02 to the 
binomial coefficient design with a VSWR of 1.13, for a line with five sections.  Chebyshev 
polynomials are tedious to calculate, but an unwritten method, developed by Ross E. Graves at 
Stanford University, makes the calculations as simple as those in Pascal’s Triangle for Binomial 
Coefficients.  My thesis advisors, Donald Reynolds and Myron Swarm at Stanford, were students 
under Professor Graves, and enjoyed my reference to Graves Pyramid for Chebyshev 
Polynomials. 
 
1.  Introduction 
 
In microwave and optical waveguides, phase velocities are infinite at the cutoff frequency and 
are always greater than the velocity of light in the dielectric in the guide, where group velocity is 
zero at cutoff and is always less than the velocity of light in the dielectric in the guide.  As the 
frequency increases far beyond cutoff, phase and group velocities both approach the velocity of 
light in the dielectric in metallic and dielectric guides.  These phase velocities are described as 
fast waves.  In traveling wave tubes, slow wave structures create phase velocities with velocities 
along the axis of the structure much less than the velocity of light.  In slow wave structures such 
as traveling wave tubes, acoustical horns, and optical telephone circuits, it is necessary to couple 
these lines to fast wave structures for purposes of transmitting data or radiating electromagnetic 
and acoustical waves.  
 
This paper describes designing transformer structures for matching acoustical and 
electromagnetic wave transmission lines with different characteristic impedances, and fast or 
slow wave  P
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lines with different phase velocities.    Design techniques were formerly developed by Seymour 
Cohn 1  for fast wave lines like those in waveguides and antennas.  This study modifies Cohn’s 
techniques for coupling slow wave to fast wave lines.  The transformer structure is a sequence of 
sections, each with the same acoustical, microwave, or optical length, slowly changing 
characteristic impedances from section to section, and slightly increasing phase velocities than 
the preceding section.  These gradually increasing slow phase velocity sections may be coaxial, 
waveguide, or parallel planes.  They may be dielectric filled metallic waveguides; dielectric clad 
optical lines, or acoustical channels.  With a given number of sections, the modified method 
yields maximum bandwidth for a given VSWR, or minimum VSWR for a given bandwidth.   It 
is called a Chebyshev transformer because Chebyshev polynomials are used in its formulation. 
 
II.  Binomial Transformers 
 
The accepted method for designing transformer structures was Hansen’s Binomial coefficient2 
design prior to development of the Chebyshev or optimum stepped transformer.  The Binomial 
transformer is obtained from the Chebyshev transformers for unity bandwidth ratios. 
 
Maximally flat passband filter responses are obtained where the reflection coefficient ρ (Μ),   
between sections M and M + 1 in the multisection transmission line, are proportional to the 
Binomial coefficients, like those in Binomial or Butterworth filters.  This requires that the first 
(N - 1) derivatives (with respect to θ)  of the reflection coefficient Γ vanish at the matching 
frequency where βl = θ  =  π/2.   These are realized with the function  
 

Γ =  A (1 + e  -j 2 θ )  N - 1,                                                                          (1) 
 

and to find the arbitrary constant A, the magnitude of  Γ  is written as the function  ρ, 
 

                               ρ  =  | Γ |  = | Α 2 N - 1  ( cos θ  )  N - 1   | ,                                                          (2) 
 
and where N is the number of transformer sections. The constant A is found at θ  = 0 or π, where 
 
                                          Z (N + 1)  -  Z (1)                                
                 A (2 N - 1 )   =    Z (N + 1)  + Z (1) ,   
                                                                                                   Z (N + 1)  -  Z (1) 
                                                                           A  =  2 - (N - 1)    Z (N + 1)  +  Z (1).                     (3) 
 
where Z (1) is the characteristic impedance of the input transmission line and Z (N + 1) of the 
output line, and the reflection coefficient expression for media with these characteristic 
impedances, [Z (N + 1) -  Z (1)] / [Z (N + 1)  + Z (1)].   
 
 

 
 P
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With A from Eq. (3), Eq. (1) is expanded by the Binomial Theorem to obtain the Binomial 
coefficients, 
                         
Γ =  2 - (N - 1) [Z (N + 1)  +  Z (1)] / [Z (N + 1) +  Z (1)] (1 + e  -j 2 θ )  N - 1 
 
                                                                                                                         (N - 1) (N - 2) 

   =  2 - (N - 1) [Z (N + 1)  +  Z (1)] / [Z (N + 1) +  Z (1)] {1 +  (N - 1) e  -j 2 θ +         2!          e j θ + 
 
                   (N - 1) (N - 2).....(N - M + 1)                                 (N - 1) (N - 2) 

       .....+                     (Μ − 1) !              e  -j 2 (M - 1) θ      +  ..... +          2!             e  -j 2 (N - 3) θ 

                  
            +  (N - 1) e  -j 2 (N - 2) θ        + e  -j 2 (N - 1) θ   } 
 
                        Z (N + 1)  -   Z (1)     M=N   (N - 1) (N - 2) ..... (N - M + 1) 
    =  2 - (N - 1)    Z (N + 1)  +  Z (1)      Σ                       (Μ − 1) !                     e  -j 2 (M - 1) θ  

                                                          M=1 

 
                        Z (N + 1)  -  Z (1)     M=N   | N - 1  | 
    =  2 - (N - 1)    Z (N + 1)  +  Z (1)      Σ     | Μ − 1|  e  -j 2 (M - 1) θ  

                                                         M=1 

    
                     M=N 

    =                Σ     ρ (Μ)  e  -j 2 (M - 1) θ ,                                                                                     (4) 
                     M=1 

                                                      |  N - 1 | 
where the Binomial coefficients   | M - 1 |  are equal to  

 
(N - 1) (N - 2) ..... (N - M + 1)                       (N - 1) !___              |  N  -  1  | 
                    (Μ − 1) !                 =      (Ν − Μ) ! (Μ − 1) !        =   |  Ν − Μ  |  ,                           (5) 
 
and where the reflection coefficient ρ (Μ),   between sections M and M + 1, is seen to be 
proportional to these Binomial coefficients,        
                                                                                                                        
ρ (Μ)  =   [Ζ (Μ + 1)  −  Ζ (Μ)] / [Ζ (Μ + 1)  +   Ζ (Μ)]                                                                  
                                   |  Ν −  1  | 
            =      2 - (N - 1)   |  Ν − Μ  |  [Z (N + 1)   Z (1)] [Z (N + 1)  +  Z (1)].                                 (6) 
 
Another form is made in a logarithmic form with the series, 
 
                 |X -  1|        2  |X -  1| 2                 ___ 2___   |X -  1| 2 M + 1              |X -  1  |    
ln X  =  2  |X + 1|   +   3  |X + 1|    +.....+   (2 M  +  1)  |X + 1|     +.....=   2 | X + 1 |  ,               (7) 
 
for M = 1. 2, 3,.... for small values of  X.  Results are within 9% for X = 3, and 3% for X = 2. 
 P
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With X = Z (M + 1)/Z (1), symmetry gives expressions for section reflection coefficients  ρ (M), 
 
                               |  N  −  1  |                                                                                              
ρ (Μ)  =   2 - (N - 1)   |  Ν − Μ  |  [Z (N + 1)  -  Z (1)] / [Z (N + 1)  +  Z (1)]   
                            | N  −  1  | 
            =    2 - N   |  Ν − Μ  |  ln  | Z (N + 1) / Z (1)   | ,                                                      (8) 
                                                                       
or in terms of Eq. (6),     ρ (Μ)  =  1/2   ln  | Ζ (Μ + 1) /  Ζ (Μ) |  ,                                  (9) 
 
and again, the reflection coefficients again are proportional to the Binomial coefficients and a 
constant. 
 
III.  Pascal’s Triangle and the Binomial Coefficients 
 
The Binomial coefficients can be calculated for the section reflection coefficients    ρ (Μ)  with a 
simple process.  Like the Graves’ Pyramid, Pascal’s Triangle permits a very simple method of 
calculation.  Table I is Pascal’s Triangle for Binomial coefficients. 
 

Table I 
Pascal’s Triangle for Binomial Coefficients 

_____________________________________________________________________ 
 

1 
1        1 

1        2        1 
1        3        3        1 

1        4        6        4        1 
1        5       10       10        5        1 

1        6       15       20       15       6        1 
1        7       21       35       35       21       7        1 

____________________________________________________________________ 
 

Pascal’s triangle is made with the number 1.0 in the first row.  In the second row, 1.0s are placed 
at the left and right of the element above.  In successive rows, elements are formed by adding the 
two elements on the left and right of the calculated element in the row above the element.  
 
With Pascal’s Triangle, the ratios of reflection coeffients to design a Binomial transformer for 
coupling slow to fast wave transmission lines for three steps are 
 
                                                 ρ (1) : ρ (2) : ρ (3)  =  1.0 : 2.0 : 1.0,                                        (10) 

 

and for four steps    ρ (1) : ρ (2) : ρ (3) : ρ (4)  =  1.0 : 3.0 : 3.0 : 1.0,                                      (11) 
and in the same manner for N steps.  The results were applied to optical and microwave coupling  P

age 6.769.4



Proceedings of the 2001 American Society for Engineering Education Annual Conference &Exposition 
Copyright O 2001, American Society for Engineering Education 

 

transitions from slow to fast wave lines. 
 
IV.  Chebyshev’s Transformers 

 
Hansen’s Binomial coefficient design2 for transmission line transformer sections was described in 
the preceding sections.  In his design, the logarithms of the characteristic impedance ratios, or the 
reflection coefficients, of adjacent sections were made to be in the ratio of Binomial coefficients.   
In this section, the design method calculates the logarithms of the characteristic impedance ratios 
so that the VSWRs have the characteristic "equal ripple" response of a Chebyshev polynomial.  
Instead of the maximally flat passband characteristic, the Chebyshev transformer provides a 
variation of reflection coefficient ρ  to vary or oscillate between 0 and  ρ (Μ) across the 
passband like a Chebyshev filter.  Since the equal ripple response makes ρ behave like a 
Chebyshev polynomial, it is named the Chebyshev transformer.  The reflection is zero at as 
many different frequencies in the passband as there are transformer sections. 
 
Use of Chebyshev polynomials TN - 1 (z) of  (N - 1)th degree and of the first kind by looking at 
some definitions and forms, 
 

T0 (z)  =  1 
T1 (z)  =  z 

                                                               T2 (z)  =  2 z 2  -  1   
                                                               T3 (z)  =  4 z 3  -  3 z                                                      (12) 
                                                               T4 (z)  =  8 z 4  -  8 z 2  +  1   

                                                               T5 (z)  =  16 z 5  -  20 z 3  +  5 z 
                                                                          ..... 
                                                              TM (z)  =  2 z TM - 1 (z)  -  TM - 2 (z) 
 
TM (z)  is also found from the equivalent expressions,  
 
                                        TM (z)  =   cos  (M  cos  - 1 z ),   | z |  <   1                                          (13)  

                                            
                                    TM (z)  =   cosh  (M  cosh  - 1 z ),   | z |  >   1 .                                        (14) 

 
When  z  =  cos θ , another for TM (z)   used in Chebyshev transformers is 
 
                                                           TM (z)   =   cos  (M z ).                                                   (15) 
 
Chebyshev polynomials all oscillate between + 1  for z between  + 1  and | TM (z) |  increase 
monotonically for  | z |  >   1 .   
 
 

 
In multisection transformers with small reflections at each boundary, like those in previous 
sections, the overall reflection coefficient is the sum of smaller reflections at each junction, 
 P
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Γ  =  ρ (1)  +  ρ (2)  e  -j 2 θ  +  ρ (3)  e  -j 4 θ  +  ..... +  ρ (Ν)   e  -j 2 (N - 1) θ 

 

    =   e  -j  (N - 1) θ  [ ρ (1)  e  j  (N - 1) θ  +  ρ (2)  e  j  (N - 3) θ   + ρ (3)   e  j  (N - 5) θ  + .....  
 
               + ρ (Μ)  e  j  (N - 2 M  + 1) θ  + .....  + ρ (Ν − 1)   e  -j  (N - 3) θ  + ρ (Ν)   e  -j  (N - 1) θ ]            (16) 
 
and the magnitude of the reflection coefficient  ρ , referred to the center, is given by   
 
ρ = | Γ |  =  ρ (1) e  j  (N - 1) θ  +  ρ (2) e  j  (N - 3) θ   + ρ (3) e  j  (N - 5) θ  +.....+ ρ (Μ) e  j  (N - 2 M  + 1)θ   

 

                   + ..... + ρ (Ν − 1)   e  -j  (N - 3) θ  + ρ (Ν)   e  -j  (N -  1)θ                                                 (17)  
 
The reflection coefficients ρ (Μ)  at each section are assumed to be symmetrical as in the case of 
the Binomial transformer so that ρ (1)  =   ρ (Ν), ρ (2)  =  ρ (Ν − 1), etc., and with this 
symmetry, the above expression for odd N,  N = 1, 3, 5, ..., becomes 
 
ρ =  2 ρ (1)  cos (N - 1) θ   +  2 ρ (2)  cos (N - 3) θ   +  2 ρ (3)  cos (N - 5) θ   + ..... 
    
                                               + 2 ρ (Μ) cos (N - 2 M  + 1)θ  +.....+  ρ ([Ν + 1] / 2)  ,            (18)  
 
and for even N,  N  =  2, 4, 6, ..., becomes 
 
ρ =  2 ρ (1)  cos (N - 1) θ   +  2 ρ (2)  cos (N - 3) θ   +  2 ρ (3)  cos (N - 5) θ   + ..... 
    
                                      + 2 ρ (Μ) cos (N - 2 M  + 1)θ  +....+ 2 ρ (Ν / 2) cos θ .                     (19)  
 
In order to achieve optimum equal ripple response of a Chebyshev filter or transformer, the  
reflection coefficients ρ (Μ) must be chosen so that the total reflection coefficient ρ will be 
proportional to a Chebyshev polynomial.  These were defined earlier in this section.  The 
properties of Chebyshev polynomials are that they all oscillate between + 1  for z between  + 1  
and  
| TM (z) |  increases monotonically for  | z |  >   1 .   
 
The optimum section reflection coefficient  ρ (Μ) response is obtained by expressing the 
trigonometric terms below in Eqs. (18) and (19) ,  

 
T0 (cos θ)  =  1 

cos  θ   =  Τ1 (cos θ)  =  Y 
                                                          cos 2θ  =  T2 (cos θ)  =  2 Y 2  -  1   
                                                          cos 3θ  =  T3 (cos θ)  =  4 Y 3  -  3 Y                                 
                                                       
                                                         cos 4θ  =  T4 (cos θ)  =  8 Y 4  -  8 Y 2  +  1                      (20)  
                                                          cos 5θ  =  T5 (cos θ)  =  16 Y 5  -  20 Y 3  +  5 Y 
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                                                                          ..... 
                                                        cos  Μθ  =  TM (cos θ)  =  2 Y TM - 1 (cos θ)  -  TM - 2 (cos θ), 
 
Then equate                   

                                                                   Y  = cos θ  =   X cos θ1                                                          (21) 
 

Equation (19) requires that   X  <   1 for   θ1   and  θ 2 , where  θ1 is the electrical spacing at the 
lower edge of the electrical spacing at the lower edge of the band, and θ 2 =  180 o  

- θ1 is the 
upper edge of the band..  In this symmetrical range of θ  ,  the reflection coefficient is kept low.  

The angle    θ1  may have any value between 0 and 90 degrees.  If  θ1  is 60 degrees, then the 
bandwidth ratio BW,   θ2 / θ1, is 2.00.  In the Binomial transformer, θ1  is 90 o, so that BW  
is one, so that the Binomial transformer is a special case of the Chebyshev transformer 
 
After substituting Eqs. (19) and (20) into Eqs. (18) and (19), polynomials of either odd or even 
powers of X are obtained.  When a Chebyshev transformer has N steps, the highest power of the 
polynomial is (N - 1).  The resulting polynomial  ρ  is equated to.   

 
       ρ   =  α (Ν − 1) TN - 1 (cos θ / cos θ1 )   =   α (Ν − 1) TN - 1  (X)   ,                                     (22)  
 
to evaluate the coefficients  ρ (Μ) .    
 
The constant α (Ν − 1)  is found from Eq, (8), with θ   = 0, which corresponds to a structure of 
zero length, or 
 
          ρ  =   [Z (N + 1)  -  Z (1)] / [Z (N + 1)  +  Z (1)]  =   1/2   ln  [Z (N + 1) / Z (1)]   ,      (23)    
 
When substituted into Eq. (22), with θ   =   0, the result is  
                                                                                       
                                           α (Ν − 1)  =       1/2  ln  [Z (N  + 1)/ Z (1)]_                                   (24)          
                                                                           TN - 1 (1.0 / cos θ1 )  
 
V.  Graves’ Method and the Chebyshev Coefficients 
 
Chebyshev coefficients are tedious to calculate, but an unwritten method, developed by Ross E. 
Graves at Stanford University, makes the calculations as simple as those in Pascal’s Triangle for 
Binomial Coefficients.  My thesis advisors, Donald Reynolds and Myron Swarm at Stanford, 
were students under Professor Graves, and enjoyed my reference to Graves Pyramid for 
Chebyshev Polynomials. 

 
Graves’ method is similar to Pascal’s triangle for Binomial coefficients.  Pascal’s Triangle is 
made with the number 1.0 in the first row.  In the second row, 1.0s are placed at the left and right 
of the element above.  In successive rows, elements are formed by adding the two elements on 
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the left and right of the calculated element in the row above the element.   This ritual for element 
placement is described because a similar ritual is followed with Graves’ Pyramid.   
 
Graves’ Pyramid is formed by inserting a number 2.0 in the first row.  In the second row, another 
number,  X 0   =  1.0 / cos θ1 , is placed to the left of the element above and the same number,  
X 0  , is placed to the right of the number above.  In successive rows, elements are formed by 
adding the two elements on the right and on the left in the row above, multiplying the sum by  
X 0  , and subtracting the element in the second row above the entry being calculated from this 
product.  When elements are absent, they are assumed to be zero.  Graves’ Pyramid appears in 
Table II as a function of X 0  .  When  X 0  = 2.00, Graves’ Pyramid has the values seen in Table 
III.  When elements are normalized we have the reflection coefficient ratios in Table IV for 10 
sections or steps and Bandwidth BW = 2.00.          
 

Table II 
Graves’ Pyramid for Chebyshev Coefficients 

_____________________________________________________________________ 
 

2 
X 0                  X 0 

X 0 
2          2 X 0 

2  -  2                X 0 
2 

                               X 0 
3           3 X 0 

3  -  3 X 0         3 X 0 
3  -  3 X 0           X 0 

3 
____________________________________________________________________ 

 
Table  III is Graves’ Pyramid for Chebyshev Coefficients, X 0  =  2.00. 
 

Table III 
Graves’ Pyramid for Chebyshev Coefficients, X 0  =  2.00 

____________________________________________________________________ 
                                                                             2 

2          2 
4          6         4 

8        18        18        8 
16      48        66        48        16 

____________________________________________________________________ 
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Table IV 
Graves’ Pyramid for  Normalized Chebyshev Coefficients, X 0  =  2.00        

Normalized by dividing elements in each row by end elements in the row. 
__________________________________________________________________________ 

 
1.0 

1.0            1.0 
1.0            1.5            1.0 

                                                 1.0             2.25          2.25         1.0     
                                         1.0            3.0          4.125          3.0           1.0        
                                 1.0         3.75           6.5675      6.5675      3.75          1.0 
                          1.0         4.51        9.5625   12.09375     9.5675       4.51         1.0 
                   1.0        5.25     13.125         20.0156   20.0156    13.125       5.25        1.0 
            1.0         6.0       17.25        30.75      37.0076      30.75       17.25         6.0         1.0 
     1.0        6.75    21.9375  44.7188       62.7539   62.7539   44.7188   21.9375     6.75        1.0 
____________________________________________________________________________ 

 
With Graves’ Pyramid, the ratios of reflection coefficients to design a Chebyshev transformer for 
coupling slow to fast wave transmission lines for ten steps in transitions from slow to fast wave 
lines medical lasers and traveling wave tubes..  
 
ρ (1) : ρ (2) : ρ (3) : ρ (4) : ρ (5) : ρ (6) : ρ (7) : ρ (8) : ρ (9) : ρ (10)  = 
 
        1.0 : 6.75 : 21.9375 : 44.7188 : 62.7539 : 62.7539 : 44.7188 : 21.9375 : 6.75 : 1.0          (25) 
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