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Abstract 

An earnest effort has been made to present this tutorial paper with an emphasis on analytical, 

logical and intuitive thinking; geometric reasoning; and physical description in a way that is 

more congenial and receptive to the readers, especially engineering students, to fully 

comprehend the practical power of harmonic functions in solving physical problems in physics 

and engineering. Mathematically, all these physical problems can be formulated in terms of 

Laplace’s equation. Furthermore, harmonic functions are solutions of Laplace’s equation and 

have continuous second partial derivatives. 

This paper commences to give a brief introduction to harmonic functions and proceeds to delve 

into the general properties of harmonic functions, particularly important are mean value property 

and maximum modulus property. It then moves on to examine the connection between Laplace’s 

equation and complex analytical functions and illustrate it by working out examples from 

electrostatics and fluid flow. These examples reveal the unifying power of mathematics: physical 

problems from electrostatics and fluid flow can be treated by the same mathematical methods. 

There exists an analogy between them: electrostatic equipotential lines and electrostatic lines of 

force correspond to the equipotential lines of the velocity potential and the streamlines of fluid 

flow respectively. 

As harmonic functions are the real and imaginary parts of complex analytical function, they 

remain harmonic under conformal mapping so that conformal mapping becomes a powerful tool 

in solving boundary value problems. Consequently, conformal mapping can be effectively and 

efficiently used to solve problems by mapping a given domain onto one for which the solution of 

the given problem is known or can be solved more easily. The solution thus obtained is then 

mapped back to the given domain. 

Introduction 

Harmonic functions, which are solutions of the two-dimensional Laplace’s equation having 

continuous second-order partial derivatives, play a vital role in solving many physical problems, 

for example, in hydrodynamics, aerodynamics, heat transfer, acoustics, and electrostatics. 

Mathematically, all these physical problems can be formulated in terms of Laplace’s equation:  

Laplace’s equation:   
𝜕2𝜙

𝜕𝑥2 + 
𝜕2𝜙

𝜕𝑦2 = 0,  
𝜕2𝜑

𝜕𝑥2 +  
𝜕2𝜑

𝜕𝑦2 = 0 
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where 𝜙(𝑥, 𝑦) and 𝜑(𝑥, 𝑦) are the real and imaginary parts of analytic function Ω(z). 

Ω(z) = 𝜙 + i𝜑 

The functions 𝜙 and 𝜑  are called conjugate functions; and given one, the other can be 

determined within an arbitrary additive constant.  

It should be noted here that although most harmonic functions do have harmonic conjugates, 

however this is not always the case. The question as to whether there exists a harmonic conjugate 

or not can depend on the underlying topology of its domain of definition. In the case where the 

domain is simply connected, meaning that it contains no holes, then one can always find a 

harmonic conjugate. Whereas in the other cases where the domains are not simply connected, 

there may not exist a single-valued harmonic conjugate that can serve as the imaginary part of a 

well-defined complex function f(z).  

It should also be noted here that both functions, 𝜙(𝑥, 𝑦) and 𝜑(𝑥, 𝑦), remain harmonic under 

conformal mapping, thereby empowering conformal mapping to model and solve boundary value 

problems. By conformality, both families of curves, 𝜙(𝑥, 𝑦) = constant and 𝜑(𝑥, 𝑦) =
constant, are orthogonal.  

Basic Properties of Harmonic Functions 

Harmonic functions, like analytic functions, have a number of basic properties, particularly 

important are the mean value property and the maximum modulus property.  

1. Mean-Value Properties

Let ϕ(x, y) be harmonic in a simply connected domain D. Then the value of ϕ(x, y) at a point 

(x0, y0) in D is equal to the mean value of ϕ(x, y) on any circle in D with center at (x0, y0).  

ϕ(x0, y0) = 
1

2𝜋
∫ ϕ(

2𝜋

0
𝑥0 + rcosϑ, y0 + rsinϑ)dϑ

which is also equal to the mean value of ϕ(x, y) on any circular disk in D with center at (x0, y0). 

ϕ(x0, y0) = 
1

𝜋𝑟0
2 ∫ ∫ ϕ(

2𝜋

0

𝑟0

0
𝑥0 + rcosϑ, y0 + rsinϑ)𝑟dϑdr

2. Maximum and Minimum Modulus Properties
1

Let ϕ(x, y) be harmonic and not constant in a given domain D, then it has neither a maximum 

nor a minimum in D. Thus, the maximum and the minimum occur on the boundary C of D. 

Corollary (Uniqueness of Harmonic Functions):  If a function f(x,y) is harmonic in D and on 

the boundary C and if f(x,y) = ϕ(x, y) on C, then f(x,y) = ϕ(x, y) in D as well. 
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Corollary:  If ϕ(x, y) has a maximum or a minimum in D, then ϕ(x, y) is a constant. 

Let us illustrate the Maximum Modulus Principle with an example that shows for f(z) = sin z the 

maximum value of |f(z)| occurs on the boundary of the rectangular region R: 0 < x < 𝜋, 0 < y < 1 

and not in the interior of R.  

f(z) = sin z 

|f(z)|
2 
= |sin z|

2
 =  sin2 x + sinh2y

|f(z)|
 
= √sin2 x + sinh2y 

The term sin
2
x is greatest when x = π/2 and that the increasing function sinh

2
z is greatest when y

= 1. Thus, the maximum value of |f(z)| in R occurs at the boundary point z = (π/2, 1) and at no 

other point in R.  

Note: Uniqueness Theorem for the Dirichlet Problem: If for a given region and given 

boundary values, the Dirichlet problem for the Laplace equation in two variables has a unique 

solution. 

The Dirichlet problem is the problem of finding a function that is harmonic in a specified 

domain and the values of the function are prescribed on the boundary of the domain. 

3. Zeroes of analytic functions are isolated, whereas zeros of real-valued harmonic functions

are never isolated.

4. The conjugate of a given harmonic function is uniquely determined up to an arbitrary real

additive constant.

5. Harmonic functions remain harmonic under conformal mapping.

6. If ∅1, ∅2, … , ∅𝑛  are harmonic in a region R, and c1, c2, …, cn  are any constants, then

c1∅1 + c2∅2  +… + cn∅𝑛 is harmonic in R.

Physical Application to Fluid Flow 

Many physical problems in fluid flow can be solved by complex variable methods under the 

following basic assumptions:  

3



Proceedings of the 2023 ASEE Gulf-Southwest Annual Conference 

University of North Texas, Denton, TX 

Copyright  2023, American Society for Engineering Education 

a) The fluid flow is two dimensional: the basic flow pattern of the fluid motion is assumed

to be in the z plane.

b) The flow is stationary. This means that the velocity of the flow at any point depends only

on the position (x, y) and not on time. The components of the velocity of the fluid at (x,

y) in the positive x and y directions, Vx and Vy, can be derived from a potential function

∅, called velocity potential, such that 

Vx = 
𝜕𝜙

 𝜕𝑥  ,
Vy = 

𝜕𝜙

𝜕𝑦
(1) 

c) The flow is incompressible (∇ ∙ V = 0, divergence free), irrotational (∇ 𝑥 V = 0, curl

free) and non-viscous. This means that the quantity of fluid entering is equal to the

quantity of fluid leaving, the flow is circulation free, and no internal friction.

𝜕𝑉𝑥

𝜕𝑥
 + 

𝜕𝑉𝑦

𝜕𝑦
 = 0    (2) 

Substituting equation (1) into equation (2) gives Laplace’s equation 

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 0

thereby the velocity potential 𝜙 is harmonic. It follows that there must exist a conjugate 

harmonic function, 𝜑, such that  

Ω(𝑧) =  𝜙(𝑥, 𝑦) + 𝑖𝜑(𝑥, 𝑦) 

is analytic. The function Ω(𝑧), of fundamental importance in charactering a flow, is called 

the complex potential. By differentiation, we have, using Cauchy-Riemann equations and 

equation (1) 

Ω′(z) =  
𝜕𝜙

𝜕𝑥
+ 𝑖

𝜕𝜑

𝜕𝑥
= 

𝜕𝜙

𝜕𝑥
− 𝑖

𝜕𝜙

𝜕𝑦
 = Vx - iVy 

Thus, the magnitude of the velocity is 

|V| = √𝑉𝑥
2 + 𝑉𝑦

2  = |Ω′(z)|

Note that points at which Ω′(z) = 0 are called stagnation points.

Example: Flow Around an Obstacle 

An interesting and important problem in fluid flow is that of determining the flow pattern of a 

fluid initially moving with uniform velocity in which an obstacle has been placed. So, let us 

consider the complex potential of a fluid flow as given below: 

Ω(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖𝜑(𝑥, 𝑦) = V0(z + 
1

𝑧
) 
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Let z = r𝑒𝑖𝜃. Then

Ω(𝑧) = 𝑉0 (r𝑒𝑖𝜃 +
1

𝑟
𝑒−𝑖𝜃) = 𝑉0 (𝑟 +

1

𝑟
) cos 𝜃 + 𝑖𝑉0 (𝑟 −

1

𝑟
) sin 𝜃 

from which 

𝜙(𝑥, 𝑦) = 𝑉0 (𝑟 +
1

𝑟
) cos 𝜃  𝑎𝑛𝑑  𝜑(𝑥, 𝑦) =  𝑉0 (𝑟 −

1

𝑟
) sin 𝜃 

The equipotential lines are given by 

𝜙(𝑥, 𝑦) = 𝑉0 (𝑟 +
1

𝑟
) cos 𝜃 = constant = 𝛼 

and the streamlines are given by 

𝜑(𝑥, 𝑦) =  𝑉0 (𝑟 −
1

𝑟
) sin 𝜃 = constant = 𝛽 

Note that 𝜑 = 𝛽 = 0 corresponds to r = 1 and 𝜃 = 0 𝑜𝑟 𝜋. The circle r = 1 represents a streamline, 

and since there cannot be any flow across a streamline, it can be considered as a circular obstacle 

of radius 1 placed in the path of the fluid. 

Ω′(𝑧) = V0(1 - 
1

𝑧2) = V0(1 - 
1

𝑟2 𝑒−2𝑖𝜃) = V0(1 - 
1

𝑟2 cos 2 𝜃) + 𝑖𝑉0
1

𝑟2 sin 2𝜃 

Thus, V = Ω′(𝑧)̅̅ ̅̅ ̅̅ ̅ = V0(1 - 
1

𝑟2 cos 2 𝜃) − 𝑖𝑉0
1

𝑟2 sin 2𝜃 

|V| = √[𝑉0(1 −  
1

𝑟2 cos 2 𝜃)]2  +  [𝑉0
1

𝑟2 sin 2𝜃]2 

= 𝑉0√1 – 
2

𝑟2 cos 2 𝜃 + 
1

𝑟4

which shows that far from the obstacle, the flow is nearly uniform (|V| ≈ V0) and parallel to the 

x-axis. 

The flow has two stagnation points (that is, points at which the velocity is zero) at z = ± 1. 

This follows from Ω′ (𝑧) = V0(1 - 1/𝑧2) = 0

Notice that there is a singularity at z = 0 which is known as a doublet and corresponds to the 

function V0/z. The singularity at the origin is inside the circular obstacle and thus does not 

affect the external flow. The full streamline pattern, including the doublet inside the circle, is 

shown below.  
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Physical Application to Electrostatics 

The force of attraction or repulsion between charged particles is governed by Coulomb’s law. 

This vector force induces an electric field. If a unit positive charge, which is small enough so 

as not to affect the field appreciably, is placed at any point P free of charge, the force acting 

on this charge is called the electric field intensity at P and is denoted as E. This vector force 

is the negative gradient of a scalar function ∅, called the electrostatic potential. In symbols, 

E = - ∇∅ 

Ex  = - 
𝜕𝜙

𝜕𝑥
, 𝐸𝑦 = − 

𝜕𝜙

𝜕𝑦

E = Ex + iEy = - 
𝜕𝜙

𝜕𝑥
− 𝑖

𝜕𝜙

𝜕𝑦

It follows that in any region not occupied by charge, 

𝜕𝐸𝑥

𝜕𝑥
+ 

𝜕𝐸𝑦

𝜕𝑦
 = 0    →    

𝜕2𝜙

𝜕𝑥2 + 
𝜕2𝜙

𝜕𝑦2 = 0 

That is, ∅ is harmonic at all points not occupied by charge. Thus, there must exist a conjugate 

harmonic function 𝜑(𝑥, 𝑦) such that  

Ω(𝑧) =  𝜙(𝑥, 𝑦) + 𝑖 𝜑(𝑥, 𝑦) 

is analytic in any region not occupied by charge. Ω(𝑧) is called complex electrostatic 

potential.   

E = Ex + iEy = - 
𝜕𝜙

𝜕𝑥
− 𝑖

𝜕𝜙

𝜕𝑦
= −

𝜕𝜙

𝜕𝑥
+ 𝑖

𝜕𝜑

𝜕𝑥
= - 𝛺′(𝑧)̅̅ ̅̅ ̅̅ ̅

|E| = |𝛺′(𝑧)| 
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The level curves 𝜙(𝑥, 𝑦) =  𝛼  and 𝜑(𝑥, 𝑦) = 𝛽,  where 𝛼 and 𝛽  are constants, are called 

equipotential lines and flux lines, respectively. Further, if  Ω′(𝑧) ≠ 0, then Ω(𝑧) is conformal 

and the level curves of 𝜙  and 𝜓  are orthogonal and the electric field intensity vector is 

tangent to the flux lines. 

Example: Potential between concentric cylinders 

Consider a region bounded by two infinitely long concentric cylindrical conductors of radii r1 

and r2 (r1 < r2), which are charged to potentials 𝜙1and 𝜙2, respectively

Find (a) the electrostatic potential and (b) electric field vector everywhere in the region. 

Solution.  (a) By symmetry, the electrostatic potential 𝜙 depends only on r = √𝑥2 + 𝑦2, and 

the Laplace’s equation in polar coordinates is 

𝑟2𝜙𝑟𝑟 + r𝜙𝑟 + 𝜙𝜃𝜃 = 0.

𝑟2𝜙𝑟𝑟 + r𝜙𝑟 = 0   with 𝜙𝜃𝜃 = 0.

which gives 

𝜙′′

𝜙′ = - 
1

𝑟
→ ln 𝜙′ = - ln r + c   →   𝜙′ = 

𝛼

𝑟
   →  𝜙 = 𝛼 ln 𝑟 +  𝛽 

Thus,                                          𝜙1 = 𝛼 ln 𝑟1 +  𝛽,      𝜙2 = 𝛼 ln 𝑟2 + 𝛽

which give 𝛼 = (𝜙2 -  𝜙1)/(ln 𝑟2 – ln 𝑟1) and 𝛽 =  (𝜙1 ln 𝑟2 - 𝜙2 ln 𝑟1)/(ln 𝑟2 – ln𝑟1)

Hence                                               𝜙 = 𝛼 ln 𝑟 +  𝛽 

 =
(𝜙2 −  𝜙1)lnr + 𝜙1 ln 𝑟2 − 𝜙2 ln 𝑟1 

ln 𝑟2 – ln 𝑟1

(b)  The electric field vector 

E = - 
𝜕𝜙

∅𝑟
= - 

(𝜙2 −  𝜙1)/r 

ln 𝑟2 – ln 𝑟1
= 

(𝜙1 −  𝜙2)/r 

ln 𝑟2 – ln 𝑟1

Note that equipotential lines 𝜙 = constant are concentric circles centered at the origin and are 

orthogonal to the lines of electric force or flux lines that are rays emanating from the origin 

as shown in the figure above. 
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Example: Potential between non-coaxial cylinders 

Consider a region bounded by two infinitely long non-coaxial cylindrical conductors of radii 

r1 and r0 (r1 > r0), which are charged to potentials 𝜙1 = 0 𝑉and 𝜙2= 110 V, respectively
2
.

Find the electrostatic potential everywhere in the region. 

Solution:  First transform the non-coaxial cylinders in the z-plane to coaxial cylinders in the 

w-plane by the following mapping function 

w = f(z) = 
2𝑧−1

𝑧−2

Note that the solution to the problem of finding the electrostatic potential between coaxial 

cylinders can be easily obtained as in the above example. Thus, 

𝜙∗ = 𝛼 ln |𝑤| +  𝛽

𝜙1
∗  = 𝛼 ln 𝑟1 +  𝛽,    𝜙2

∗ = 𝛼 ln 𝑟0 + 𝛽

𝜙1
∗ = 0 = 𝛼 ln 1 +  𝛽  →   𝛽 = 0 

𝜙2
∗ = 110 = 𝛼 ln(

1

2
)   →   𝛼 = 110/ln(1/2)  =  - 110/0.693 = - 158.696 

𝜙∗ = − 158.696 ln |𝑤|

The desired solution in the given domain in the z-plane is 

𝜙 = − 158.696 ln |
2𝑧−1

𝑧−2
| 

Note: A knowledge of conformal mapping functions is very useful in solving boundary value 

problems. The fact that harmonic functions remain harmonic under conformal mapping was 

utilized to map a given domain onto one for which the solution is known or can be found more 

easily. This solution is then mapped back to the given domain by employing the inverse 

mapping function.    
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Summary and Conclusions 

This paper commences to give a brief introduction to harmonic functions, and proceed to delve 

into the general properties of harmonic functions. It then moves on to illustrate through examples 

the usefulness of the harmonic functions in solving physical problems in electrostatics and fluid 

flow. These examples consistently reveal the unifying power of mathematics: physical problems 

with different phenomena from different areas in physics and engineering having the same type 

of model can be treated by the same mathematical methods. Furthermore, the fact that harmonic 

functions remain harmonic under conformal mapping was utilize to solve problems by using 

conformal mapping to map a given domain onto one for which the solution is known or can be 

found more easily. This solution is then mapped back to the given domain by employing the 

inverse mapping function.  
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