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WIP: Predicting engineering success: An examination of college
entrance exams, high school GPA, self-efficacy, achievement, and
persistence

This Work in Progress paper seeks to better understand whether changes in academic self-
efficacy explain the relations of prior achievement (i.e., high school GPA and entrance exams) to
future achievement and persistence of engineering students. College entrance exams, such as the
ACT and SAT, and high school GPA (HSGPA) are traditionally used for college admission
decisions, because both are believed to predict achievement. While HSGPA tends to be a
consistent predictor of achievement, prior studies show conflicting results as to whether college
entrance exams predict academic achievement in engineering, especially beyond students' first
year of college [1-7]. Additional work suggests that HSGPA and college entrance exams predict
persistence in the first semester of college, but there is limited research examining how prior
achievement relates to persistence towards degree completion [8]. Due to these mixed results, it
is critical to understand not only whether students’ HSGPA and entrance exam scores both
predict college achievement and persistence, but why they are or are not predictive. Furthermore,
as universities use both criteria (HSGPA and entrance exam scores) for admission decisions [9],
it is important to understand if they are equally predictive of success. As colleges seek to foster
students’ achievement and persistence, it is also important to understand how prior achievement
influences later achievement (e.g., the underlying psychological mechanisms), so that targeted
support can be provided [3,10,11].

One potential psychological mechanism that may underpin this past-future achievement relation
is academic self-efficacy (e.g., beliefs about one’s ability to learn and do work in a particular
academic domain [14]). Past literature has commonly examined the relations between past and
future achievement, but less work has addressed the psychological mechanisms that may explain
why these relations are observed. Social cognitive theory suggests that students’ competence
beliefs are shaped by prior evaluative experiences [12], which may influence their sense of
competence throughout college, and in turn their academic engagement and achievement.
According to the model of triadic reciprocal causation stipulated by social cognitive theory, self-
efficacy is developed through prior success and is an important predictor of future achievement
[13]. According to this model, one makes sense of one’s ability to complete a task (i.e., self-
efficacy) based on one’s prior experiences, which influence subsequent behaviors (i.e.,
persistence) and future achievement [15]. Examining self-efficacy as a potential psychological
mechanism may improve our understanding of how and why achievement in high school
influences achievement and persistence in engineering studies, in college, and beyond [16]. The
present study builds upon our initial findings [17] to examine how engineering students’ self-
efficacy changes across all four years of college, as this may relate to the “leaky pipeline”
phenomenon in engineering/STEM [17].

Current Study

The present study used a latent growth curve model to investigate how engineering students’
academic self-efficacy changed over four years of college as a function of entrance exams (math



ACT and math SAT) and HSGPA, and how changes in self-efficacy related to persistence and
achievement-associated outcomes. Math ACT scores were used rather than composite ACT
scores because prior math achievement is an important indicator of engineering outcomes [18].
Our internal (unpublished) assessments have also shown that math ACT score is the most
reliable predictor of student persistence among the standard admissions criteria. Specifically, we
addressed the following research questions:

(1) How are college entrance exam scores and HSGPA related to achievement (i.e., GPA),
persistence in engineering, and engineering career intentions at the end of college?

(2) Are the relations of college entrance exam scores and HSGPA to achievement,
persistence, and career intentions explained by initial levels and changes in engineering
students’ self-efficacy?

Aligned with social cognitive theory [9], we hypothesized that prior achievement would inform
students’ self-efficacy beliefs, resulting in a positive relation to both the initial levels and
changes in academic self-efficacy. Moreover, we expected that the association between prior
achievement and self-efficacy would help explain how and why prior achievement predicts later
achievement and persistence in engineering.

Method

Participants: The present study used longitudinal data from a large, public, midwestern
university. Participants were 1,472 students who, at any time, participated in an annual survey of
engineering students. The survey was conducted in the Spring of 2016 (T1), 2017 (T2), 2018
(T3), and 2019 (T4). Of the respondents, 321 (25.5%) identified as female. The majority of
students identified as White (64.3%), while the remaining students identified as African
American (7.5%), Latinx (4.8%), Asian (20.9%), Multiracial (2.2%), Alaska Native (0.2%), and
Native Hawaiian or Other-Pacific Islander (0.1%). The surveyed students included both students
enrolled in engineering majors and students who, at one point, were engineering majors but were
no longer enrolled in engineering.

Measures:

Academic Self-efficacy. Five questions measured engineering self-efficacy [19]. The
responses were recorded using a 5-point Likert-type scale. These measures were collected
annually over four years (T1 o= .87, T2 « = .90, T3 a =91, and T4 a =.90). A sample item for
engineering self-efficacy is “I’'m certain I can master the content in the engineering-related
courses I am taking this semester.”

Prior Achievement. Prior achievement was measured using students” HSGPA and math
ACT scores. Students’ HSGPA and highest math ACT (or converted math SAT using act.org
concordance table) score was obtained from institutional records.

Persistence. Student persistence was assessed using institutional data for the students’
enrolled major in their third or fourth year. Persistence was measured as a categorical variable (1
= engineering majors, 0 = non-engineering majors).



Career intentions. To measure engineering career intentions, students were prompted
with the following question each year: “To what extent do you intend to pursue a career in
engineering?” and responded on a 10-point scale, with one being “I definitely will not” and ten
being “I definitely will.” Students’ fourth-year engineering career intentions were used in this
study.

College Achievement. Institutional data for students’ last reported or final,
undergraduate, cumulative GPA.

Results

Preliminary Analyses. Descriptive statistics, correlations, and missing data analyses were
conducted (Table 1). These analyses showed that math ACT scores were associated with
students’ self-efficacy at times T2-T4, persistence, and career intentions (Table 1, column 2).
Additionally, students’ academic self-efficacy beliefs were significantly associated with each
other across time and students’ persistence and career intentions were significantly related to
prior achievement and self-efficacy. Finally, an examination of the means for self-efficacy
suggests that students’ academic self-efficacy decreased between T2 and T3 (Table 1, means of
columns 3-6).

Growth Model. Longitudinal measurement invariance and latent growth curve analysis were
tested using Mplus v.8.4 [20], based on full information maximum likelihood (FIML) to account
for missing data [21,22]. Model fit was evaluated using the Comparative Fit Index (CFI; values >
.90 for adequate fit; values > .95 for excellent fit, [23]) and root mean square error of
approximation (RMSEA; values < .08 for acceptable fit). Prior to conducting growth models, we
conducted longitudinal confirmatory factor analysis on academic self-efficacy to test for
measurement invariance across time. These analyses were conducted to confirm that observed
changes were not due to changes in the perceived meaning of the construct over time [24, 25].
Strict invariance was achieved and applied to all further modeling. An unconditional model of
self-efficacy suggested linear change, ¥* (211) = 602.368; RMSEA = 0.04; CFI = 0.95, TLI =
0.96. This linear model suggested that academic self-efficacy begins higher in students’ first year
(imean=3.80) and declines between freshman and senior year (b = -.05, p <.001). A linear model
was determined to represent the data sufficiently and was used to examine the relation of change
in self-efficacy with predictors and outcomes.

A conditional, linear growth model was fit to examine the relation of math ACT scores and
HSGPA to initial levels and growth (e.g., change) in academic self-efficacy during four years of
college, and, in turn, how prior achievement and academic self-efficacy related to cumulative
GPA, major persistence, and engineering career intentions, assessed during the fourth year of
college (see Figure 1 for the conceptual model). The model fit the data well: y* (301) = 604.173;
RMSEA = 0.03; CFI =0.94, TLI = 0.94. As presented in the upper portion of Table 2, math ACT
was related to initial level of academic self-efficacy (b = .02, p = .02), while HSGPA was
unrelated. Both math ACT and HSGPA were positively related to changes in academic self-
efficacy (math ACT slope: b =0.01, p = .02; HSGPA slope: b =.09, p =.02). Specifically,



students who entered college with higher math ACT scores and HSGPAs experienced smaller
declines in their academic self-efficacy throughout college. In terms of outcomes, the slope of
academic self-efficacy was positively related to persistence in an engineering major (b = 3.26, p
<.001), engineering career intentions (b = 6.83, p <.001), and college GPA (b =1.91, p <.001).
This suggests that having smaller declines in self-efficacy was positively related to fourth-year
engineering persistence and college achievement. The intercept of self-efficacy was related to
major persistence (b = .49, p =.005) and engineering career intentions (b = 1.91, p <.001), but
unrelated to college GPA.

We also examined the direct effects of prior achievement to the indicators of persistence and
achievement. We found that HSGPA was related to major persistence (slope: b = .56, p = .004)
and college GPA (slope: b =.59, p <.001) but did not find a direct relation with career
intentions. Moreover, math ACT scores were related to major persistence (slope: b = .05, p =
.001) and college GPA (slope: b = .02, p = .045) but were unrelated to career intentions.

For indirect effects of math ACT to the indicators of persistence through initial levels (intercept)
and change (slope) in self-efficacy, there was a statistically significant indirect effect of slope (b
=0.02, p =.04) on college GPA and engineering career intentions (b = .05, p = .04), and indirect
effect of intercept on engineering major persistence (b = 0.03, p = .04). Furthermore, there was a
statistically significant indirect effect of slope of academic self-efficacy between HSGPA and
engineering major persistence (b = 0.31, p = .049) and career intentions (b = .64, p = .045). No
significant indirect effects were found for HSGPA and college GPA mediated by academic self-
efficacy. Indirect effects are displayed in Figure 2.

Discussion

In the present study, we examined the relations among prior achievement, initial levels and
growth in academic self-efficacy, and persistence-related outcomes for undergraduate
engineering students. Latent growth curve analyses suggested that students with higher math
ACT scores and higher HSGPAs had lower declines in academic self-efficacy across four years
of college. This extends our prior work that found engineering students’ math ACT scores were
related to changes in academic self-efficacy in their first two years of college [17].

Our analyses showed that math ACT scores and HSGPA directly predicted changes in self-
efficacy and further predicted persistence in engineering and cumulative college GPA; however,
neither predicted engineering career intentions. Additionally, math ACT scores predicted initial
levels of self-efficacy but HSGPA did not. These results support social cognitive theory and our
hypotheses, as it suggests that students’ perceptions of evaluative feedback are an underlying
mechanism to explain the relation of prior and later achievement [13]. Our findings also suggest
that the type of evaluative feedback (i.e., HSGPAs, which vary by school, or standardized test
scores, which are normed on a national scale) may differentially influence students’ initial
competence beliefs [15]. One reason that math ACT is a stronger predictor than HSGPA of
initial academic self-efficacy could be due to the specificity of the evaluative measure. HSGPA,
which reflects performance in all subject areas over time, is likely not as informative for
students’ initial evaluation of their ability to be successful in engineering as math ACT scores,



given the emphasis on math in engineering coursework [26, 27]. Additionally, as students move
toward larger academic settings, they may use normative measures like standardized test scores
to make initial self-comparisons to inform their self-efficacy [14].

These findings support the notion that academic self-efficacy may be one mechanism that
explains the relation of prior achievement with persistence and achievement in engineering, as
change in self-efficacy was associated with continued enrollment in an engineering major,
engineering career intentions, and cumulative college GPA. Evidence from this study suggests
that the relations of HSGPA and math ACT scores with students’ initial self-efficacy and
engineering outcomes may be different, which supports the hypothesis that students’ competence
beliefs are domain-specific [26, 27]. Therefore, a practical implication of this study is that
engineering programs should seek to provide students’ with early experiences in introductory
engineering courses and early start math courses, specifically to foster their sense of self-efficacy
(i.e., mastery experiences, vicarious experiences, social persuasions, and positive physiological
states), and in turn, their persistence and achievement in engineering [28]. Thus, an avenue for
future research would be to examine how specific sources of self-efficacy influence changes in
engineering students’ self-efficacy across college.



Tables and Figures

Table 1. Descriptive Statistics of Study Variables

1 2 3 4 5 6 7 8 9

1. HS GPA --

2. Math ACT 43" -

3. Acd. Self-Eff (T1) -.04 .03 -

4. Acd. Self-Eff (T2) .07 16 AT -

5. Acd. Self-Eff (T3) 147 20" 417 63" -

6. Acd. Self-Eff (T4) A1 147 417 50" 65T -

7. Persistence 327 317 4T 24" 377 397 -

8. College GPA 50" 36" .05 A8™ 27 33" 507 --

9. Career Intentions A1 147 267 28" 427 48" 657 197 -
N 1207 1360 827 670 703 6102 1472 1467 603
M 372 2791 380 3.80  3.66 3.68 058 3.06 741
SD 036  4.32 0.67 0.75 0.85 082 049 071 299

Observed correlations, means, and standard deviations were calculated in SPSS. Acd. Self-Eff
(T1) = Academic Self-Efficacy at time 1, (T2) = time 2, (T3) = time 3, and (T4) = 4, College
GPA = cumulative GPA. (**p < .01, *p <.05)

Table 2. Direct Effect Parameters for Conditional Latent Growth Models

Intercept Slope Cum. GPA Persistence Career Int.
Model and
Predictors b B b B b B b B b B
HS GPA 12 -09 .09 197 607" 32" 587 18" 25 .03
Math ACT 027 16 01" 19" .02 10" .05 20" .01 .01
Intercept -- -- -- -- .02 .01 497 217 1.91™ 30"
Slope - -- - - 191 507 326" 49" 6.83 397

HSGPA = high school GPA, Cum. GPA = Cumulative GPA, Career Int. = Career intentions.
*Hkp <001, **p <.01, *p < .05.



Figure 1. Conceptual path model. ACT = Math ACT; HSGPA = high school GPA; ESE =
engineering/academic self-efficacy; Career Intent = engineering career intentions; Persist =
persistence in engineering major. Direct relations from predictors to outcomes are not depicted in
the path model but were tested.

INDIRECT EFFECTS

MATH ACT HSPGA

Figure 2. Indirect effects of math ACT and HSGPA, through self-efficacy (SE), to Cum GPA =
cumulative college GPA, EGR Persist = persistence in an engineering major, and EGR Career
Int. = engineering career intentions. Bolded paths are significant. ***p <.001, **p < .01, *p <
.05



References

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

S. Katz, G. J. Lautenschlager, A. B. Blackburn, and F. H. Harris, “Answering Reading
Comprehension Items without Passages on the SAT,” Psychol. Sci., vol. 1, no. 2, pp. 122—
127, Mar. 1990.

R. Zwick and J. Greif Green, “New Perspectives on the Correlation of SAT Scores, High
School Grades, and Socioeconomic Factors,” J. Educ. Meas., vol. 44, no. 1, pp. 23-45,
Mar. 2007.

T. Abdel-Salam, P. Kauffmann, and K. Williamson, “A case study: DO high school GPA/
SAT scores predict the performance of freshmen engineering students?,” Proc. - Front.
Educ. Conf. FIE, vol. 2005, pp. 7-11, 2005.

B. F. French, J. C. Immekus, and W. Oakes, “A structural model of engineering students
success and persistence,” Proc. - Front. Educ. Conf. FIE, vol. 1, p. T2A19-T2A24, 2003.
S. D. Brown, S. Tramayne, D. Hoxha, K. Telander, X. Fan, and R. W. Lent, “Social
cognitive predictors of college students’ academic performance and persistence: A meta-
analytic path analysis,” J. Vocat. Behav., vol. 72, no. 3, pp. 298-308, 2008.

J. C. F. De Winter and D. Dodou, “Predicting academic performance in engineering using
high school exam scores,” Int. J. Eng. Educ., vol. 27, no. 6, pp. 1343-1351, 2011.
Brenda Hannon, “Predicting College Success: The Relative Contributions of Five
Social/Personality Factors, Five Cognitive/Learning Factors, and SAT Scores,” J Educ
Train Stud., no. 1, pp. 1-7, 2015.

S. Stewart, D. H. Lim, and J. Kim, “Factors Influencing College Persistence for First-Time
Students,” J. Dev. Educ., vol. 38, no. 3, pp. 12-20, 2015.

F. L. Oswald, N. Schmitt, B. H. Kim, L. J. Ramsay, and M. A. Gillespie, “Developing a
Biodata Measure and Situational Judgment Inventory as Predictors of College Student
Performance,” J. Appl. Psychol., vol. 89, no. 2, pp. 187-207, 2004.

C.J. Fong, T. W. Acee, and C. E. Weinstein, “A Person-Centered Investigation of
Achievement Motivation Goals and Correlates of Community College Student
Achievement and Persistence,” J. Coll. Student Retent. Res. Theory Pract., vol. 20, no. 3,
pp- 369387, 2016.

O. Eris et al., “Outcomes of a Longitudinal Administration of the Persistence in
Engineering Survey,” J. Eng. Educ., pp. 371-395, 2010.

J. E. Jacobs, S. Lanza, D. W. Osgood, J. S. Eccles, and A. Wigfield, “Changes in
Children’s Self-Competence and Values: Gender and Domain Differences across Grades
One through Twelve,” Child Dev., vol. 73, no. 2, pp. 509-527, Mar. 2002.

F. Pajares and D. Shunk, Self-beliefs and school success: Self-efficacy, self-concept, and
school achievement. London: Ablex Publishing, 2001.

M. Bong and E. M. Skaalvik, “Academic Self-Concept and Self-Efficacy: How Different
Are They Really?,” Educ. Psychol. Rev., vol. 14, no. 1, 2003.

D. Schunk and B. J. Zimmerman, “Influencing Children’s Self-Efficacy and Self-
Regulation of Reading and Writing Through Modeling Dale,” Read. Writ. Q., vol. 23, no.
1, pp. 7-25, 2007.

National Academies of Sciences, Engineering, and Medicine, “Supporting students’
college success: Assessment of intrapersonal and interpersonal competencies. Board on



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Testing and Assessment, Division of Behavioral and Social Sciences and Education.,”
2016.

K. A. Robinson et al., “Motivation in Transition: Development and Roles of Expectancy,
Task Values, and Costs in Early College Engineering,” J. Educ. Psychol., vol. 111, no. 6,
pp. 1081-1102, 2018.

C. P. Benbow, “Identifying and nurturing future innovators in science, technology,
engineering, and mathematics: A review of findings from the study of mathematically
precocious youth,” Peabody J. Educ., vol. 87, pp. 16-25, 2012.

N. A. Mamaril, E. L. Usher, C. R. Li, D. R. Economy, and M. S. Kennedy, “Measuring
Undergraduate Students’ Engineering Self-Efficacy: A Validation Study,” J. Eng. Educ.,
vol. 105, no. 2, pp. 366-395, Apr. 2016.

L. K. Muthén and B. O. Muthén, Mplus, Statistical Analysis with Latent Variables, Eighth.
Los Angeles. [20] C. K. Enders and J. L. Peugh, “Using an EM covariance matrix to
estimate structural equation models with missing data: Choosing an adjusted sample size to
improve the accuracy of inferences,” Structural Equation Modeling, vol. 11, no. 1. pp. 1-
19, 2004.

C. K. Enders and J. L. Peugh, “Using an EM covariance matrix to estimate structural
equation models with missing data: Choosing an adjusted sample size to improve the
accuracy of inferences,” Structural Equation Modeling, vol. 11, no. 1. pp. 1-19, 2004.

C. K. Enders, Applied Missing Data Analysis. New York London: The Guilford Press,
2010.

L. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives,” Struct. Equ. Model. A Multidiscip. J., vol. 6,
no. 1, pp. 1-55, Jan. 1999.

W. Meredith, “Measurement Invariance, Factor Analysis, and Factorial Invariance,”
Psychometrika, vol. 58, no. 4, pp. 525-543, 1993.

R.J. Vandenberg and C. E. Lance, “A Review and Synthesis of the Measurement
Invariance Literature: Suggestions, Practices, and Recommendations for Organizational
Research,” Organ. Res. Methods2, vol. 3, no. 1, pp. 4-70, 2000.

[26] R. Scherer, “Further Evidence on the structural relationship between academic self-concept

and self-efficacy: On the effects of domain specificty,” Learn. Individ. Differ., vol. 28, pp.
9-19, 2013.

[27] U. Trautwien, O. Liidtke, I. Schnyder, and A. Niggli, “Predicting homework effort: Support

[28]

for a smoain-specifc, multilevel homework model,” J. Educ. Psychol., vol. 98, no. 2, pp.
438-456, 2006.

E. L. Usher and F. Pajares, “Soruces of self-efficacy in mathematics: A validation study,”
Contemp. Educ. Psychol., vol. 34, pp. 89—101, 2009.



