Asee peer logo

Preparing Biomedical Engineers For Real World Problem Solving

Download Paper |

Conference

2001 Annual Conference

Location

Albuquerque, New Mexico

Publication Date

June 24, 2001

Start Date

June 24, 2001

End Date

June 27, 2001

ISSN

2153-5965

Page Count

8

Page Numbers

6.793.1 - 6.793.8

DOI

10.18260/1-2--9662

Permanent URL

https://strategy.asee.org/9662

Download Count

2302

Request a correction

Paper Authors

author page

David Kelso

author page

John D. Enderle

author page

Kristina Ropella

Download Paper |

Abstract
NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract

Session 2209

Preparing Biomedical Engineers for Real-World Problem-Solving

Kristina M. Ropella, Ph.D.1 , David M. Kelso Ph.D.2, John D. Enderle, Ph.D.3, 1 Dept. Biomedical Engineering, Marquette University / 2 Dept. Biomedical Engineering, Northwestern University/ 3 Biomedical Engineering Program, Dept. of Electrical & Computer Engineering, University of Connecticut

I. Introduction

Over two-thirds of graduating engineers pursue industrial positions immediately following completion of their bachelor’s degree. Upon entering the workforce, the rookie engineer is immediately confronted with challenges like circuit board fabrication, software validation, design reviews, functional requirements, specifications, project scheduling, project management, FDA compliance, 510K’s, clinical trials, ethical debate, patient risk, intellectual property, documentation, and a variety of other responsibilities. Having spent four or more years studying the theory of p-n doping, free-body diagrams, Laplace transforms, Fourier transforms, Kreb’s cycle and Poiseuille’s law, it is no wonder that the recent graduate is frustrated by the seemingly disconnect between higher education and the “real-world”.

Academicians struggle to establish that balance between theory and practice. Many fear that too much “real-world” is simply job training. Yet, too little practical experience leaves the graduate with naive problem solving skills and no appreciation for approximation, optimization and error. Even everyday tasks calibrating a transducer, selecting the appropriate sampling frequency for collecting data from an instrument or writing an effective memo may be beyond the experience of the biomedical engineer trained with classic science and math courses and theory-laden textbooks written for disciplines outside biomedical engineering.

Given the wide spectrum of courses addressing these real-world needs, one might consider where courses fall on a "reality" scale. At the lowest level of the reality scale are courses using analytical tools like MATLAB, SolidWorks, Mathematica or SIMULINK. Level two requires students working in teams to solve problems with a "correct answer" (like a physics or chemistry lab). Level three courses might require problems which are structured and researched by faculty, but that could have multiple solutions. As one ascends the reality scale, one finds industrial clients with fuzzy problem descriptions that require initial research to

“Proceedings of the 2001 American Society for Engineering Education Annual Conference & 1 Exposition Copyright Ó 2001, American Society for Engineering Education”

Kelso, D., & Enderle, J. D., & Ropella, K. (2001, June), Preparing Biomedical Engineers For Real World Problem Solving Paper presented at 2001 Annual Conference, Albuquerque, New Mexico. 10.18260/1-2--9662

ASEE holds the copyright on this document. It may be read by the public free of charge. Authors may archive their work on personal websites or in institutional repositories with the following citation: © 2001 American Society for Engineering Education. Other scholars may excerpt or quote from these materials with the same citation. When excerpting or quoting from Conference Proceedings, authors should, in addition to noting the ASEE copyright, list all the original authors and their institutions and name the host city of the conference. - Last updated April 1, 2015