
Paper ID #32632

Program Encryption Toolkit: A Tool for Digital Logic Education and
Undergraduate Research

Dr. Jeffrey Todd McDonald, University of South Alabama

Dr. Jeffrey ”Todd” McDonald is a Professor of Computer Science in the School of Computing at the
University of South Alabama. He received his Ph.D. in Computer Science from Florida State University
in 2006, his Master of Science degree in Computer Engineering from the Air Force Institute of Technology
in 2000, and his Bachelor of Science degree in Computer Science from the U. S. Air Force Academy in
1990. His research interests include program protection and exploitation, secure software engineering,
and information assurance. He is a senior member of the ACM and IEEE.

Ms. Dawn McKinney, University of South Alabama

Dawn McKinney, a Senior Instructor and Curriculum Coordinator for Computer Science at the University
of South Alabama, has been conducting research on Teaching and Learning for over 23 years and has co-
authored over 25 papers which have been presented at SISCSE, ASEE, FIE, XP/Agile Universe, Interna-
tional Conference on The First-Year Experience, Southeastern Learning Community Consortium, Council
on Undergraduate Research National Conference, and the South Alabama Conference on Teaching and
Learning. As a leader in the university’s Team-Based Learning effort, McKinney has been awarded funds
for support, including travel, for the past seven years. She taught courses in China in 2013 and was
awarded the highest award for teaching at the University of South Alabama in 2014. During the last three
years, McKinney has participated in the Scholarship on Teaching and Learning program supported by
the University of South Alabama and has been awarded funds to use for travel. During this time McK-
inney has collaborated with computer science faculty at several institutions and has co-authored papers
submitted to both SIGCSE and ASEE.

Dr. Todd R. Andel, University of South Alabama

Dr. Todd R. Andel is a Professor and the Chair and of the Computer Science Department at the University
of South Alabama’s School of Computing. He received his PhD in Computer Science from the Florida
State University (2007), a M.S. in Computer Engineering from the Air Force Institute of Technology
(2002), and a B.S. in Computer Engineering from the University of Central Florida (1998). He was a
prior faculty member of the Department of Electrical and Computer Engineering at the Air Force Institute
of Technology from 2007 to 2012. He is a retired Major in the U.S. Air Force, serving over 23 years
specializing in cyber systems defense, research, and education. He has published over 65 peer-reviewed
papers and journals related to computer and information security, side-channel analysis, embedded sys-
tems security, network security protocols, and formal methods. Dr. Andel is a senior member of the IEEE
and senior member of the ACM.

c©American Society for Engineering Education, 2021

Program Encryption Toolkit - A Tool for Digital Logic Education and
Undergraduate Research

Abstract: In this paper we present the Program Encryption Toolkit (PET)—a freely available
Java-based graphical user interface that supports teaching and instruction for digital logic and
advanced computer engineering concepts. PET has provided a vehicle for digital logic
instruction and demonstrations targeting high school students that participate in a university
partner school program, introductory Digital Logic courses in Computer Science curriculum, and
for recruiting undergraduate researchers in cybersecurity related disciplines. We relate anecdotal
success in using the tool for such engagements and context for student involvement as part of an
object-oriented and agile software engineering project.

1. Introduction
Digital logic instruction is typically a core component of Computer Science (CS), Electrical
Engineering (EE), and Computer Engineering (CpE) curricula. Most often, students are exposed
to digital logic concepts early in their programs as a foundational steppingstone. CS students do
not typically explore digital logic concepts further during their programs except as background
knowledge for courses like Computer Architecture or Discrete Math. Instructors and students
alike would benefit from a single tool that would provide a wide variety of functionality and
support for visualization to reinforce concepts presented in such courses. In this research, we
present the Program Encryption Toolkit (PET) and its associated graphical user interface
(PETGUI) as a freely available resource for both educators and students who are learning early
concepts related to digital logic. PET itself encompasses Java software contributed by
undergraduate, master’s and PhD researchers over a 15-year period and is used primarily to
further research in circuit-based protection against malicious reverse engineering and subversion
[1-11]. The code base has provided a means to also introduce software engineering concepts to
students, including object-oriented (OO) analysis and design, OO design patterns, source code
configuration, and team development.

In the remainder of paper, Section 2 provides background related to digital logic concepts and
how PETGUI provides functionality for students to learn classroom concepts through specific
use cases. Section 3 relates specific examples of using PETGUI in student learning contexts.
Section 4 describes examples of how the software has been used to unify multidisciplinary
research, engender undergraduate participation in research and development, and provide a
recruiting tool for follow-on graduate studies. Section 5 provides conclusions and future work,
with information on obtaining, installing, and using the PETGUI program.

2. Background
For digital logic courses, PETGUI offers a rich set of useful functionalities that can be integrated
into course curriculum and educational outreach. The software is a front-end for a Java-based
code repository that supports advanced experiments in program protection and exploitation
related to hardware security that has been part of several master’s and doctoral thesis topics [1-
11]. The software integrates popular algorithms and synthesis tools such as UC Berkeley’s

Espresso [12] and ABC [13] in an easy-to-use interface. Visualization from the graph-based Java
yEd library [14] provides the ability to see relationships between circuit form, structure, and
functional representations. It also supports advanced concept exploration with Binary Decision
Diagrams (BDD) [15] and cryptographic properties of Boolean functions [16].

2.1 BENCH Format
PETGUI uses BENCH [17,18] format as the native representation for combinational and
sequential circuit programs, which is a traditional hierarchical grammar for gate-level netlists.
Figure 1 shows an example BENCH program and its schematic (as displayed by PETGUI). We
chose BENCH format because of its ease in representing netlists and availability of the ISCAS
benchmarks for studies in program protection. The basic format requires specification of the
input/output (I/O) boundary of the circuit, interpreted in most-significant bit (MSB) ordering.

Schematic

BENCH

INPUT(1)
INPUT(2)
INPUT(3)

OUTPUT(6)

4=NXOR(1,2)
5=AND(2,3)
6=NOR(4,5)

Semantic
TT:

123|7

000|0
001|0
010|1
011|0
100|1
101|1
110|0
111|0

Full
TT:

123|456|7

000|100|0
001|100|0
010|001|1
011|010|0
100|001|1
101|001|1
110|100|0
111|110|0

Unreduced DNF/SOP:
F0(x1,x2,x3) = x1'x2x3' +
x1x2'x3' + x1x2'x3

Unreduced CNF/POS:
F0(x1,x2,x3) = (x1 + x2 + x3) *
(x1 + x2 + x3') * (x1 + x2' +
x3') * (x1' + x2' + x3) * (x1' +
x2' + x3')

Reduced ANF/ReedMuller:
F0(x1,x2,x3) = x2 ^ x2x3 ^ x1 ^
x1x2x3

Syntax:
F0(i1,i2,i3)=((i1^i2)'+(i2*i3))'

Figure 1: Circuit and Functional Representation in PETGUI

2.2 Basic Functions
Digital logic instruction often follows a typical sequence where topics are introduced as
successive building blocks: 1) basics of electronic and digital systems such as voltage, current,
resistance; 2) transistors (CMOS, nMOS, pMOS), logic gates, and truth tables; 3) Boolean
algebra and equations; 4) circuit simulation and timing; 5) circuit schematics; 6) laws of Boolean
reduction; and 7) canonical forms including minterms, maxterms, sum-of-products, and product-
of-sums. Two-level simplification is typically explored later as Karnaugh maps and don’t care
conditions are introduced with the idea of end-to-end design based on smaller components.
Typical components such as adders, subtractors, multiplexors/demuxes, encoders/decoders, and
shifters are covered. Most introductory courses cover basic sequential circuit concepts including
state machines, latches, flip-flops, and registers. High-level circuit description languages such as
VHDL and Verilog are also typically introduced during first courses. PETGUI provides
capabilities for illustrating each of these concepts within a unifying framework that supports
standard course curriculum and textbooks such as zyBooks [19]. A full user’s guide is provided
online.1 The predominant mode of PETGUI is for explaining combinational logic, but there is
also rudimentary support for understanding sequential circuits as well. Flip-flops are treated as

1 http://www.cis.usouthal.edu/~mcdonald/PET/PETGUI-UserGuide.v2.5.pdf

http://www.cis.usouthal.edu/%7Emcdonald/PET/PETGUI-UserGuide.v2.5.pdf

normal gate types (versus as a collection of gates themselves) and are interpreted accordingly in
terms of producing input, output, and state behavior of the circuit.
2.2.1 Using and Creating Circuit Programs
PETGUI provides four ways to create or represent circuits: 1) from schematic, 2) from truth
table, 3) writing BENCH text, and 4) loading pre-existing simple components or BENCH files.
Pre-existing BENCH files can be loaded and modified/saved once in the PETGUI environment.
Circuit programs can also be created using a schematic view. The general intuition for the
builder follows many popular circuit-building tools and apps found online: Logic Friday [20] is
one such Windows-based tool that has been popular for illustrating circuit reduction using
Espresso. As Figure 2 illustrates, PETGUI provides a palette of basic gates that are chosen by
type and placed onto a canvas. Input and output ports must be explicitly specified separate from
intermediate gates. Simple drag and drop operations connect ports and gates together via wires.
The builder provides different ways to layout the design visually, with hierarchical layout and
orthogonal lines providing the traditional schematic view once all the gates and wires are placed.
Once a design is finished, a user would validate the circuit to verify it follows a legal circuit
format: all inputs are used once, the output port has only one source, all intermediate gate outputs
are used at least once, and binary gates have at least two inputs/unary gates have one and only
one input. The circuit can then be saved as a BENCH circuit format and automatically loaded as
a new BENCH text panel within PETGUI.

Figure 2 Schematic and Truth Table Builder in PETGUI

Figure 2 also illustrates the truth table builder in PETGUI which follows a five-step process.
First, the number of inputs and outputs is determined. Once this is finalized a standard truth table
is created with all 0 outputs for every output. Next, the truth table outputs are set to the on-set (1
outputs) and the truth table is finalized to define the desired function. Once the truth table is
specified, a circuit (BENCH) structure is generated. Seven different options can be chosen to
synthesize the circuit including reduced and unminimized sum-of-products (SOP), product-of-
sums (POS), and xor-of-products (RSE). And-inverter-graph (AIG) format is supported through
third-party tool generation provided by ABC. Reduction is accomplished through the Quine
McCluskey algorithm [21]. Next a file is chosen to save the BENCH text as the fourth step and
the final step will actually save and optionally load the BENCH file into a text panel within

PETGUI. The xor-of-products form is based on Ring Sum Expansion (RSE) and integrates Reed
Muller’s expansion technique for reduction [22]. RSE/Reed Muller forms are consistent with
circuit functions expressed in algebraic normal form (ANF) equations [23].

2.2.2 Functional Representation and Formats
PETGUI provides support for illustrating the canonical versions and functional representation of
circuits once they are in a BENCH netlist form. Of these, three basic unreduced equational forms
of the circuit function can be viewed. Disjunctive normal form (DNF) or SOP, conjunctive
normal form (CNF) or POS, and algebraic normal form (ANF) or RSE are provided as potential
equational views of the circuit function. Figure 1 shows an example of a 3 input/1 output circuit
with the PETGUI analysis provided different aspects: 1) semantic truth table (which shows only
input/output), 2) full truth table (which shows all intermediate gate values), and 3) canonical
equational forms. As a fourth option, users can also view the equation of a circuit as its structure
or syntax would derive, seen also in Figure 1. In terms of reduction algorithms such as Quine
McCluskey/Espresso and traditional Karnaugh Map (KMAP) views, PETGUI has capability to
show both (seen in Figure 3).

Figure 3: KMAP and Prime Implicant View in PETGUI

Prime implicants and essential prime implicants can be generated alongside a summary of
minterms (1-producing input terms) and maxterms (0-producing input terms). PETGUI provides
a view of the minterms and maxterms of the function in a traditional KMAP view, however
reduction steps of the KMAP are not integrated directly into the interface currently (planned for
future work). Figure 3 shows the KMAP of the circuit function in Figure 1 as an example and
illustrates how the minterm information (010, 100, 101) could be reduced into smaller forms
(prime and essential prime implicants) with don’t care conditions (010, 10X). In practice,
students could use the KMAP view as a basis to apply reductions and then check work using
essential prime implicants. Through third-party tool integration such as ABC and Espresso,
PETGUI can also produce several alternate representation forms of the circuit from its BENCH
program. This includes a standard Programmable Logic Array (PLA) format, Berkeley Logic
Interchange Format (BLIF), structural VHDL, and Verilog.

2.2.3 Transformation, Equivalence, and Simulation
PETGUI allows any BENCH circuit to be transformed into different (semantically equivalent)
structures. This feature is useful for illustrating that functions can take on an infinite number of

structural forms (polymorphism) and that all canonical forms represent the same function. Figure
4 shows the circuit in Figure 1 transformed into SOP, POS, and RSE circuits in both unreduced
and reduced (Quine McCluskey or Reed Muller) forms. PETGUI also has an equivalence
checking function which can compare any two circuits to show whether their truth tables are
equivalent. Circuits can be simulated to graphically show how input signals propagate visually,
representing the same information found in the full truth table.

Sum-Of-Products (SOP)

Product-Of-Sums (POS)

Ring Sum Expansion (RSE)

SOP Reduced

POS Reduced

RSE Reduced

Figure 4: Canonical Transformations in PETGUI

2.3 Software Design
The PET software (and thus its graphical user interface front-end) are written in Java. Other
historic research in circuit synthesis algorithms and their supporting tools have produced C or
C++ programs that embody the most advanced implementations or realizations of the research.
Until many of these functional features are available (or rewritten) in native Java format, PET
uses a tool interface to access these third-party binary executables. PET takes advantage of four
external tools: 1) Espresso [12] – a heuristic minimizer based on logic cubes; 2) ABC [13] – a
tool specialized in synthesis and verification of synchronous hardware designs; 3) misII [24] –an
interactive and batch-oriented tool for multi-level logic synthesis of combinational circuits; and
4) z3 [25] – a Satisfiability Modulo Theories (SMT) solver. PET interfaces with these software
using a file/script generation process and a common known directory.

In terms of software construction, PET was designed using object-oriented (OO) analysis and
design principles to maximize extensibility and enforce software engineering principles of
encapsulation, modularity, reuse, abstraction, inheritance, and polymorphism. Figure 5 shows a
UML class diagram of a very small subset of concepts from the domain layer of the application.
The software itself has afforded itself as a teaching vehicle for classic software design patterns
[26] such as Factory, Observer, Strategy, Builder, Flyweight, Façade, Decorator, and Composite.
The OO nature of the software has also afforded many students the opportunity to contribute to
the PET codebase for over a decade.

Figure 5: Key Domain Layer Software Classes

As Figure 5 illustrates, the fundamental domain concept in PET is an abstract Logic Circuit,
which may be either Combinational or Sequential in concrete type. Logic Circuits have one or
more Logic Gates (stored in a graph network) that have a type and other associated attributes.
Combinational circuits have truth tables that relate their function, whereas sequential circuits
utilize a state table that incorporates sequential component state signals into the input/output
boundary of the circuit. The PET software is approximately 500K lines of source code at this
point with over 20 contributors, almost all students. Almost every other part of the PET software
depends on the core Logic Circuit abstraction, which speaks to the strength of the original OO
analysis and design that has guided the software over the years. Refactoring has occurred several
times since its inception, but the basic core constructs have allowed students to contribute
various algorithmic implementations related to circuit manipulation and analysis in an
incremental or agile fashion. Team development in PET has been controlled through standard
source code configuration environments such as CVS and Subversion. Students work primarily
in branches of the main source code, with a trunk that embodies the main version of the software.

2.4 Application Setup and Configuration
PETGUI is designed to be cross-platform for educational purposes in the sense that the basic
functions used for introductory digital logic courses are written natively in Java. Research
applications of the PET software require platform-specific versions of the third-party tools
(discussed in section 2.3) that are used for certain minimization and synthesis operations. The
default installation requires Windows for these special functions or to take advantage of the
graphical interface to tools such as ABC. Windows, Linux, and Mac platforms that have a native
Java Runtime Environment (JRE) with version 7 or above can run PETGUI as an executable
Java Archive (JAR) file. Installation consists mainly of uncompressing a ZIP folder and running
the application from there.

3. Educational Integration
In this section we relate anecdotal experience with utilizing PETGUI to enhance learning
experiences related to digital logic, computer and electrical engineering, and core computer

science subjects. This has taken the form of K-12 STEM outreach, lectures in digital logic
courses, and most recently in digital logic course integration.

3.1 K-12 STEM Outreach
At the University of South Alabama (USA), we have an active partner school program with the
local community2. This has traditionally involved, in some part, bringing cohorts of 30-60
students at a time onto campus from local schools for hands-on lessons that are taught by staff,
faculty, or graduate student assistants. Partner schools commit to whole-grade experiences,
where all students in a given grade are introduced to specific topics related to the computing
disciplines. These activities range from using Scratch The Cat for teaching introductory
programming concepts to demonstrations of advanced software like Blender 3D used for creating
animations. Associated summer camps have also focused on specific topic areas such as
cybersecurity.

One of the first uses of PETGUI was in framing an hour-long activity to introduce digital logic
concepts to high school students, mostly in grades 9-12. The general lesson plan for the session
included 1) introducing what logic is in general, 2) introducing digital logic concepts, 3)
explaining binary numbers and the concept of binary vs. decimal addition, and 4) introducing
circuit programs in the form of gate netlists. Once the idea of normal logic statements is covered
that introduce the concept of AND, OR, and NOT in the framing of valid arguments that are
either true or false, students are then shown that computers and electronic components are based
on similar concepts, but in the formal of digital logic components that use electrical signals for
true/false values. After rudimentary gates and gate notation are introduced, the entire rest of the
material is presented as hands-on activities using PETGUI. One of the local schools that houses
a magnate program for college-prep in the engineering disciplines has shown specific interest in
using the digital logic activity.

A major goal of the digital logic hands-on learning lab activity (HOLLA) is to show students that
circuits are ultimately built, not from gates, but from collections of gates that form components.
A part of the HOLLA discusses potential adversarial or malicious goals to hack hardware
designs through illegal reverse engineering or subversion. To illustrate how circuit designs
might be protected against such reverse engineering, the students are led through an exercise
where they create their own (small) circuit component and use PETGUI functions to compose
their custom component with other existing components to create a new circuit design. Figure 6
shows the design level view of the example and its corresponding gate level view.

Each student creates a 4 input/3 output component using the schematic circuit builder in
PETGUI. An existing notional component (called c17) is then used to create the “front” part of
the circuit. Each c17 component is 5 inputs and 2 outputs. Two of these are “merged” together
to form a 10 input/4 output component, and then that component is “concatenated” with the
student’s custom 4 input/3 output component. The overall design thus creates a 10 input/3
output circuit. Students learn how traditional circuit designs are based on similar component
building concepts and get the satisfaction of creating a unique part of the overall design. The

2 https://www.southalabama.edu/colleges/soc/resources/partnerschoolsbooklet.pdf

https://www.southalabama.edu/colleges/soc/resources/partnerschoolsbooklet.pdf

very last part of the HOLLA illustrates how algorithms can be used to transform a circuit design
into a version that takes more time or resources for reverse engineers to understand, with the goal
of preventing disclosure of design information completely. The mathematical or cryptographic
properties of the technique are not discussed as part of the HOLLA, but students walk away with
the idea of how computer engineering, computer science, and cybersecurity can be tied together.
It also provides an opportunity to promote cybersecurity as a field of study to high school
students who are on target to enter college. The Digital Logic HOLLA was also one of the first
learning modules that was setup for remote/off-campus instruction as part of the partner school
program, mainly driven by COVID-19 restrictions.

Figure 6: Component-Based Circuit Design for Digital Logic HOLLA

3.2 Guest Lectures
For normal undergraduate digital logic courses, PETGUI has been used for over 5 years to
provide a one-time guest lecture for students taking our CSC-228 Digital Logic course. Most of
the K-12 STEM HOLLA parts are used for this lecture, but with more focus on cybersecurity
concepts and correlation with course activities. The lecture is always done toward the end of the
semester, as students are working on a course project that involves design and implementation of
a 3-bit CPU. Figure 7 shows the desired (end-product) of the course project which could be built
up using constitute components. From semester to semester, the various “functions” and
opcodes of the CPU change.

Figure 7: Example 3-bit CPU from PETGUI Component and Gate-Level Definition

The example in Figure 7 shows that two 3-bit numbers (A,B) are input along with a 2-bit opcode,
which chooses 1 of 4 potential functions: NEGATE(A), AND(A,B), COMPARE(A,B), and
ADD(A,B). The PETGUI guest lecture provides students with a context for 1) how larger

circuits are built up from smaller level components and 2) how there are situations where
protection of the original design is important. This activity over the years has served several
purposes: 1) it illustrated how cybersecurity might be relevant to students as they are studying
digital logic concepts, 2) it gave a concrete example of what student research activities might
involve 3) it unified course-long concepts of components and digital circuit design, and 4)
provided a means to encourage undergraduate students to get involved with.

3.3 Course Integration
In a most recent offering CSC-228, PETGUI was integrated in the early part of the semester as
part of the course curriculum. Students were introduced first to basic concepts of digital logic,
such as the use of truth tables, simplification using Boolean Algebra, and the three basic gates
(AND, OR, NOT). Students were provided a user guide, an introductory video on how to
perform basic operations in the tool, and instructions on how to download, setup, and run the
software. PETGUI was introduced in early lectures through demonstrations and small examples
of creating circuit programs, displaying their schematics, and analyzing their function. Material
for using PETGUI was integrated alongside zyBooks Digital Logic content and a Canvas course
website. As anecdotal experience from this attempt to utilize PETGUI as part of the actual
instruction, we incorporated an anonymous survey feedback to help gauge the usefulness of
introducing a tool like PETGUI into the instruction.

Students (N = 39) completed the anonymous online survey after completing each of two
assignments which required the use of truth tables, Boolean expressions, simplification, and the
construction of circuit diagrams. The survey (seen in Figure 8) included 5 questions where
students reported (1) their perceived level of difficulty completing the assignment, (2) the
amount time they spent on it, (3) how much they enjoyed it, (4) to what degree they had the
resources needed to complete the assignment, and (5) was an open-ended question allowing
students to list the resources they used to complete the assignment. The two assignments were
comparable, but different. The first assignment was completed before the introduction to
PETGUI. The second assignment required the use of PETGUI. Figure 8 indicates that the
students spent about the same amount of time on each assignment, enjoyed the PETGUI
assignment slightly more, but the biggest differences were in level of difficulty and having the
resources needed to complete the assignments. In the PETGUI experience, 23% of the students
indicated the assignment was easier and 25% indicated that they had most or all of the resources
needed to complete the assignment. For the pre-PETGUI assignment, students reported using a
multitude of tools in order to complete the assignment such as spreadsheets, LibreOffice Writer,
Word, pencil and paper, online resources (www.circuitverse.org), phone camera, scanner, Paint,
and Notepad. After PETGUI was introduced, other than the PETGUI tool, students reported
using far fewer tools, such as Paint (for labeling circuits), snipping tool (for capturing images
from PETGUI), and Word (for putting it all together).

The anecdotal observations from this first attempt at course integration of PETGUI has provided
many ideas for new features and adjustments to current ones. Overall, the attempt at integration
has seemed positive and will more than likely influence how the course material is presented in
the future. Given the initial positive instructor and student feedback, it provides a basis for

http://www.circuitverse.org/

permanently integrating the tool alongside traditional course content. It also expands the
opportunities for students to participate in future research using the PET software itself because
they have a greater amount of time to use and understand the capabilities of the underlying
theory and technology present in the user-interface itself.

Figure 8: Pre/Post Anonymous Survey Questions and Results

4. Multidisciplinary Research Opportunities
Presentations of PETGUI in undergraduate settings has led to many opportunities to illustrate the
multidisciplinary nature of research and potential ways students can learn hands-on-skills related
to a real research project. In some cases, the presentation of cybersecurity concepts itself has
caused many UG students to not only get involved as UG research assistants, but to pursue
graduate level studies in the area. There are three ways in which use of the software has involved
UG students:
1) Software engineering skills: students who see the demonstration of the software are also told

that much work still needs to be done. Part of this work might involve volunteer or unpaid
work as a research assistant but might result in paid/funded opportunities whether during the
semester or as part of summer research programs. The KMAP functionality in PETGUI, for
example, was added largely by student work after seeing the one-time lecture in the CSC-228
course. Three other UG students have volunteered to add features to PETGUI related to a
component-based visual circuit builder (vs. gate-level), adding canonical form equations
within the GUI (a current feature), and the newest feature, which is computing and showing
cryptographic properties of small-input Boolean functions.

2) Program protection research: students that are intrigued by the computer/electrical
engineering aspects of computer science research are drawn towards actual research in
program protection, particularly with circuit programs in view. One such student, from a
traditionally underrepresented group in Computer Science, was awarded a university-level
summer internship to study circuit variation algorithms and made the subject their
undergraduate honors thesis topic. A joint published paper [4] also resulted from the work as
well as active participation by the student in an NSF-funded Secure and Trustworthy
Computing (SaTC) grant that studied executable steganography for software protection.

3) Cybersecurity focus: several students who were intrigued by the cybersecurity aspect of the
presentations went on to be involved in USA’s DayZero cyber competition student
organization, which focuses on training future cybersecurity professionals through

participation in cyber defense and capture the flag competitions. At least four students who
were recruited as part of initial PETGUI presentations went on to be awarded scholarships
under the NSF Scholarship for Service [28] program which funded graduate/master’s
programs with cybersecurity thesis concentrations.

5. Conclusions and Future Work
In this paper, we present the Program Encryption Toolkit Graphical User Interface (PETGUI)
with a two-field purpose. One, to raise awareness of a freely available and open-source tool for
use by those who are involved in curriculum development for digital logic and similar courses in
Computer Science, Computer Engineering, and Electrical Engineering programs. Second, we
relate our experience with how the tool has produced a marriage of educational outreach along
with recruiting opportunities to encourage undergraduate students to get involved with research
early in their academic programs. Future work for the application will focus primarily on
demonstrating equational-level reduction steps that are involved with reducing a Boolean
equation into simpler forms. The PET software currently has capability to apply standard
Boolean logic laws to an equational form of a BENCH program [4]: additional work will be
needed to create a graphical way to present such reductions through the GUI. The general
requirements for this will center around showing how various laws affect the equational form of
the circuit and reduce it into smaller versions. For installation and use, the PETGUI ZIP and user
guide can be found online3. An instructional video for how to use PETGUI is also provided
online4. The PET software is intended to be open-source and researchers interested in
collaborating and extending the functionality of the software to support research studies in circuit
program protection can contact Dr. Todd McDonald, jtmcdonald@southalabama.edu, for more
information.

References
[1] Y. C. Kim and J. T. McDonald, “Considering Software Protection for Embedded Systems.,” Crosstalk: The

Journal of Defense Software Engineering, vol. 22, no. 6, Sept/Oct 2009, pp. 4-8.
[2] J. T. McDonald, Y. Kim, and A. Yasinsac, “Software Issues in Digital Forensics.,” ACM SIGOPS OS

Review, Special Issue on Forensics, vol. 42, no. 3, April 2008, pp. 29-40.
[3] A. Yasinsac and J. T. McDonald, “Tamper Resistant Software Through Intent Protection,” International

Journal of Network Security, vol. 7, no. 3, Nov 2008, pp. 370-382
[4] J. T. McDonald, T. L. Stroud, and T. R. Andel, “Polymorphic Circuit Generation Using Random Boolean

Logic Expansion,” Proceedings of the 35th ACM/SIGAPP Symposium On Applied Computing (SAC'20),
Brno, Czech Republic, March 30-April 3, 2020. doi: 10.1145/3341105.3374031

[5] J. T. McDonald, Y. C. Kim, T. R. Andel, J. McVicar, and M. Forbes, “Functional polymorphism for
intellectual property protection,” Proceedings of the IEEE International Symposium on Hardware Oriented
Security and Trust (HOST 2016), May 5-7, 2016, McLean, VA, USA. doi: 10.1109/HST.2016.7495557

[6] T. R. Andel, L. N. Whitehurst, and J. T. McDonald, “Software Security and Randomization through Program
Partitioning and Circuit Variation,” Proceedings of 1st Workshop on Moving Target Defense (MTD 2014),
Scottsdale, Arizona, November 3, 2014. ACM Publishing. doi: 10.1145/2663474.2663484

3 http://soc.southalabama.edu/~mcdonald/research.html
4 https://southalabama.zoom.us/rec/share/6vl3spi-4qOJBZeQHyFMwKpCX8Ji-
gAN6hvibxsEhNm_ZCHScBjFwwuuNAl3ozg.R8bNb6Y41mD7FPvS?startTime=1612289616000

mailto:jtmcdonald@southalabama.edu
http://soc.southalabama.edu/%7Emcdonald/research.html
https://southalabama.zoom.us/rec/share/6vl3spi-4qOJBZeQHyFMwKpCX8Ji-gAN6hvibxsEhNm_ZCHScBjFwwuuNAl3ozg.R8bNb6Y41mD7FPvS?startTime=1612289616000
https://southalabama.zoom.us/rec/share/6vl3spi-4qOJBZeQHyFMwKpCX8Ji-gAN6hvibxsEhNm_ZCHScBjFwwuuNAl3ozg.R8bNb6Y41mD7FPvS?startTime=1612289616000

[7] J. T. McDonald, Y. C. Kim, D. Koranek, J. D. Parham, “Evaluating Component Hiding Techniques in Circuit
Topologies,” International Conference on Communications, Communication and Information Systems
Security Symposium (ICC-CISS-2012), June 10-15, 2012, Ottawa, Canada

[8] J. T. McDonald and Y. C. Kim, “Examining Tradeoffs for Hardware-Based Intellectual Property Protection,”
Proceedings of the 7th International Conference on Information Warfare (ICIW-2012), March 22-23, 2012,
University of Washington, Seattle, USA.

[9] J. T. McDonald, Y. C. Kim, D. Koranek, “Deterministic Circuit Variation for Anti-Tamper Applications,”
Proceedings of the Cyber Security and Information Intelligence Research Workshop (CSIIRW ’11), October
12-14, 2011, Oak Ridge, TN, USA

[10] J. T. McDonald, E. D. Trias, Y. C. Kim, and M. R. Grimaila, “Using Logic-Based Reduction for Adversarial
Component Recovery,” Proceedings of the 25th ACM Symposium on Applied Computing (SAC’10), March
2010, Sierre, Switzerland.

[11] J. T. McDonald, Y. C. Kim, and M. R. Grimaila, “Protecting Reprogrammable Hardware with Polymorphic
Circuit Variation,” Proceedings of the 2nd Cyberspace Research Workshop, June 2009, Shreveport,
Louisiana, USA.

[12] R. L. Rudell, "Multiple-Valued Logic Minimization for PLA Synthesis," Memorandum No. UCB/ERL M86-
65, 1986-06-05, Berkeley.

[13] Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification,
Release 70930. Available: http://www.eecs.berkeley. edu/~alanmi/abc/ [Accessed Feb. 15, 2021]

[14] “yFiles for Java Developer’s Guide,” yWorks. [Online]. Available: https://docs.yworks.com/yfiles/
doc/developers-guide/index.html . [Accessed Feb. 15, 2021]

[15] R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," in IEEE Trans. Comput, vol.
35, no. 8 (August 1986), 677–691. doi:10.1109/TC.1986.1676819

[16] T. W. Cusick and P. Stănică, Eds., Cryptographic Boolean Functions and Applications. Academic Press,
2009. doi: 10.1016/B978-0-12-374890-4.00001-X

[17] F. Brglez and H. Fujiwara, "A neutral netlist of 10 combinational benchmark circuits and a target translator
in Fortran," Proceedings, IEEE Int. Symp. on Circuits and Systems (ISCAS); special session on ATPG and
fault simulation, pp. 663-698, June 1985.

[18] M. C. Hansen, H. Yalcin and J. P. Hayes, "Unveiling the ISCAS-85 benchmarks: a case study in reverse
engineering," in IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72-80, July-Sept. 1999, doi:
10.1109/54.785838.

[19] R. Lysecky and F. Vahid, Digital Design, zybooks [online], 2014. Available at:
https://www.zybooks.com/catalog/digital-design/ [Accessed March 1, 2021].

[20] P. Ravindran, "Logic Friday For Combinatorial Digital Logic Design," July 30, 2016. [Online]. Available:
https://www.electronicsforu.com/buyers-guides/software-buyers-guide/logic-friday-digital-logic-design.
[Accessed Jan. 18, 2021].

[21] E. J. McCluskey, "Minimization of Boolean functions," in The Bell System Technical Journal, vol. 35, no. 6,
pp. 1417-1444, Nov. 1956, doi: 10.1002/j.1538-7305.1956.tb03835.x.

[22] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st Edition. McGraw-Hill
Science/Engineering/Math, 1994.

[23] I. Wegener, The complexity of Boolean functions. Wiley-Teubner, 1987. ISBN 3-519-02107-2.
[24] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, "MIS: A Multiple-Level Logic

Optimization System," IEEE Transactions on Computer-Aided Design, CAD-vol. 6, no. 6, pp. 1062–1081,
November 1987.

[25] L. De Moura and N. Bjørner, "Z3: an efficient SMT solver," In Proc. TACAS'08/ETAPS, pp. 337–340, March
2008.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, 1st edition. Addison-Wesley Professional, 1994.

[27] A. Vahidi, "JDD: a pure Java BDD and Z-BDD library." [Online]. Available: https://bitbucket.org/vahidi/jdd
[Accessed March 2, 2021].

[28] U.S. Office of Personnel Management, "CyberCorps: Scholarship for Service." [Online]. Available:
https://www.sfs.opm.gov/ [Accessed March 2, 2021].

https://docs.yworks.com/yfiles/%20doc/developers-guide/index.html
https://docs.yworks.com/yfiles/%20doc/developers-guide/index.html
https://www.zybooks.com/catalog/digital-design/
https://www.electronicsforu.com/buyers-guides/software-buyers-guide/logic-friday-digital-logic-design
https://bitbucket.org/vahidi/jdd
https://www.sfs.opm.gov/

