
AC 2010-843: PROGRAMMING FOR PRE-COLLEGE EDUCATION USING
SQUEAK SMALLTALK

Kathryn Rodhouse, Missouri University of Science and Technology
KATHRYN N. RODHOUSE is a Computer Engineering undergraduate at Missouri University of
Science and Technology. She has interests in programming and is active in Eta Kappa Nu.

Benjamin Cooper, Savant LLC
BENJAMIN COOPER is CTO/Managing Partner of Savant LLC. He is an entrepreneur with
experience in several start-up companies. He attended Emory University and the University of
California, San Diego.

Steve Watkins, Missouri University of Science and Technology
STEVE E. WATKINS received his Ph.D. from the University of Texas - Austin in Electrical
Engineering in 1989. He holds an M.S.E.E. and a B.S.E.E. from University of Missouri-Rolla. He
is currently a Professor at Missouri University of Science and Technology (formerly the
University of Missouri-Rolla) and Director of the Applied Optics Laboratory. His research
interests include optical sensing, smart system applications, and engineering education.

© American Society for Engineering Education, 2010

P
age 15.992.1

Programming for Pre-college Education using Squeak Smalltalk

Abstract

Competence in a programming language can provide a strong basis for logical thinking and an

exposure to technology; however, many languages are perceived to be too complicated to learn

at a young age. Opportunities for pre-college students to learn programming concepts can help

develop critical thinking and problem solving skills that will enhance their educational

experiences. Also, conceptual understanding of programming techniques in one language can

aid in learning other languages. This project developed an integrated series of programming

tutorials for using Squeak Smalltalk. Squeak Smalltalk is an open-sourced, object-oriented

programming language that is being used for educational software and through the One-Laptop-

per-Child initiative as well as for database and multi-media applications. The intent of the

tutorials is to allow anyone, no matter their current programming proficiency, to learn applied

programming techniques and to avoid simple manipulation of code without understanding the

underlying concepts. These tutorials cover object-oriented commands, conditional coding,

programming methods, variables, and classes in the context of Squeak Smalltalk, but these

concepts are applicable to many languages. The object-oriented nature of Squeak Smalltalk

facilitated the development of basic programming literacy. The tutorials, an implementation

with pre-college students and teachers, and an associated assessment are described. Completion

of the tutorial series enabled the young programmers to adapt the Squeak software package for

their own original programs.

I. Introduction

Programming literacy is an important component in educating a modern workforce and has

particular relevance for those pursuing STEM careers. Programming promotes the development

of logical thinking and problem solving, both of which are skills necessary for success is many

technical fields. The National Science Foundation projected that there would be a shortfall of

natural science and engineering bachelor degrees in the year 2006.
1
 The United States needs to

remain technologically advanced in order to compete in world markets.
2
 In April of 2004, the

U.S. Education Department's National Center for Education Statistics reported that fewer than

half of seniors in high school were taking a science course, which emphasizes the fact that there

is a decline of interests in scientific fields within the United States.
3
 Students need to be exposed

to technical topics at earlier ages before they decide that STEM-related subjects are uninteresting

or too hard. Many educational programs are currently seeking new methods to improve STEM

curriculum.
4
 Additionally, many new extracurricular programs such as Best Robotics are

developing with the sole purpose of attracting students to technical fields.
5
 Programming

literacy efforts are included in these efforts.

In most college engineering programs, an introductory software programming course is required.

Programming skills and an understanding of software are important in many engineering

professions.
6
 Programming tasks require that a problem be explicitly defined, that a possible

solution be formulated, that the solution be implemented, and that the solution be tested. This

problem-solving process is relevant to most engineering work. Early programming skill

development enables students to develop these critical skills, and it helps them gain computer

P
age 15.992.2

experience that can directly apply to a technical field.
7
 By exposing students to programming in

an interesting way, students may be encouraged to join programs and competitions such as those

hosted by the American Computer Science League,
8
 which are also aimed to further interest in

mathematics, science, and technical fields.

This project demonstrates the development of programming tutorials based on Squeak Smalltalk

for pre-college audiences. These tutorials cover object-oriented commands, conditional coding,

programming methods, variables, and classes in the context of Squeak Smalltalk, but these

concepts are applicable to many languages. The intent of the tutorials is to allow students with

little or no programming experience to learn and apply programming techniques. The approach

exploits the graphical nature of Squeak Smalltalk and avoids simple manipulation of code

without understanding the underlying concepts. The need for pre-college programming

experience is described as well as the Squeak Smalltalk environment, an overview of the

tutorials is given, and a preliminary assessment with middle-school-age and high-school-age

students is given. The results indicate that these young students are capable of learning and

enjoying programming.

II. Programming Literacy

Traditionally collegiate engineering courses are taught using FORTRAN, Basic, or C++;

however, recently some collegiate programs have been experimenting with different type of

development languages. One such program at the Citadel has been implementing Mathcad to

teach students the basics of programming.
7
 This experimentation was prompted by the search

for a programming language that could enable students to learn the basics of programming

syntax while also learning how to use programming to solve a problem. Oftentimes engineering

courses are largely focused on language specific syntax that does not enable cross language

feasibility and does not teach the process to solving a programming problem.

In addition to experimenting with languages, many colleges are searching for better methods of

teaching students to program. Because many engineering students lack experience with

programming, oftentimes these students also lack the ability to finish programming assignments

in a timely manner. Finding ways to help students outside of the classroom has been a recent

goal for many engineering programs. One method used by the University of Cincinnati requires

that a Programming Learning Center be implemented.
9
 This Learning Center allowed students to

observe seminars about the assignments and to ask questions as needed. This particular Learning

Center allowed 50% of the programming students to complete their assignments on time whereas

without the Learning Center only 2.4% of students completed the programs on time. This

statistic shows that any additional guidance can largely benefit students in understanding the

processes of programming.

At Pennsylvania State University, educators have found that interactive and hands-on lecturing

styles are also aiding students in the classroom.
10

 By creating lecture notes that can be viewed

and adapted individually during and after the class, students were capable of viewing and

working through the notes at their own speed, allowing them to learn more from lectures.

 P
age 15.992.3

Because there is such a strong need for the development of good programming skills in

engineers, educational systems are constantly looking for methods of course improvement. By

learning from past methods, courses are being changed and adapted to better aid students in

learning the process of programming.

III. Squeak Smalltalk Environment

Squeak Smalltalk is the language used for this project. Squeak Smalltalk is an open-sourced

language that is currently being utilized for many applications including multimedia applications

targeted to the pre-college classroom.
11

 This programming environment is based on the original

Smalltalk programming language that was developed as Xerox PARC in the 1970s. The

environment has been used for the One-Laptop-per-Child initiative as well as other education

and recreational applications, but it is fully function with other commercial applications such as

database and multimedia tools. A key characteristic for the pre-college audience in this project is

the object-oriented nature of Squeak Smalltalk.

The intent of the project is to provide a first-experience in programming for pre-college students.

Additionally, the experience should provide an organized approach to programming and develop

an understanding of key programming concept. The Squeak Smalltalk environment is well

suited for younger audiences due to its visual nature. It can illustrate the processes of

programming without having to concentrate heavily on syntax understanding. It is an excellent

vehicle for learning the basic terminology and theory of programming.

IV. Squeak Smalltalk Tutorials

A series of tutorials were developed to familiarize users with the Squeak Smalltalk interface and

basic programming syntax. This series consists of five tutorials. Each tutorial allows users to

create a visible change to their user interface. These tutorials were written in a manner to allow

anyone, no matter their current programming proficiency or experience, to learn applied

programming techniques. Completion of these tutorials will allow the programmer to adapt the

Squeak classes and objects to do what they intend them to do. Furthermore, the tutorials

introduce an organized approach to programming and key programming concepts that are used in

any programming environment. Manipulation of code without understanding the underlying

concepts is discouraged. In particular, the tutorials are intended for audiences as young as

middle school and high school students. The visible, hands-on aspects enhance the Squeak

programming experience for young users, who are able to see the objects they are programming.

Each tutorial contains basic information to complete selected visible tasks. The tutorials are

designed to allow students to learn independently. During the preliminary implementations, a

teacher was present to answer questions, but no formal presentation was made of the material.

Additionally, the tutorials give background information about the theory of programming and

how typical programming languages work. Sidebars and “Did You Know” Sections are included

with an assortment of shortcuts and interesting facts to make them both more informative and

more interesting. The summary page from the second tutorial is shown in Figure 1. Note the

sidebar on getting more information on Squeak. Special consideration is needed for the intended

young audience.

P
age 15.992.4

P
age 15.992.5

Table 1: Organization of the Tutorials

Tutorial Tutorial Tasks Concepts Taught

1. Getting Started

in Squeak

Use Built-in Squeak Objects

Create an Etch-A-Sketch”

type Tool

Basic Programming Rules

Basic Squeak Historical

Information

2. Introduction to

Conditionals and

the Random

Function

Create a “Spinning Pan”

Tool

Conditional Programming

Statements

Computer Graphic Display

Information

History of RPG Displays

3. Making

Commands in

Squeak

Develop and Store Original

Programs

Manipulate Squeak Versions

Embedded Code

Absolute Commanding

Relative Commanding

4. Making

Advanced

Commands in

Squeak

Develop Complex Programs

and Commands

Use a Pen to Draw Intricate

Designs

Embedded Code

Conditional Statements

Debugging Concepts

5. Making Objects

in Squeak

Develop and Store a Class Inheritance

More Squeak Historical

Information

The purpose of the initial tutorial is to familiarize students with the built-in structure of Squeak

Smalltalk and to spark an interest for completion of future tutorials. These tutorials guide

students to create a project and to use objects built into the Squeak software to manipulate the

user interface. By the end of this tutorial, students create an “Etch A Sketch” type of tool with

their program. An example of the task results is shown in Figure 2. Both reference information

about Squeak Smalltalk and basic programming rules are included.

The second tutorial teaches students about conditional programming statements. Students draw

on their user interface using Squeak commands and repeat the commands with conditional

statements, which then create a “spinning pen” type tool. In addition to learning about

conditionals, students gain background information on how computers display colors through

completion of this tutorial. In the third tutorial, students learn how to develop their own

programs and store them into the Squeak software. Students are able to manipulate their version

of Squeak to store their own built-in commands. Through this tutorial, students learn the

difference between absolute and relative commanding and the meaning of embedded code. The

fourth tutorial develops student skills with more complex commands and saved programs.

Students explore conditionals and embedded code further in this tutorial. Visually, students

make programs to command a “Pen” to “draw” designs (a star design is demonstrated within the

tutorial). Debugging concepts are also taught in this tutorial. The final tutorial in this series

allows students to program and define a class. Students learn the concept of inheritance and how

to utilize it in order to “reuse” built in programs and functions of the Squeak software. More

historical information concerning Smalltalk is given within this tutorial.

P
age 15.992.6

P
age 15.992.7

SQUEAK SMALLTALK TUTORIAL EVALUATION PART 0

How old are you? Highest grade completed? What is your gender?

__________ __________ Male Female (circle answer)

Have you ever used Squeak before? Do you have a computer at home?

Yes No (circle answer) Yes No (circle answer)

How proficient were you at programming, prior to using these tutorials? (Pick one.)

_____ very proficient, have programmed extensively in Squeak or other environments.

_____ somewhat proficient, have programmed before in Squeak or other environments.

_____ somewhat not proficient, have been introduced to programming topics.

_____ not proficient, have never been introduced to programming topics.

What is your general computer experience? (Select all that apply.)

_____ Browsing the internet and sending E-mail.

_____ Using word processing programs such as MS Word.

_____ Using spreadsheet programs such as MS Excel.

_____ Using graphics/drawing programs or photo processing programs.

_____ Playing computer games.

 Which Squeak tutorials have you completed? (Circle all that apply.) 1 2 3 4 5

Figure 3: Background Section of the Tutorial Evaluation

SQUEAK SMALLTALK TUTORIAL EVALUATION PART 1

Pick the best choice for each statement.

The tutorials were …

_____ beneficial and greatly helped me in understanding programming concepts.

_____ somewhat beneficial and gave me a partial understanding of programming steps.

_____ somewhat beneficial, but did not give enough detail.

_____ not helpful in understanding programming concepts.

The tutorial sidebars (“Did you know,” “Tidbits,” “How to,”) ...

_____ had good information and advice that I read often.

_____ had some interesting information, but I did not always read them.

_____ provided some good tips for the tutorials.

_____ were uninteresting and did not benefit my tutorial experience.

_____ were uninteresting and I never read them.

The tutorial figures (showing computer screen examples for the Squeak projects) ...

_____ were helpful in understanding the tutorial steps.

_____ were somewhat helpful, but the tutorials had too many figures.

_____ were somewhat helpful, but the tutorials had too few figures.

_____ were not helpful in understanding the tutorial steps.

If you have used other programming languages, does Squeak programming seem …

 _____ easier _____ harder _____ same difficulty _____ not applicable

Figure 4: Second Section (Selected Items) of the Tutorial Evaluation

P
age 15.992.8

SQUEAK SMALLTALK TUTORIAL EVALUATION PART 2

Please use the following scale to respond to each of the statements in Part 2:

 Strongly Disagree 1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... 10 Strongly Agree

_____ 1. The figures were helpful by showing what the screen should look like.

_____ 2. The length of the tutorials was sufficient to understand the concepts.

_____ 3. The instructions for typing the code were easy to understand.

_____ 4. I had to read the tutorials several times to understand the steps.

_____ 5. I tried changing the given code to see what would happen.

_____ 6. I had difficulty completing the tutorials.

_____ 7. I gained a better understanding of programming terminology.

_____ 8. The tutorial layout was well designed.

_____ 9. I gained a better understanding of programming from these tutorials.

_____ 10. I feel comfortable creating my own code in the Squeak environment.

_____ 11. I want to continue my programming studies in the Squeak environment.

_____ 12. I would recommend these tutorials for others to learn about programming.

Figure 5: Third Section (Ratings) of the Tutorial Evaluation

A preliminary implementation of the tutorials was done at the Dent-Phelps R3 Public School, a

rural K-8 school district in Missouri. The gifted class for fifth grade through seventh grade was

given the tutorials in the school computer laboratory during a single two-hour period. Six

students participated with ages from 10 years to 13 years old including four boys and two girls.

All had received prior computer instruction, e.g. E-mail and word processing, through the school

and most had computers available at home for E-mail and gaming. Only one had done limited

programming before and none had used Squeak Smalltalk before. All completed Tutorial 1 and

some started Tutorial 2 during the period. All participants felt that the first tutorial was

beneficial and most (four) felt that it was “somewhat beneficial and give [them] a partial

understanding of programming steps.” Five out of six participants liked the tutorial sidebars.

Most participants felt that the tutorial figures were helpful, but two participants did not like the

current figures. The rating assessment results are summarized in Table 2.

A second implementation of the tutorials was done for a home school group of students in

California ranging in age 14 years to 18 years old. These participants completed all five tutorials

during weekly two-hour sessions over five weeks. This group consisted of four students of

which three were boys and one was a girl. All were frequent users of home computers and all

had done some programming before. The group liked the tutorials with half selecting

“beneficial” and half selecting “somewhat beneficial.” They generally liked the sidebars and

they all liked the figures. Those that had used other programming languages preferred Squeak.

The rating assessment results are summarized in Table 2.

P
age 15.992.9

A third implementation of the tutorials was done at the Park Hill South School, a public school in

Riverside, Missouri. The participants were sophomores, juniors, and seniors in a programming

class (Java and Visual Basic) and they ranged in age from 15 years to 19 years old. The students

completed at least the first two tutorials during a single 100-minute period. The group consisted

of 19 boys. The group liked the tutorials with ten selecting “beneficial” and seven selecting

“somewhat beneficial.” They generally liked the sidebar information, but most (nine) “did not

always read them.” Thirteen felt that the figures were helpful and not too few or too many. Most

(eight) felt that Squeak was easier than other programming languages, four felt that it was harder,

and four felt that it had the same difficulty. Table 2 summarizes the rating results.

Table 2: Average Ratings from the Tutorial Evaluation

Part 2 Question

(Disagree 1 … 5 … 10 Agree)

Dent-

Phelps R3

School

Home

School

Group

Park Hill

South

School

1. The figures were helpful … 7.50 8.50 8.35

2. The length … was sufficient to understand … 5.67 9.25 7.82

3. The instructions … easy to understand 5.50 8.50 8.29

4. I had to read … several times … 5.00 2.25 4.41

5. I tried changing the code (experimenting) … 8.67 8.00 6.59

6. I had difficulty completing the tutorials 4.50 1.50 2.59

7. I gained a better understanding … terminology … 6.17 8.50 6.06

8. The tutorial layout was well designed 6.83 8.25 8.00

9. I gained a better understanding of programming… 6.00 7.75 6.29

10. I feel comfortable creating my own code … 3.50 5.75 6.00

11. I want to continue (with) Squeak … 5.33 6.50 5.76

12. I would recommend these tutorials … 4.50 8.75 6.94

The rating responses to the Part 2 Questions are favorable. For the middle-school group, the

averages indicate that the student understood the tasks and could complete them. The most

favorable response was to question 5. Here all but one of the students agreed with a 9 or 10

rating and tried changing the code beyond the given instructions before completing the tutorial.

The least favorable responses were to questions 10 and 12. Given the limited time available (2

hours) for just Tutorial 1, the students would hardly be ready to do much independent coding.

The low response to question 2 may indicate that the tutorials need more adjustment to the age

group. Although, the youngest student gave this question a 10.

For the home school group and the public high school group, most of the categories were quite

favorable. These older students had less difficulty completing the tutorials and felt comfortable

with the length, instructions, layout, etc. They were less likely to experiment with the code

during the tutorials and seemed to follow the given instructions more closely. After completing

the tutorials, both groups then generally experimented with the environment. The high school

group organized an impromptu competition for who could make the “coolest” design. These

groups gave the tutorials a relatively high overall recommendation (question 12).

P
age 15.992.10

From the open-ended responses, the younger students did not see themselves as programmers,

while the older students could think of ways to use programming in a career or for fun. (One of

the home school students wanted to teach programming to his mother and another wanted to

explore using Squeak for artwork.) The groups suggested that action or movie graphics should

be used, that interactive features be added, and that more color should be used. One student

emphasized that he understood Squeak Smalltalk better than Java after just one session of

Squeak. The art teacher and the computer skills teacher were present during the Dent-Phelps R3

implementation. While they did not perform the tutorials, they were very interested in the

program capabilities and asked that the software and tutorials be left for their examination. They

noted that the experience brought out active interest for some of the less outgoing students.

VI. Summary

The Squeak Smalltalk environment was used for pre-college education with students as young as

ten years old. The student participants were guided through their programming experience with

a series of five tutorials. The intent of the tutorials is to allow independent progress through the

instructional material without the need for formal instruction or the presence of a teacher.

Squeak Smalltalk is a fully functional programming environment and is well suited for young or

inexperienced learners. The object-oriented graphical nature of the programming environment

lessens the need for detailed syntax understanding. Also, interesting tasks can be completed with

little training, such as the “Etch-A-Sketch” tool used in the first tutorial. These tasks allow

students to make individual variations to their programs to reinforce learning and enjoyment.

The tutorials were developed to address basic programming literacy issues. Programming is a

useful component in developing critical thinking and problem solving skills and in preparing for

careers, especially STEM-related careers. The intent of the tutorials is to teach basic

programming skills related to Squeak Smalltalk and also to develop an understanding of general

programming concepts. To address the pre-college audience, the tutorials were tailored with

regard to length, task size, repetition, etc.

Three preliminary implementations with middle-school-age and high-school-age students were

done. The students are clearly capable of understanding and completing the tutorial tasks.

Several students, especially the younger students, showed a strong interest in developing their

own code as they “play.” The older students tended to follow the instructions more closely and

had less difficulty using the tutorials. The results of the assessments indicate a need for more

color and perhaps graphical aids and have identified some points of confusion. The results

indicate that the level of the tutorials is good for high school students, but that more adjustment

would benefit the young students. In particular, the younger students seem to need more aids

such as graphics showing example screen shots and programming optional paths. Sidebars on

applications and careers may be beneficial as well. The next version of the tutorials will

incorporate related changes. Also, additional tutorials are planned to address more advanced

concepts and to allow students to create a screen saver.

P
age 15.992.11

P
age 15.992.12

Bibliography

1. J. Streeter, Immigrant Scientists, Engineers, and Technicians:1993 (National Science Foundation, 2006).

2. National Science Board, “America's Pressing Challenge – Building A Stronger Foundation. A Companion to

Science and Engineering Indicators – 2006,” National Science Foundation (Jan. 2006).

3. Student Disdain for Science and Technology Threatens American Preeminence, Report Says,” The Whitaker

Foundation, 18 May 2004.

4. T. M. Swift and S.E. Watkins, “An Engineering Primer for Outreach to K-4 Education,” Journal of STEM

Education, Vol. V, Issue 3 and 4, 67-76, July-Dec. 2004.

5. BEST Robotics Inc. - Boosting Engineering Science and Technology. Available WWW:

http://best.eng.auburn.edu.

6. S. Schneider, “Developing an Introductory Software Programming Course for Engineering Students,”

Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition,

American Society for Engineering Education, 2005.

7. K.P. Brannan and J.A. Murden, “From C++ to MathCad: Teaching an Introductory Programming Course with a

Non-Traditional Programming Language,” Proceedings of the 1998 American Society for Engineering

Education Annual Conference and Exposition, American Society for Engineering Education, 1998.

8. American Computer Science League. ACSL. Available WWW: http://www.acsl.org/.

9. H. Said, “The Effect of Programming Learning Center on Students in First Year Programming Sequence,”

Proceedings of the 2004 American Society for Engineering Education Annual Conference and Exposition,

American Society for Engineering Education, 2004.

10. A. Azemi, “Teaching Computer Programming Courses (Using the Internet) in a Computer Laboratory

Environment,” Proceedings of the 2002 American Society for Engineering Education Annual Conference and

Exposition, American Society for Engineering Education, 2002.

11. Squeak Smalltalk. Squeak Oversight Board. Available WWW: www.squeak.org.

12. Squeak Smalltalk Tutorials. Hawthorne Center for Innovation. Available WWW:

www.hawcenter.org/squeak.html.

P
age 15.992.13

