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Promoting Holistic Problem-Solving in Mechanics Pedagogy 
 

 

Abstract 

 

The authors propose three strategies that are designed to enhance students’ understanding 

and problem-solving ability in introductory mechanics courses: (1) employing multiple-

method problem-solving, in which students solve a given problem using more than one 

method; (2) organizing systems of linear equations into a standard “tabular” format which 

resembles matrix format; and (3) emphasizing the discussion and use of assumptions in 

problem-solving activities.  The authors give a rationale for each strategy, present a 

review of several mechanics textbooks to determine the prevalence of these strategies, 

and provide local student performance data that, while as yet inconclusive, suggests a 

possible method for assessment of the strategies’ efficacy. 

 

Introduction 

 

Mechanics provides the scientific foundation for nearly all branches of engineering and 

constitutes an essential component of the education of nearly all engineering students.  

Through mechanics, students learn not only fundamental principles that govern the 

behavior of structures and machines, but they also develop the rigorous habits of mind of 

establishing and critiquing assumptions, translating physical problems into well-posed 

mathematical equations, and assessing the meaning and validity of their solutions 

(possibly leading to reformulation and new solutions).  It is this broader understanding of 

mechanics that informs our holistic approach to teaching. 

 

In a previous work
6
 we studied the ability of mechanics students to think critically on the 

basis of their ability to use of free body diagrams, use vectors, coordinates and sign 

conventions, and address of units and physical dimension.  We discovered that about 

three quarters of the time, students committed some error in at least one of these areas, 

even if they arrived at the correct answer.  We also surveyed textbooks to determine how 

these matters are presented, and discovered several inconsistencies and inadequacies in 

their treatment. 

 

Here we present three issues – referred to as the “targeted issues” – that we believe are 

important to promote problem-solving skills and broader understanding of mechanics.  

These issues are (1) multiple-method problem-solving, in which a given problem is 

solved in more than one way, (2) writing equations in a standard form that is amenable to 

computation, and (3) careful address of assumptions.  Strategies to address these issues 

are referred to as the “targeted strategies”. 

 

Considering the first issue, can material be developed in a general manner such that the 

choice of method is presented as a fundamental part of the problem-solving process?  Or 

must certain problems be “pigeon-holed” such that their solutions are hard-wired to only 

a certain approach?  We probe these questions using the example of solving problems 

with both polar coordinates and Cartesian coordinates. 
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Regarding the second issue, we provide a rationale for encouraging students to solve 

equations systematically, rather than in an ad hoc manner.  In particular, we advocate 

using a standard tabulation of the equations, which mimics matrix form, so that students 

can better appreciate the meaning of the equations and solve them reliably and clearly.  

This will also prepare students for computational methods that often require standard 

forms of equations. 

 

Regarding the third issue, we stress the importance of adequately discussing and using 

assumptions in solving problems, even when a cursory treatment might simplify problem 

solutions.  In the long run, neglecting the meaning and proper use of assumptions sets a 

standard in which students do not critically examine all elements of a problem. 

 

To provide insight into how consistently these issues are addressed in mechanics 

education, we review several common mechanics textbooks to provide measures of how 

these issues are addressed in specific, standardized instances.  To this end, we selected 

problems in textbooks that (1) are used widely across several books allowing for 

comparisons to be made, and that (2) sharply illustrate the address (or lack of address) 

one of the targeted issues. 

 

Finally, we outline an assessment model that attempts to measure the effectiveness of the 

targeted strategies.  Despite shortcomings in the methodology and inconclusiveness of the 

data, we suggest that the underlying concept – designing a procedure that can assess 

pedagogical effectiveness by measuring outcomes in future courses – is sound and 

potentially useful. 

 

Multiple-approach Problem-solving vs. Pigeon-Holing 

 

We believe that one strategy that fosters problem-solving ability and long-term retention 

of concepts is the regular use of “multiple-approach problem-solving”, in which a given 

problem is solved by multiple methods.  We distinguish this idea from the mediation of 

multiple methods through many problems, in which each problem is solved by only one 

method.  We have developed several exercises that make use of multiple-method 

problem-solving in the sense that we mean, some of which are described below: 

 

‚" Solving a problem using both Cartesian and polar coordinates; 

‚" Determining components of vectors by direct trigonometry and use of the dot 

product; 

‚" Determining cross products by inspection, geometric reasoning, and determinants 

using Cartesian components; 

‚" Determining the moment of a force about an axis using different base points on 

the axis; 

‚" Deriving different sets of equivalent equilibrium equations, such as by using 

different moment equations or different combinations of substructures. 

 

In the absence of multiple-method problem-solving, a tendency arises to “pigeon-hole” 

problems and problem-solving approaches; that is, certain types of problems become 
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associated with only one solution method.  For example, consider the presentation of the 

basic equation of particle dynamics, aF m?Â , assuming that the kinematic description 

of acceleration in the standard coordinate systems (Cartesian, polar, normal tangential) 

has already been covered.  One option is to present the equation in unified vector form, 

and leave the issue of choosing an appropriate system of coordinates as a central element 

of the problem-solving process.  The other option is to present the equation separately, 

i.e. separate discussions are provided corresponding to each coordinate system.  It is this 

second option that fosters pigeon-holing of problems. 

 

To illustrate how pigeon-holing might occur, consider the typical problem of analyzing 

the dynamics of a particle constrained to a straight track, but driven by a rotating arm.  

An example from Pytel & Kiusalaas
7
 is provided in Figure 1 (henceforth referred to as 

“Problem A”).   

 
Figure 1.  Problem A:  A Particle Constrained to a Straight Track, Driven by a Rotating Arm. 

 
Source:  Pytel & Kiusalaas7 

 

Problem A is reasonably approached using either polar coordinates (considering that the 

arm is rotating) or Cartesian coordinates (considering that the particle moves along a 

single Cartesian axis).  Pigeon-holing this problem to only one of these methods limits 

the student’s perspective, and possibly sets the student on a path of attempting to think 

“which method must I use for that problem?”  If the problem is completed using only 

polar coordinates – including reporting the acceleration of the particle in polar 

coordinates – does the student absorb the fact that the acceleration of the particle itself is 

directed along the y-axis?  And if the problem is completed using only Cartesian 

coordinates, does the student understand that the trigonometric relations used in this 

approach are embedded in the polar relations? 

 

Exposing students to both the polar and Cartesian approaches for Problem A enables 

them to capture these and other insights, and in this way, the student learns more than 

simply the details of two different methods.  Through the comparison of the two methods 

and their results, the student builds confidence in working with the fundamental 

principles and develops a deeper insight into the underlying physics.  The student also 

begins to form assessments regarding the benefits and drawbacks of each method; 

ultimately, this will help the student to cultivate good judgment in deciding how to 

approach other problems.  We do acknowledge the need to carefully engage students in 
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multiple-method problem-solving, in order to avoid overwhelming them with too much 

information. 

 

To understand the degree to which multiple-method problem solving occurs in mechanics 

pedagogy, we reviewed several textbooks to record whether the equation aF m?Â  is 

presented in a unified or separated manner, and whether problems equivalent to Problem 

A (either sample problems or unsolved exercises) are presented with Cartesian, polar, or 

both coordinate systems.  The data are reported in Table 1. 

  
Table 1.  Textbook Approaches to Introducing and Using Basic Coordinate Systems in Particle Dynamics. 
Textbook by Author Treatment of F = ma Separated 

by Coordinate Systems 
Problem A Presented 
in Polar Coordinates 

Problem A Presented in 
Cartesian Coordinates 

Bedford & Fowler1 YES N/A N/A 

Beer, Johnston & Clausen2 YES Presented as a Review Problem 
Boresi & Schmidt3 YES  X 

Hibbeler4 YES X  

Meriam & Kraige5 YES X X 
Pytel & Kiusalaas7 YES X X 

Ruina & Pratap9 NO N/A N/A 
Tongue & Sheppard11 YES N/A N/A 

Problem A described in Figure 1.  N/A = no problem comparable to Problem A found in text. 

 

The data reveal that the vast majority of textbooks separate the discussion of aF m?Â  

by coordinate system; only one text (Ruina & Pratap
9
) presented a unified approach.  

With respect to presentation of problems comparable to Problem A, two books present 

the problem in only one system, three using both (including one as a review problem), 

and three others did not contain problem of sufficient similarity.  While we advocate 

presenting aF m?Â  in a more unified approach, we are encouraged that several texts do 

promote multiple-method problem solving in specific instances.  While we did not collect 

data to exhaustively account for how often texts use multiple-method problem-solving 

throughout, our general experience and perusal suggests that the data presented in Table 1 

is reasonably demonstrative of the general situation. 

   

Organization of Systems of Equations: Newton Form vs. Tabular Form 

 

A second issue that we believe is important in developing student problem-solving skills 

is the systematic organization of equations.  In traditional problems in undergraduate 

Statics and Dynamics, the basic governing equations ( CMmaF ?Â and OO // HM %?Â ) 

generally yield a system of linear equations.  State variables such as reactions, internal 

forces, and accelerations at particular instants can appear in various combinations as 

given or unknown quantities.  Depending on what is given and what is unknown, direct 

transcription of the governing equations in the standard “Newton” form does not 

necessarily yield the standard linear form Ax = b, in which all of the unknown variables 

are on the left-hand side of the equation (x), and the known quantities (“forcing terms”, 

though not necessarily physical forces) appear on the right-hand side (b). 
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To illustrate this, consider a typical problem of the static analysis of a simple frame, 

taken from Hibbeler
4
 and outlined in Figure 2 (henceforth referred to as “Problem B”).  

In this problem, the equations are written directly from Newton’s equations, rendering all 

terms – both known and unknown – to the left-hand side.  The right-hand side of each 

equation is zero. 

 
Figure 2.  Problem B: Static Analysis of a Simple Frame, with Governing Equations Written in Direct Newton Form. 

 
Source: Hibbeler 

 

We affirm that the presentation of equations in the standard Newton form (as in Figure 2) 

is necessary and useful, for it clearly displays the physical source of each term.  But 

beyond this, we strongly advocate introducing an intermediate step prior to solving the 

equations.  In this step the equations are re-written in a “tabular” form, in which the 

equations are re-arranged to write all unknown terms on the left-hand side, and all known 

quantities on the right-hand side.  In addition, the equations are written such that like 

terms on the left-hand side are vertically aligned.  The tabular form of the equations from 

Figure 2 is provided in Figure 3. 

 
Figure 3.  Equations from Problem B (Figure 2) Written in Tabular Form. 
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The rewriting of equations into tabular form (as in Figure 3) might appear unnecessary, 

especially in cases in which the equations are highly decoupled and their solution is 

nearly trivial, as with the equations presented in Figure 2.  It is also reasonable to 

question whether techniques to setup equations belong in mechanics courses or should be 

left to engineering mathematics courses. 

 

We see many reasons to regularly include the tabular form as part of the overall problem-

solving process.  First, regardless of whether the solution of the equations is trivial, 

writing equations in tabular form calls attention to the distinction between writing and 

solving equations.  We have found repeatedly that students race ahead to “solve” 

problems before properly formulating them.  Writing equations in tabular form is a clear 
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and tractable approach that will add structure to student reasoning, such as steering them 

to consider whether the system is properly posed and has an equal number of equations 

and unknowns.  It will further promote general habits of organizing both thought and 

exposition, ultimately fostering better problem solving and communications skills. 

 

Second, learning how to write equations in tabular form – a close cousin to matrix-vector 

form – immediately provides a format that is ready for input into standard equation 

solvers, such as in computer software or programmable calculators.  Thus, using tabular 

form prepares the student for real problems that require computational solutions (unlike 

textbook problems that are usually amenable to hand calculation).  In addition, use of 

tabular form provides flexibility to encourage capable students to use matrix computation 

instead of or in addition to hand calculation, while not placing other students at a 

disadvantage.  Many students of the first author, including some in fields other than 

mechanics, have remarked that the habit they learned in Statics, to write equations in 

tabular form, has proved useful in more advanced courses, such as linear circuit analysis. 

 

Third, the establishment, manipulation, and solution of linear systems of equations lie at 

the heart of countless engineering computations.  Despite the fact that these computations 

are often hidden from the user in many software applications, and many practicing 

engineers seldom perform linear algebra calculations in their day-to-day work, familiarity 

with linear systems is useful to provide a context to help the engineer understand “what’s 

under the hood” in many applications.  Moreover, facility with linear equations helps the 

engineer to conceptualize an entire system of equations as a single entity, helping him or 

her to make qualitative judgments about computed solutions.  Learning to write equations 

in tabular form is a good early step that will prepare students for these situations. 

 

We surveyed several Statics texts to determine whether equations were re-written in 

tabular form.  The survey was standardized by selecting examples from each text in 

which equations were generated from the static analysis of a simple frame (i.e. 

comparable to Problem B). 

 
Table 2.  Textbook Approaches to Organizing Linear Systems of Equations, using Problem B. 

Textbook by Author Tabular/Matrix Form Used Tabular Form Never Used 

Bedford & Fowler1  X 
Beer, Johnston & Clausen2  X 

Boresi & Schmidt3  X 
Hibbeler4  X 

Meriam & Kraige5  X 
Pytel & Kiusalaas7  X 

Riley, Sturges & Morris8  X 

Ruina & Pratap9 X  
Soutas-Little & Inman10 X  

Tongue & Sheppard11  X 
Problem B described in Figure 2. 

 

Table 2 provides a summary of how the textbooks surveyed organize equations after 

initial deriving them in Newton form.  We found only two examples (Ruina & Pratap
9
 

and Soutas-Little & Inman
10

) in which equations were re-arranged into a standard tabular 
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or matrix form.  We found that otherwise, textbooks solved equations using a variety of 

ad hoc substitution methods or simply provided solutions without any method.  

 

Use and Discussion of Assumptions 

 

Another key element that we believe is central to developing problem-solving skills is the 

ability to understand, use, and develop reasonable assumptions.  Our experience suggests 

that students in introductory mechanics courses regularly neglect to use essential 

assumptions, even when given.  Similarly, they appear to have difficulty formulating 

necessary assumptions that are not supplied, often introducing insufficient or irrelevant 

information.  The authors’ teaching pays close attention to formulating assumptions and 

illuminating their implications when used. 

 

We inquired to what degree texts state assumptions, discuss their origin and importance, 

and incorporate them into the text or sample problems.  Even when some assumptions 

appear to be trivial, we believe that the act of paying attention to an assumption serves to 

establish healthy mental habits that foster rigor and stimulate critical thinking. 

 

As an example, we examined to what degree the assumption of a massless cable is 

presented in elementary dynamics texts, and how these assumptions are highlighted in the 

context of solving problems.  Such an assumption is common and nearly indispensable in 

elementary mechanics.  We surveyed several texts to determine whether the massless 

cable assumption is validated by analyzing the “massless dynamics” of a segment of 

cable (i.e. as if in static equilibrium), or present a segment of cable as a two-force body. 

 

Table 3 provides data that summarize the treatment of the “massless cable assumption” in 

elementary dynamics texts.  As shown, most texts mention cables (alternatively wires, 

cords, tethers, etc.) in the statement of problems in which they appear.  About half of the 

books make the point that the cables are to be assumed massless (or light, etc.).  None 

appeared to present the cable in the context of massless dynamics, or remind the reader 

that a segment of cable can be treated as a two-force body. 

 
Table 3.  Treatment of the Assumption of Massless Cables in Dynamics Texts. 

Text Mention cable, string, wire, 
tether, hawser, or cord 

Specify cable as 
massless 

Mention massless dynamics 
or cable as 2-force body 

Bedford & Fowler1 Most times Never Never 
Beer, Johnston, & Clausen2 Always Never Never 

Boresi & Schmidt3 Always Sometimes Never 

Hibbeler4 Always Sometimes Never 
Meriam & Kraige5 Always Sometimes Never 

Pytel & Kiusalaas7 Most times Never Never 
Ruina & Pratap9 Most times Most times Never* 

Tongue & Sheppard11 Always Most times Never 
*An example of this type was included in an earlier edition. 

 

While dwelling on the massless cable assumption might appear to be of questionable 

utility, we believe that paying attention to such assumptions is instrumental in 

communicating to the student that every element or component of a mechanical system is 
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subject to analysis; hopefully this will foster their free thinking in trying to analyze 

components of various systems that they will encounter. 

 

Other instances in which assumptions are often made without full discussion or 

development involve conservation of energy and conservation of momentum.  These 

important principles are often approached with the narrow objective of providing an 

“easy” calculation.  For example, consider the excerpt from a problem about the collision 

of two masses on a rail, taken from Bedford & Fowler
1
 and presented in Figure 4.  The 

problem solution correctly assumes conservation of linear momentum, but no 

commentary is given the validity of the assumption.  The adjective “smooth” provided in 

the problem description does imply that no horizontal external force will act on the 

masses, but this is not mentioned as part of the reasoning to justify using conservation of 

linear momentum.  We recommend citing details such as this and drawing impulse Free 

Body Diagrams which explicitly illustrate the absence of external impulses.  Then, the 

conservation of momentum can be deduced rather than merely asserted. 

 
Figure 4.  Problem C: Excerpt from Sample Problem in which Conservation of 
Linear Momentum is Assumed. 

 
Source:  Bedford & Fowler1 

 

We note that we have discovered one exercise in the Solution Manual of Beer, Johnston, 

& Clausen
2
 in which the assumption of a massless rod is stated and directly employed in 

the solution.  This problem is discussed further in the Appendix, as it not only involves 

the analysis of a massless object, but also treats a problem with angular momentum in an 

appropriate manner, and provides an opportunity for multiple-method problem-solving. 

 

Toward Measuring Effectiveness Despite Inconclusive Data 

 

We provided a rationale that careful attention to the targeted issues  – solving problems 

by multiple means, organizing systems of equations in a standard form, and paying close 

P
age 12.1206.9



attention to assumptions – will promote deeper understanding, long-term retention of 

concepts, and students’ ability to apply sound problem-solving techniques in future 

engineering courses, even in areas other than mechanics.  We have some anecdotal 

evidence to add weight to our convictions, including informal comments from students 

and colleagues, and we sought to determine whether any student performance data exists 

to substantiate this. 

 

Providing quantitative evidence was a questionable task from the outset, for the 

development of our instructional techniques and materials to address the targeted issues 

did not include any controlled studies to measure their influence.  We have only 

aggregate, post hoc student performance data from which to infer the effectiveness of our 

strategies.  Although our results appear to be inconclusive, we report them here to 

illustrate an assessment method that might work if it were applied to data collected from 

a controlled experiment. 

 

Because the targeted strategies are transferable and applicable to most other engineering 

courses, we sought to measure whether students who are exposed to these strategies form 

habits which are retained in later courses.  We thus chose to measure student performance 

(grades) in advanced courses as a function of prior instruction in mechanics.  In 

particular, we collected data to measure (1) performance in Fluid Mechanics versus prior 

instruction in Dynamics and (2) performance in Structural Analysis versus prior 

instruction in Statics.  These relationships were chosen by reasoning that in each case, the 

more advanced course depends critically on concepts developed in the prior course.  For 

simplicity, we restricted study to students who, as of the date of the data query 

(November 2006), had completed degrees in or were currently enrolled in the fields of 

Civil Engineering or Mechanical Engineering [1]. 

 

We developed an “Influence Factor” to measure the difference in student performance 

between students taught by the first author (“Author”) and students taught by another 

instructor (“Other”) [2, 3].  The rationale for distinguishing student performance on this 

basis is that, because the targeted issues are central and highly emphasized in courses 

taught by the Author, performance of the Author’s students is possibly correlated with the 

effectiveness of the targeted methods. 

 

The influence factor is computed as 

 

Influence Factor  = RSPIauthor – RSPIother, 

 

where RSPI = “Relative Student Performance Index”.  The RSPI is a measure of student 

performance in a given class (e.g. Fluid Mechanics or Structural Analysis) compared to 

baseline student performance.  We chose the baseline datum to be a weighted average of 

the students’ overall GPA (67%) and prior performance in calculus (33%) [4].  The RSPI 

is then calculated as 

 

RSPI  = Grade in Fluids or Structural Analysis – Baseline Grade 
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Because grading patterns are highly dependent on instructor (e.g. the average assessed 

grade differs from instructor to instructor), we partitioned our data into subsets according 

to instructor for Fluid Mechanics (A, B, C) and Structural Analysis (D) [5].  No attempt 

was made to separate data by instructors for courses that contributed to the baseline 

grade; it is assumed that on average, grading patterns over all courses are uniform for 

each category of data in our study.  The results of our analysis are reported in Table 4. 

 
Table 4.  Influence of Teaching in Courses Taught by the Author and Other Instructors. 

Influence of Experience in Dynamics on Performance in Fluid Mechanics 

N GPA Prior 
Math 

Effective 
Baseline 

Dynamics Instruct Fluids Instruct RSPI Influence 
Factor 

51 3.109 2.529 2.721 2.553 Author 3.431 A  0.711 +0.330 
53 2.942 2.554 2.682 2.874 Other 3.063 A  0.381  

21 3.094 2.683 2.819 2.651 Author 3.032 B  0.213 +0.138 
16 3.302 2.771 2.946 3.042 Other 3.021 B  0.075  
35 3.013 2.452 2.637 2.495 Author 2.524 C -0.113 -0.039 
62 2.982 2.598 2.725 2.927 Other 2.651 C -0.074  

Influence of Experience in Statics on Performance in Structural Analysis 

N GPA Prior 
Math 

Effective 
Baseline 

Statics Instruct Struct. 
Anal. 

Instruct RSPI Influence 

18 3.179 2.951 3.103 3.020 Author 3.274 D 0.171 -0.185 
29 2.985 2.722 2.897 2.609 Other 3.253 D 0.356  

N = number of students in category.  GPA = cumulative GPA in all courses at University.  Prior Math = average 
grades in last math course.  Effective Baseline = 0.67*GPA + 0.33*Prior Math; Dynamics (Statics) = grade in last 
dynamics (statics) course completed prior to taking Fluids (Structural Analysis); Fluids (Struct. Anal.) = grade in 
Fluid Mechanics (Structural Analysis) course attempted.  RSPI = Fluids (Struct. Anal.) - Baseline.  Influence = 
difference in RSPI for Author’s students and Other’s students.  Data includes records of students who took Fluid 
Mechanics from Fall 2002 to Fall 2005, and Structural Analysis during Fall 2006; records of students with grades W 
or F in these courses removed. 

 

To illustrate how the data is compiled and how the influence factor is computed, consider 

data corresponding to category “A”, which appears in the first two data rows.  Category 

A consists of student performance data for students who took Fluid Mechanics with 

instructor A.  Category A is further broken into two subsets: one subset (Author) for 

students whose last prior Dynamics course was taught by Author, and the other subset 

(Other) for students whose last prior Dynamics course was taught by another instructor.  

The Author’s students had an average baseline grade of 2.721, and an average grade in 

Fluid Mechanics of 3.431.  The RSPI for this case is thus 3.431 – 2.721 = 0.711.  [Note 

that the grade in Dynamics itself is excluded from the calculation because it is highly 

dependent on instructor and cannot be interpreted to have absolute meaning.  It is 

provided for reference].  Similarly, the RSPI for students with other instructors is 3.063 – 

2.682 = 0.381.  The influence factor is then computed to be 0.711 – 0.381 = 0.330. 

 

As indicated by the positive values of influence factor for Categories A and B, students of 

the Author in these segments were highly successful.  Performance of students in 

Category C was roughly equal for students of the Author and Other instructors.  Students 

of the Author in Category D were not as successful as Others’ students.  Overall, little 

inference can be made due to the small data sizes (data is highly sensitive to outlying 

performance of small numbers of students), although it is perhaps plausible that the 

Author’s teaching in Dynamics is effective on the basis of this measure. 
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More broadly, even had the data itself been conclusive questions remain as to the overall 

validity of the influence factor developed here as a measure of teaching effectiveness.  

And even if the method itself is valid, only in highly controlled circumstances could the 

positive measures of teaching influence imply effectiveness of the targeted strategies, for 

teaching outcomes are influenced by a variety of factors.  Despite these significant 

shortcomings in both the results and the methodology, we decided to present the data 

because it illustrates a possible direction of assessment that has the potential to measure 

effectiveness of introductory instruction based on outcomes in future courses.  We think 

this is useful. 

 

Discussion and Conclusions 

 

We presented three issues in mechanics education (referred to as the “targeted issues) – 

multiple-method problem-solving, systematically organizing equations, and paying 

special care to discussing assumptions – that we believe to be important.  We have taken 

special care in our teaching to emphasize these matters and to design teaching strategies 

that effectively engage students in these questions.  Our feeling is that on the whole, these 

strategies effectively promote student understanding of not only mechanics, but of 

analytical problem-solving in general.  And we believe that the approaches to problem-

solving learned in mechanics are applicable to problem-solving in many other fields of 

engineering. 

 

We provide some insight into the degree to which our identified issues are addressed in 

textbooks.  By identifying sample problems that are both universally used and illustrative 

of the targeted issues, we documented that on the whole, textbooks do not consistently 

address the targeted issues, although several examples exist in which there is good 

treatment.  Our review of the texts is not exhaustive, but based on our overall perusal of 

several textbooks, our sense is that the examples that we selected are useful and 

representative of the overall approaches adopted by the texts. 

 

We agree with other mechanics educators that course outcomes are unlikely to be 

functions of the textbook used, that no textbook is perfect or all-encompassing, and that 

any shortcomings of textbooks can be bridged by instructors.  However, repeated patterns 

in textbooks, such as those that we indicate here, serve to indicate and influence general 

approaches to teaching and what information students accept as important.  At a 

minimum, we hope that our survey will provide other educators with a sense of what 

some of these general patterns are.  More broadly, as new editions of textbooks appear 

very frequently, yet with few substantive changes, the issues that we present in this paper 

provide suggestions of how textbooks can innovate to call students’ attention to broader 

issues and critical thinking. 

 

With regard to assessment, the attempt that we made to quantitatively demonstrate the 

effectiveness of our recommended approaches proved inconclusive.  However, we 

believe that the idea behind our approach – to measure effectiveness of certain strategies 

based on future outcomes in subsequent courses – is sound and will complement other 
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existing methods of assessment.  For example, the use of force concept inventories is 

useful to provide immediate feedback of student knowledge, and if used for both pre- and 

post-tests, they can be used to measure effectiveness of teaching strategies.  However, 

this approach does not indicate the duration over which students retain knowledge, or the 

ability of students to apply fundamental concepts in future situations.  Approaches that do 

study long-term student success seem to be mostly concerned with measuring retention 

and graduation rates, and while valuable for assessing overall program outcomes, the also 

do not measure effectiveness of specific teaching strategies.  Our attempt to measure the 

influence factor is a sketch of what such an approach might look like. 

 

Although our study is limited, we hope that it provides some insight into some issues that 

are important in mechanics pedagogy, but perhaps neglected.  We believe that the 

strategies that we present here are tractable for educators to try, and will serve to foster 

better problem-solving skills during students’ early formative years. 

 

Endnotes 

 
[1] Fluid Mechanics is required only for students in Civil Engineering and Mechanical Engineering. 

  

[2] The first author was a principal instructor for the basic mechanics courses during since Spring 2001.  

The second author worked as a grader and research assistant for the first author from 2003-2005.  The third 

author has a similar philosophy of teaching from prior experience. 

 

[3] A total of five different instructors, including the first author, have taught Dynamics to students 

included in this study.  No attempts were made to determine distinct influences of “other” instructors. 

 

[4] The prior math course for students in Fluid Mechanics is the grade in the last calculus course taken prior 

to enrolling in Dynamics.  The prior math course for students in Structural Analysis is the average of the 

last two calculus courses taken. 

 

[5] Because the Author had not taught Statics prior to Fall 2004, meaningful student performance data from 

Structural Analysis was available only from Fall 2005 and Fall 2006, both of which sections were taught by 

a single instructor “D”. 

 

Appendix 

 

We discuss Problem 12.134 from Beer, Johnston & Clausen
2
 because the prepared 

solution in the Solution Manual (1) invokes the idea of a massless object is nontrivially 

and with adequate attention, and (2) provides an appropriate solution when a blanket 

assumption about conservation of angular momentum could have been asserted instead.  

The problem statement is provided in Figure 5, and an excerpt of the solution is provided 

in Figure 6.  This problem is presented as a Review Problem in the chapter on Particle 

Dynamics.   

 

 

 

 

 

 

P
age 12.1206.13



 
Figure 5.  Problem 12.134 from Beer, Johnston & Clausen2 

      
 

Figure 6.  Excerpt of Solution of Problem 12.134 from Beer, Johnston & Clausen2. 

 
 

The solution appropriately presents this problem in the context of particle dynamics, by 

providing Free Body Diagrams of each particle.  In particular, the transverse force on 

particle B is properly not assumed to equal zero, even though this happens to be true 

(interestingly, this assumption was made in an earlier edition of the Solution Manual, and 

we applaud the authors for revising the solution).  The assumption that the rod is massless 

(highlighted by a box added to Figure 6) is crucial in demonstrating that the transverse 

acceleration of particle B is zero.  The solution could be slightly improved by further 

pointing out that this implies that the transverse force on B is zero; even though this is 

obvious, it calls attention to the fact that the force was not presumed to be zero. 

 

This problem also provides an opportunity for multiple-method problem-solving, for it 

can also be solved by first considering the entire system.  A Free Body Diagram of the 

entire system reveals that the rate of change of angular momentum about the vertical 
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shaft is zero, from which the result in the given solution follows.  This problem can thus 

be repeated in a later section on dynamics of systems. 

 

One further technical comment: one could argue that the use of the massless rigid body in 

the given solution (Figure 6) is technically out of bounds for a chapter on particle 

dynamics.  Even though students have already been exposed to statics of rigid bodies, the 

dynamic treatment of rigid bodies – even if massless – has not yet been presented.  The 

treatment of massless cables is more palatable for a chapter on particle dynamics, since 

for a given segment of cable, the forces are collinear, and hence pass through a common 

point. 
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