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Abstract 

Undergraduate STEM programs are faced with the daunting challenge of managing instruction 

and assessment for classes that enroll thousands of students per year, and the bulk of student 

assessment is often determined by multiple choice tests.  Instructors try to monitor the reliability 

metrics and diagnostics for item quality, but rarely is there a more formal evaluation of the 

psychometric properties of these assessments.  College assessment strategies seem to be 

dominated by a common-sense view of testing that is generally unconcerned about precision of 

measurement.  We see an opportunity to have an impact on undergraduate science instruction by 

incorporating more rigorous measurement models for testing, and using them to assist 

instructional goals and assessment.  We apply item response theory to analyze tests from two 

undergraduate STEM classes, a resident instruction physics class and a Massive Open Online 

Course (MOOC) in geography.  We evaluate whether the tests are equally informative across 

levels of student proficiency, and we demonstrate how precision could be improved with 

adaptive testing.  We find that the measurement precision of multiple choice tests appears to be 

greatest in the lower half of the class distribution, a property that has consequences for 

assessment of mastery and for evaluating testing interventions. 
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Many undergraduate STEM (Science, Technology, Engineering and Mathematics) programs face 

the daunting challenge of managing instruction and assessment for classes that enroll thousands 

of students per semester.  Although there has been considerable attention recently on 

improvements in teaching methods for undergraduate STEM education, there has been relatively 

little discussion of issues regarding assessments of student learning.  A large university might 

enroll thousands of students in introductory courses in calculus, chemistry, physics, statistics, 

engineering, and biology, to name only a few standard classes that serve as the foundation for 

entry to advanced studies in science and engineering.  With the rise of MOOCs (Massive Open 

Online Courses), class sizes an order of magnitude greater are becoming common.  Due to 

resource constraints, student assessment in these large settings is often carried out by multiple 

choice testing. 

 

It is not an exaggeration to say that large college science programs are functioning similarly to 

large-scale testing organizations, only without any of the research and development and attention 

to testing theory.  Major testing organizations such as Educational Testing Services, Pearson, and 

ACT develop and administer tests for a variety of purposes, from licensing exams, to academic 

proficiency testing, to admissions testing.  On the surface, these testing programs serve different 

purposes, some to evaluate skills and knowledge, and some to rank applicants on aptitude, yet 

they all share a common foundation in test theory and test development.  The definition of 

constructs and learning goals, the psychometric properties of scoring rules, and the validity of 

claims and decisions based on the assessments must all be considered when designing a new 

testing program and maintaining its operation. 

 

Almost none of this happens in college classroom testing.  Most instructors carefully construct 

their assessments, and more conscientious ones monitor reliability metrics and diagnostics for 

item quality, but rarely is there a more thorough evaluation of the psychometric properties of 

college tests.  Mislevy and Braun
1
 have pointed out that many educators and administrators 

operate with a naïve theory of testing.  Just as many undergraduate physics students need to 

unlearn a naïve theory of mechanics and motion in order to solve more complex problems, 

Mislevy and Braun argue that there is also a simplistic test theory built on false premises and 

misapprehensions about the details of measurement.  Examples of these misconceptions include 

believing that a score is a score is a score and the test measures what it says at the top of the 

page.  These common sense intuitions about testing might work well for many simple purposes, 

but as testing applications become more complex, these over simplifications begin to break 

down.   

 

The point seems especially relevant for large scale college STEM assessment where the testing 

model really has not changed for half a century.   A typical test will consist of some number of 

multiple choice questions that are assumed to cover the learning goals and content of the class.  
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Students are scored with a sum score of the number of correct answers, and the items are viewed 

essentially as survey items, where the relevant summary is the percent correct.   This common 

sense approach seems reasonable, and appears to have face validity, and in general works fine to 

help evaluate students relative to the standards set by the instructors, and relative to their peers. 

 

There are several limitations, however, of this common sense approach to testing.  For one thing, 

the intended object of measurement is the knowledge or proficiency of the students, and it is 

basically an article of faith that the sum score of the individual items maps on to that construct 

(which is why Mislevy and Braun say that in naïve test theory it is just assumed that the test 

measures what it says at the top of the page).  Connecting scores to student proficiency is all the 

more difficult because students and questions are on different scales (the students are situated in 

the total score distribution, and the items on a % correct metric), and these scales themselves are 

not sample independent.  Furthermore, there is no way to construct a map of the construct space, 

to consider the significance of different patterns of answers that might lead to the same total, or 

to provide ability dependent estimate of measurement precision (i.e. it is assumed that a score is 

a score is a score).    There is also no principled way to conduct personalized assessment 

strategies that might optimize testing to specific student ability levels, or even to ensure the 

fairness of computer testing from item pools.  We are only aware of learning management 

systems that sample randomly from pools of eligible items during computer based assessments.  

That is, instructors delivering computer based tests might stratify the item pool by content 

domain and maybe also their estimate of the question difficulty, but there is no mechanism to 

ensure that students receive tests of equal difficulty when the items are selected.  

 

We believe that the application of more rigorous measurement models to large scale college 

testing could positively impact science education by increasing the awareness of instructors 

about the properties of their assessments, and by improving the tools available to students.  There 

has been a tremendous amount of work on best practices for instruction in college courses, and 

researchers have identified the value of formative assessments to help students and instructors 

identify strengths and weaknesses and adjust instruction.  We add to this discussion by 

undertaking a psychometric analysis of classroom tests.  In particular, we will focus on the 

measurement precision when tests are analyzed using Item Response Theory (IRT), a non-linear 

latent variable model that evaluates the student’s probability of responding to items correctly 

conditional on ability level.  A useful byproduct of IRT analysis is that measurement uncertainty 

is quantified conditional on ability level, and it often reveals that precision is not uniform
2
.   

 

In the classical test theory model (which is the general model for the vast majority of college 

level assessments), the reliability of the test is defined as the proportion of score variance that is 

attributable to “true-score” variance.  The reliability of a test, then, as indexed by a Cronbach’s 

alpha or KR-20, is considered a joint property of the test and the sample, and represented by a 

single number that is not conditional on score level.  Most university automated scoring 
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programs (and also those embedded in learning management systems for web-based 

applications) will calculate reliability in this manner.  A reliability of .8 is generally considered a 

sign of good measurement.  But simply summarizing the reliability with a single number masks 

two very important facts:  (1) the precision may vary considerably across the ability distribution, 

and (2) different test questions provide  more and less information at different points in the 

ability distribution. 

 

We believe these points are becoming increasingly relevant as testing becomes a larger issue in 

college instruction.  With questions about accountability and efficiency gaining in prominence, 

and with a new interest in the possibility of differentiated instruction, we think it is a good time 

to examine the status quo of classroom testing in large undergraduate classes. We do this by 

analyzing testing data from two large college contexts.  The first is a large undergraduate 

introductory physics class covering mechanics with a calculus based curriculum.  The second is a 

Massively Open Online Course (a so-called MOOC) on geospatial reasoning.  We will apply 

IRT models to item level test data from the first midterm in each class.  We will focus our 

psychometric analysis on characterizing the variance in measurement precision and on 

demonstrating the gains that could accrue from computer adaptive delivery of test content from 

an expanded item pool.   

 

 

Background on Psychometric Models 

 

In the common three-parameter model (3PM), the probability p(Xij| θi; aj, bj, cj) of answering a 

question correctly depends on the latent ability level θi of the i
th

  student on a one-dimensional 

construct of interest, and the parameters aj, bj, and cj,  for the j
th

 item.  

 

   (1)  

 

The difficulty (or threshold) parameter bj is understood to be “on the same scale” as θ, allowing 

for the matching of items and examinees.  The discrimination (or slope) parameter aj determines 

the rate of ascent from the lower asymptote to 1.  Finally, cj determines the lower asymptote as θ 

goes to negative infinity.  For questions where there is no chance of guessing, setting cj = 0 

yields the two-parameter logistic model (2PLM), whereas making the assumption that all 

questions have the same aj yields the Rasch model (1PLM). Extensions to settings with multiple 

response options or where θ is multidimensional are available, but we will focus only on the case 

of dichotomous responses reflecting a unidimensional underlying construct.  

 

If the question parameters are known, as is the case for a test composed of well-researched and 

validated items, then estimation of student ability level is a straightforward single variable 

problem
3
 . Similarly, if a sample of students with known ability estimates (θ) is available, then it 
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is relatively easy to estimate the parameters for a new set of items.  Joint estimation of the item 

parameters and abilities is also possible.  One of the most common techniques is marginal 

maximum likelihood, although Bayesian approaches are also widely employed
4
 .  

 

We use a Bayesian approach for the joint estimation of the item and person parameters.  We 

estimate the full joint conditional distribution of the ability and item parameters given the data.  

The joint distribution is 

 

(2)  

 

where φj represents the set of item parameters (aj, bj, cj).  Following common practice
4
 , we apply 

independent prior distributions for the parameters:  
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We estimated the model using WinBUGS
5
.  Simulation of the posterior distribution derived from 

the joint model was iteratively computed using Markov chain Monte Carlo (MCMC) methods.  

We ran chains of 8000 iterations, discarding the first 4000 as burn-in.  Starting values for the aj 

and cj were fixed at 1 and 0.2 respectively.  Starting values for the bi and θi were chosen 

randomly from overdispersed normal distributions.  Multiple chains from new sets of starting 

values mixed well and showed good convergence (for a more in-depth discussion of convergence 

criteria see 
6
).  Estimation of the full joint posterior distribution yields item parameter estimates 

as well as ability estimates for the students. 

 

In Maximum Likelihood Estimation of the IRT model, the Fisher information for a given item, 

conditional on θ is given by the second derivative of the loglikelihood (Baker & Kim, 2004): 
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of θ is the inverse of the square root of the total test information. As Embretson
2
 notes, IRT 

yields standard errors that generalize across samples (i.e. they are not sample dependent), and 

also differentiate within samples by adjusting as a function of ability.   
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Another advantage of IRT is the affordance to create individually tailored tests to optimize 

measurement precision. Since the early 1980s it has been recognized that adaptively delivered 

tests can be more efficient compared to fixed-length tests for which all examinees answer all 

items
7,8

.  Because items are targeted to the ability level of the examinee, the length of the tests 

can be reduced and the precision of measurement improved.  Computerized adaptive tests (CAT) 

have gained wide acceptance in high-stakes applications, including major admissions tests such 

as the GMAT, the GRE, and the MCAT, and in vertically integrated assessment of student 

proficiency in mathematics and reading, as in the MAP assessment widely used in K12 education 

settings.  Computer adaptive testing is also a central component of many of the designs for the 

new common core assessments. 

 

In a typical CAT, an examinee’s estimated ability is updated after each item response by taking 

either the mode of the likelihood, or the posterior mean or mode.  After ̂ k
 has been estimated 

(for the student after answering item k), the next most informative question in the item pool at ̂ k
 

is chosen.  The criterion for “most informative” is often the item with maximum information, 

although sometimes constraints like content balancing or item exposure must be considered.  The 

key point of a CAT is that students of different ability levels interact with different sections of 

the item pool.  Consider a student of mid-level ability; easy questions are not informative 

because they are highly likely to answer them correctly. Similarly, highly difficult items are also 

not informative because they are likely to be answered incorrectly.  Parallel arguments for high 

and low ability students demonstrate that different items in the pool (or test) are relevant for 

different groups of students.   

 

In theory, the measurement quality obtained with high-stakes adaptive testing could also be 

realized in learning materials for students developing their academic skills, including large 

college classrooms or Massively Open Online Courses.  For students, targeted materials could 

make study time more efficient, and real-time scoring of self-administered assessments could 

provide timely feedback on performance.  As an example, students studying introductory physics 

could log on to a website and answer questions delivered adaptively.  Online scoring would 

allow students and instructors to make accurate evaluations of progress and projections for 

successful completion of the course.  Such a learning tool could ultimately serve as summative 

assessment, but would be initially easier to integrate in classroom settings as a tool to help 

students develop their skills. 

 

In the two studies below, we apply IRT analyses to test data from large college classes (one in 

residence and one online).  We produce plots to show the information functions of the classroom 

tests.  We then show cumulative information plots showing the measurement precision that the 

tests would provide if items were administered in order from most to least informative.  This 

would imply a different ordering of the test items for different students, and in the case where the 

number of available items was large, perhaps even entirely different tests.  We illustrate the gains 
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in measurement precision for the same fixed number of test items by supposing that the available 

pool of items was 5X the number on the actual class test.  

 

Study 1  Residence Instruction Physics Class 

 

Our first example comes from the first midterm in a large undergraduate physics course, a 

calculus based mechanics class that is the first in a sequence for engineering and science majors.  

A total of 1178 students (Female = 287) answered 20 questions on the midterm. The class mean 

was 14.7 with standard deviation = 3.2. We ran our estimation algorithm in WinBUGS with 

8000 iterations (burn-in = 4000 iterations).  Multiple chains converged well and the convergence 

diagnostics were good. 

 

The precision of measurement varied across the ability distribution of the class.  On a 

standardized scale, the most precise measurement was in the region of -1, or approximately the 

20
th

 percentile of the distribution.  The standard errors increased for other ability levels, and were 

substantially larger for the top half of the class.  In Figure 1, a standard error of 0.5 implies that 

that a 95% confidence interval for the ability level of any given student spans +/- 1 standard 

deviation.  The level of uncertainty in the predicted ability scores is somewhat sobering since it 

clearly cuts across multiple grade levels. It should not come as a surprise that the measurement 

error of the test varies across the ability spectrum.  At the high end of the class, more than 500 of 

the 1178 students scored 16 or better out of 20.  Given that the test was multiple choice, there is 

really very little information to make discriminations among this group of students.  What the 

test does do very well is differentiate the students just below the median from the higher and 

lower performing students.  

 
 Figure 1. Posterior standard errors as a function of latent ability.      
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We also calculated the cumulative information (recall that the standard error of θ is the inverse of 

the square root of the test information) provided by an optimal path through the 20 items.  That 

is, we sorted the items by information value for a given ability level, and in Figure 2 plot the 

cumulative information for three different ability levels (green = -1, blue = 0, red = +1) by 

administering the questions in order from most to least informative.  The plot shows weak 

information for higher ability levels, and also the diminishing returns of additional questions as 

the relevant questions in the pool are exhausted and the curve starts to asymptote.  Consider the 

curve for θ = +1 students (top 20th percentile or so).  There is very little information in the test, 

and what information there is has largely been achieved in the first half of the items.  We 

emphasize that for the students at ability level + and – 1, the most relevant test items are not the 

same.  That is, the bulk of the information is accumulating on different subsets of the test. 

    
Figure 2: Cumulative information from maximized math through the 20 test items. Green, blue 

and red represent students with θ = -1, 0, +1 respectively. 

 

Finally we plot the cumulative information for a 20 item test constructed from an item pool that 

was 5 times as deep as the actual test.  We did this in a very straightforward way by imagining a 

pool that had 5 replicas of each item (note we are only assuming that there would be items with 

similar item characteristic curves, not that the items would be literally the same).  Now the test 

information is calculated based on the most informative 20 item subset of the 100 item pool. In 

Figure 3 we see that the test information is much greater for the tests optimally constructed from 

an item pool, and it continues to increase across the 20 items without flattening out.  The blue 

and red dotted lines represent, respectively, the adaptive tests from the larger item pool for the 

students of ability 0 and +1.  Note that because the items viewed by these groups of students will 

differ, the information curves can become more similar.  A large commercial adaptive test will 

typically yield information that is high and uniform across a wide range of ability levels.  
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Figure 3. Dotted lines represent cumulative information for an adaptive test based on an item 

pool with 100 items similar to original 20. Blue and red solid curves represent the same functions 

as drawn in Fig. 2. 

 

In summary, based on the 20 item midterm, the estimation of student ability is quite noisy, 

especially for the top half of the class.  Although the test as a whole may explain variance across 

the class distribution, there is very little to differentiate among the top 500 out 1178 students.   

The information that does exist accumulates for different questions for different students.  With 

access to a larger pool of items, different paths could be constructed to yield more efficient 

assessment strategies, either for individualized learning and formative assessment, or more 

efficiently administered summative assessment. 

  

Study 2 MOOC on Geography and Geospatial Reasoning 

 

Our second example comes from a MOOC in geography.  5733 students attempted the first quiz 

covering geospatial applications, such as definitions of GPS and GIS and geotagging, and 

understanding what sorts of transformations of geospatial information can be represented in 

maps.  There were 17 items on the quiz; the mean was 11.7 and the standard deviation 3.6.  

Students had the opportunity to resubmit answers after completing the quiz a first time.  Here we 

analyze only the first submissions.  

 

In terms of test information, we see a very similar pattern to the residence physics class.  Figure 

4 shows that measurement is most precise in the lower half of the class distribution, and the 

standard errors rise with ability level.  The standard errors are somewhat smaller here than in 

Study 1, despite the shorter test.  
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Figure 4.  Standard errors as a function of ability level based on quiz data from a MOOC. 

  

We also considered what the gains in measurement would be if we could adaptively construct a 

17 item test from a candidate pool of 85 items similar to the ones on the actual test (i.e. multiply 

the test content by a factor of 5).  Figure 5 confirms that as we saw in Study 1, a tailored test 

would accumulate more information at a quicker rate, and relative differences in precision 

between different ability levels would be reduced.  

 
Figure 5. Dotted lines represent cumulative information from first 17 items in a pool of 85.  The 

solid lines from the actual fixed length test where every student saw the same items.  Blue and 

red represent θ = 0 and +1 respectively.  
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Discussion   

 

On any test, a score needs to be understood in the context of the pattern of responses by students.  

When analyzing college assessments using IRT to put items and people on the same scale, we 

saw similarities in the psychometric analyses for two large testing applications.  Whether in a 

largely unconstrained online context, such as a MOOC, or in the structured environment of a 

residence based required physics course, multiple choice testing provided relatively weak 

information for the upper half of the class distribution.  Although both tests had good 

conventional reliability, as measured by Cronbach’s alpha, it was clear that the tests were best at 

discriminating between high and low performance.   

 

The tests we analyzed were multiple choice with average item difficulty in the range of 0.75.  

Many college courses give tests with means closer to 80% or 85%.  In such cases the patterns we 

have shown in these analyses are even more pronounced. The standard errors are even poorer, 

and there is hardly any information relevant for the top half of the class.   

 

At first blush it might seem that we are showing too much concern about the measurement in the 

top half of the class.  Indeed, it might be argued that the purpose of testing is to elicit evidence of 

mastery, and the relative rank ordering of students is not the main concern.  This is a reasonable 

argument, and indeed criterion referenced tests have information curves that are highly 

concentrated at the relevant level for mastery.   

 

However, while we acknowledge that there is lots of room for debate on the philosophy of 

assessment, the reality is that the weak information does present many problems.  For one thing, 

even if the explicit goal of the college test was to show evidence of mastery at a certain 

threshold, it is unlikely that that threshold would be set at the 40
th

 percentile of the class.  

Repeatedly answering easier questions is not the usual definition of mastery.  Criterion 

referenced tests should have information curves that are concentrated at the desired level of 

mastery, and our analyses of these tests (and many others) have repeatedly shown that there are 

relatively few questions that challenge students in the top half of the class.  An IRT analysis can 

show whether the test information is concentrated at an appropriate point, and it can also set a 

scale for the criterion level itself that is independent of specific test form. 

 

Test information is also relevant because class test scores are often the outcome metric for 

evaluating the success of teaching interventions.  If ability in the top half of the student 

distribution is only measured to +/- .5 of a standard deviation, then the statistical power to detect 

experimental effects will be low.  Measureable change is sometimes defined as change greater 

than 1 standard deviation.  The poorer the measurement precision, the more difficult it is to 

identify when change (learning!) has occurred.   
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The relatively weak measurement in these early midterms also presents another problem.  

Although it is easy to show that students who do poorly on the first midterm have a poor 

expectancy for success later on, what is less well diagnosed are the prospects of the 500 largely 

undifferentiated students in the physics class.  Only about 50% of them will finish the course 

with a similar high level of performance.  But because students in that group are so weakly 

differentiated, there is little predictive information for future performance based on the first 

midterm.  Any opportunity for differentiated instruction or other interventions is hindered by a 

lack of specific information from the early assessments.   

 

The important insight is that the information value of the test items differs across the ability 

distribution.  The test items that differentiate relative performance between groups of students in 

the high end of the distribution are not the same as those that differentiate between groups of 

students at the lower end of the distribution.  The relative representation of easy to difficult items 

was on the order of 5:1 in the two tests analyzed here.   

 

Given the differences across the ability distribution in the amount and source of information 

provided by traditional college tests, we think that there is a role for adaptive learning and 

assessment tools in large undergraduate STEM classes.  At many institutions, instructors of 

science and engineering classes are accumulating large databases of test and assignment items.  

These could fruitfully be deployed as adaptive formative assessment tools.   Adaptive tools could 

increase and normalize the information we learn from student performance.  

 

Consider a formative assessment tool where students interacted with a large database of 

questions in order to self-assess their level of understanding.  Given the information profile of 

the tests analyzed in this paper, students could determine with decent resolution whether they 

stood above or below average mastery.  But given the profiles of these existing tests, students 

who were above average would accumulate much less information concerning their specific level 

of mastery.  By contrast if the students were interacting with an adaptive algorithm assigning 

questions based on the running ability level estimate, they would much more quickly establish 

their relative level of mastery, and would encounter questions of a more appropriate challenge 

level that would offer better resolution of their level. 

 

Conclusion 

 

We have shown that many college tests have information profiles that offer the greatest 

measurement precision at lower levels of mastery.   We point out that this is non-optimal for the 

purpose of assessing higher levels of mastery, and we show that delivering tailored tests can 

provide much more information about student learning.  There is a need to raise awareness about 

measurement precision in college testing.  As Mislevy and Braun pointed out, one of the naïve 

assumptions about testing is that a score is a score.  Scores are measured with very different 
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levels of precision, and similar scores might reflect different underlying patterns of performance. 

We advocate for more attention to the properties of testing in a higher education context.   At 

many traditional residence institutions, and especially in the new frontier of online education 

(whether open or not), the issue of scale demands that we address the different dynamics of 

learning progressions within a single ‘class’.   
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