
AC 2008-1177: PUTTING THE ENGINE BACK IN THE ENGINEER

Fred Cady, (Retired) Montana State University
Fredrick Cady is a Professor Emeritus in the Electrical and Computer Engineering Department,
Montana State University. He has been involved with ABET accreditation for the Electrical
Engineering and Computer Engineering programs at Montana State University for 20 years. He is
interested in improving the quality of engineering education and has authored four
microcomputer textbooks. He has a Ph. D. in electrical engineering from the University of
Canterbury, NZ and is a senior member of IEEE. 

John McLellan, Freescale Semiconductor
John McLellan is a applications engineer for the University Programs at Freescale
Semiconductor. He currently works with universities, authors, and industry partners around the
globe to drive, create, and implement student learning tools and curricula which support Freescale
products in the classroom. John has a B.S. in Electrical Engineering Technology from Texas
A&M University. 

© American Society for Engineering Education, 2008 

P
age 13.1014.1



Putting the Engine back in Engineering 
 

Abstract 

 

Electrical and Computer Engineering programs across the nation are seeing a decrease in 

engineering student enrollment and retention. Electronic systems and components these days are 

far too small and complex to allow an inquisitive student to explore and satisfy their curiosity 

about how these gadgets work. These students often take to exploring mechanical systems 

instead and are thus led away from Electrical and Computer Engineering. Similarly, with 

advances in computer simulations of engineering circuits and models that produce realistic 

results, engineering programs have transitioned away from physical hardware and hands-on 

experimentation. This trend away from having students being able to "tinker" with real hardware 

is detrimental to their development into well rounded engineers. In addition, as globalization 

continues, engineers must broaden their team-work and technical skills. 

 

This paper describes a hardware, software and courseware learning ecosystem that has been 

created to capture student attention and develop a broader skill set. Laboratory and in-class 

exercises use POGIL (Process Oriented Guided Inquiry Learning) – based laboratory modules to 

engage students in learning through exploration, critical thinking, and team and cooperative 

participation exercises. Laboratory and in-class exercises are designed to teach the student how 

to explore a new technology to be able to learn more about it. In fact, learning how to learn is a 

key outcome. Laboratory hardware is designed to provide easy connection to real-world devices 

and allow students to extend their explorations from classroom theory to the practical application 

of technology they are learning. 

 

Introduction 

 

Over the past few years, educators have seen a technical boom in the semiconductor industry 

with more computational power packaged into the smallest of packages. It is becoming less 

feasible for hands-on, practical-application oriented courses to have students fiddling with 

hardware at the processor level. In addition to this fundamental size problem, new generations of 

computational hardware are appearing far faster than we can update laboratory facilities. As we 

scramble to keep up with technology changes, we find ourselves still behind. Structuring 

hardware, software, and courseware into reusable components allows the core knowledge to 

grow alongside technology advances. This type of courseware is not only re-usable, but fosters 

skills needed for upcoming generations of engineers in a cooperative learning environment. 

 

First, we will discuss the adoption of a teaching methodology which spurs creative, scientific, 

and collaborative thinking. Initial care has been taken to re-think the way we write course 

materials so that they are more easily adapted to the changes in technology. With this approach 

we are able to encapsulate the fundamental information and quickly and easily apply to the latest 

hardware. 

 

Next, we will show how the Freescale Student Learning Kits embrace an adaptive, modular and 

reusable teaching platform. Modular hardware boards (Application Modules), a project board, 

and CodeWarrior software tools provide a flexible, common platform that can be applied to a 

P
age 13.1014.2



spectrum of courses. We will show how this teaching platform offers the students more hands-on 

experience using hardware and how the teaching faculty can encapsulate knowledge into 

functional blocks and greatly extend the life expectancy of teaching material investments.  

 

Cooperative Learning Approach 

 

The idea that learning is enhanced by learners cooperating with one another goes back over a 

century with considerable research having been done over the last 20 years
1
. A number of 

university departments/learning centers have been established to research and promote new 

techniques to enhance the learning experience of the student
2,3,4,5,6,7,8,9,10,11,12

. Cooperative 

learning, collaborative learning, active learning, ConcepTests, Process Oriented Guided Inquiry 

Learning (POGIL)
11

 and others subscribe to the idea that "two heads are better than one". While 

they all have similar strategies and techniques for getting students together in groups, we were 

struck by the ideas presented by the POGIL approach (http://www.pogil.org). 

 

POGIL 

 

The POGIL process follows the general ideas of many of the other cooperative learning 

strategies. It promotes breaking the students into learning teams with students assuming roles 

such as team leader or manager, presenter or spokesperson, recorder, reflector or strategy 

analyst, and technician. The teams then undertake an activity, perhaps after some initial 

classroom lecturing, where they are given an activity assignment that includes the following 

sections: 

• A clear, inspiring and communicative title. 

• A "why" section to put the activity into context for the student. 

• A list of prerequisites. 

• Two or three clear and concise statements of learning objectives. 

• The information, or model, that the students are to explore to be able to meet the 

objectives. 

• Key exploration and concept invention/formation questions. 

• Skill exercises. 

• Problems or applications requiring higher-level thinking skills. 

• A closure including self-assessment and reflection on learning. 

 

The POGIL technique has been successfully implemented in the teaching of general chemistry in 

several universities
13

. POGIL has received NSF Course, Curriculum, and Laboratory 

Improvement (CCLI) funding to continue the growth of POGIL implementation throughout the 

country by presenting cost-free workshops, funding the development of new teaching materials, 

and evaluation of student learning
14

.  

 

While a true POGIL implementation replaces the traditional lecture classroom with POGIL 

activities, we were intrigued by the exploration part of the POGIL process and how it might 

improve the student's laboratory experience. In thinking about how we, the educator, prepare 

ourselves to be able to teach our students a new microcontroller, for example, we realized that 

this exploration process, encapsulated so well by POGIL, is exactly what we have been doing for 

years whenever we have to learn a new topic. When we have a topic that we have to learn, say 

P
age 13.1014.3



interrupts, we open the microcontroller's reference manual to the interrupt chapter and read the 

information. We form a model of how we expect the microcontroller to behave and then invent 

small programs that allow us to test our understanding. We expand these simple programs to 

more complex applications after assessing and evaluating our understanding of the topic. In our 

old professor-standing-up-at-the-board-lecturing method, we then go and "teach" this to the 

students by telling them what we have learned. In most of our rapidly changing technology fields 

this "taught" knowledge is transitory and shortly the students will have to learn a new 

technology. Wouldn't it be much better for us to "teach" the students the material we wish them 

to learn while teaching them how to learn it the way that we just learned it? This is the beauty of 

the POGIL approach. It not only encourages and practices effective cooperative learning, but it 

also allows the students to learn a body of knowledge (how this microcontroller works) plus how 

to learn about the next one that comes along (which is the real knowledge gain). 

 

The "G" and the “I” in POGIL are for “Guided Inquiry”. When students are confronted with an 

entirely new subject they don’t even know how to ask good questions. However, having been 

there and done that, we do. For example, we know that we have to find out from the hardware 

engineer the program memory addresses so we can locate our program properly to run on this 

hardware. You, as the expert, have been through the learning process, at least once. Your 

responsibility is to be able to guide the students along an effective path through all the 

information that is available.  

 

Our POGIL Modules 

 

We have developed a collection of POGIL-like modules for two different microcontroller 

families
15

. After starting with the popular 16-bit Freescale HCS12 family, it was a fairly 

straightforward exercise to convert these modules to both 8-bit and 32-bit equivalents using the 

Freescale Flexis family. The Flexis family ranges from the MC9S08, 8-bit, low-power 

microcontroller to the MCF51 ColdFire 32-bit processor. Because of the very nature of this 

microcontroller architecture, an instructional module written for one family member is, for the 

most part, directly useable for another. Due to some of the advanced capabilities of the 32-bit 

ColdFire architecture there has had to be some extra effort spent in pointing out these 

differences. 

 

These POGIL-like modules are most suited for use in a laboratory course but elements of them 

can be used in the classroom. In fact, starting in the classroom and then moving to the laboratory 

would be most effective. These modules are not like the usual cook book laboratory exercises 

because they challenge the students to look for the information needed to learn about the topic 

and then to prove in some way that they understand it. Student collaboration is expected and 

many of the modules require a student laboratory group to visit with other groups to compare 

solutions and understanding.  

 

We have written each module to include both a student and an instructor edition. The student 

edition is freely available on the Freescale University Programs website
15

. The instructor edition 

materials include solutions as well as sidebar lesson and lecture commentary that need granted 

access to view. Validated instructors are granted access into an exclusive portal that includes 

module instructor editions, completed software examples, and a POGIL template to use to create  

P
age 13.1014.4



their own modules. See Appendix I for a list of POGIL module topics developed to date and 

Appendix II for a sample POGIL module. 

 

Why the need for Modular Teaching Platforms 

 

For years, industry has been using model-based design to build upon existing intellectual 

property (IP), thereby creating a collection of interchangeable IP blocks which can be easily 

adapted to new products. As manufacturing processes improve, the implementation of these 

blocks gets smaller and smaller. This miniaturization and densely packed integration, while good 

for consumerism, poses an educational roadblock to inquisitive young minds. It is now much 

more difficult for the students to see the component parts of these complex systems. In order to 

gain lost ground our first objective is to un-embed technology by creating a system which brings 

the technology back to a level where there are hands-on opportunities to tinker, reconfigure, and 

re-engineer. Second, by encapsulating course exercises, circuits, and demonstrations with an 

upgradeable platform we can retain key blocks of knowledge which ultimately require less time 

to modify courses when updating laboratories. 

 

Student Learning Kits 

 

Freescale Student Learning Kits (SLK’s) are complete hardware and software development 

toolkits designed specifically for education. The kits highlight Freescale’s broad portfolio 

including microcontrollers, digital signal processors, and wireless connectivity as seen in Table 

1. The selection criterion has taken into account such factors as commercial popularity, reference 

material availability, third-party resources and available feature set.  

 
Table 1 Microcontroller Application Modules 

Processor Architecture RAM (kB) Flash ROM (kB) Bus Clock (MHz) 

HCS08QG8 HCS08 0.512 8 10 

MC9S12C32 HCS12 2 32 25 

MC9S12DT256 HCS12 12 256 25 

HCS12XDT512 HCX12 20 512 40 

DSP56F801 DSP 4 24 80 

MCF5211 ColdFire V2 16 128 66 

MCF5223 ColdFire V2 Ethernet 32 256 60 

MC13192U ZigBee RF    

MC9S08QE128 Flexis HCS08 8 128 25 

MCF51QE128 Flexis ColdFire V1 8 128 25 

 

Each student learning kit contains the Application Module
16

 and CodeWarrior™ software 

development tools. The Application Modules typically have a short-listed feature set packaged in 

a small form factor, possess a standard expansion interface, and are fully operable. CodeWarrior 

is a leading software integrated development environment (IDE) for editing, compiling, and 

debugging embedded software on Freescale microprocessors. 

 

Unlike traditional all-inclusive development boards, the Application Modules encourage external 

circuit, peripheral, or system integration. By leveraging the standard expansion interface, the 

educator can create re-usable labs, circuits, and materials that do not need to be redesigned over 

P
age 13.1014.5



time. To emphasize this point, we can design labs for motor control, audio, keyboard, or power 

switching circuits which can be reused regardless of Application Module selection. 

 

To further complement the Application Modules, Freescale has developed the Project Board. The 

Project Board includes all the user features you are accustomed to seeing such as switches, 

LEDs, displays, multiple power options, and on-board Background Debug Mode (BDM). More 

prominent, are the large prototyping area and interface connection to National Instrument ELVIS 

and other third-party instrumentation tools. These provide the educator and equipment 

administrator a static platform upon which to create curricula, exercises, and equipment setups.  

 

By embracing the benefits of this static platform, one can equip a lab that addresses multiple 

fundamental courses such as digital logic, filter design, and circuit analysis in addition to 

microcomputer design, embedded system interfacing, and control systems as shown in Figure 1. 

Moreover, by creating component “building blocks” one can quickly adapt these components to 

work with new technologies. This time savings environment allows us to focus on learning 

multiple new technologies. Also, when a microcontroller module can be used in more than one 

course, as shown in Figure 1, the overall equipment costs can be less.  

 

 
Figure 1. Suggested Courses using Project Board 

 

Student Learning Kit Use at Montana State University 

 

The student learning kits are used in a sequence of three microcontroller embedded system 

classes in the Electrical and Computer Engineering Department at Montana State University. 

HCS12, HCS08 and Zigbee ready RF-Transceiver modules are used with the project board. 

Microcontroller Modules 

•Independent Operation 

•Expand as required 

•Connect Directly into Application 

8—Bit 
HCS08 

16—Bit 

HCS12 
32—Bit 
ColdFire 

 
DSP 

RF  

Transceiver 

Project Board 
 

Non Microcontroller 
Course Topics 

 

•Digital Logic Design 

•Circuit Design 

•Filters 
 

Hardware Interfacing 
Course Topics 

 

•Motor Control 

•High Voltage Drivers 

•Audio 

•Instrumentation 

Microcomputer 
Course Topics 

 

•Microcomputer Design 

•Embedded Systems 

•Communications 
 

P
age 13.1014.6



Although Computer Engineering students are not required to purchase the student learning kits, 

many do because all three embedded courses are required for their degree. Many of the Electrical 

Engineering degree students, who are required to take only the first embedded course, also enroll 

in the subsequent classes and they purchase their own kits too. Our second embedded class 

requires students to learn about the ZigBee ready RF-Transceiver modules and to implement a 

RF-based mesh network environment for sharing data. This scheme allows the students to work 

on their laboratory projects outside of laboratory class time. It also spreads the cost of the student 

learning kit over three courses. To support students who do not purchase a kit, our introductory 

course laboratory is equipped with HCS12 modules and project boards. In addition, the 

Department subsidizes the initial cost of the kits purchased by the students. The student learning 

kits are also used extensively in our senior capstone project course. Depending on the instructor, 

some of the introductory laboratory assignments have adopted the POGIL approach assigned 

above.  

 

It is early days in our implementation of the POGIL methods in our laboratories. Although no 

formal assessment has been done at our institution, as it has at other universities
17

, we are finding 

that after an initial resistance to the change in paradigm the students are generally preferring this 

method over the more traditional laboratory exercise course. 

 

Conclusion 

 

By applying a three-fold approach to how we design course material, hardware and software for 

curricula we can create a library of re-usable, modular components for teaching. Embracing this 

methodology in hardware and software tools can be realized through Freescale Semiconductor 

Student Learning Kits. By skillfully creating courses in this manner, we can focus on producing 

quality, tried and true, building blocks which engage students and un-embed complex systems. 

Students learn how to learn, and get a low-cost, multi-purpose tool that they can create there own 

building blocks to use throughout their life-long learning. Finally, the effective use of the 

described approach greatly increases the ability, cost and speed of incorporating new 

technologies or additional blocks. 

 

Bibliography 

 
1. Roger T. and David W. Johnson, An Overview of Cooperative Learning, originally published in J. Thousand, 

A. Villa and A. Nevin (Eds), Creativity and Collaborative Learning; Brookes Press, Baltimore, 1994., available 

on-line at http://www.co-operation.org/pages/overviewpaper.html. 

2. Kennesaw State University Educational Technology Training Center, http://edtech.kennesaw.edu/ 

3. The Cooperative Learning Center at the University of Minnesota, http://www.co-operation.org/. 

4. Active/Cooperative Learning: Best Practices in Engineering Education, Arizona State University, 

http://clte.asu.edu/active/main.htm 

5. International Association for the Study of Cooperation in Education – IASCE, http://www.iasce.net/ 

6. National Institute for Science Education, University of Wisconsin, http://www.wcer.wisc.edu/archive/cl1/ 

7. Project Galileo, Harvard University, http://galileo.harvard.edu/ 

8. Center for Teaching, Vanderbuilt University, 

http://www.vanderbilt.edu/cft/resources/teaching_resources/activities/cooperative.htm 

9. The Cooperative Learning Network, Sheridan College Institute of Technology and Advanced Learning, 

http://www-acad.sheridanc.on.ca/scls/coop/cooplrn.htm 

10. New Horizons for Learning, http://www.newhorizons.org/ 

11. Process Oriented Guided Inquiry Learning, http://www.pogil.org 

P
age 13.1014.7



12. Many others! 

13. Franklin and Marshall College, Stony Brook University, Washington College, Portland Community College, 

Berry College, Boise State University, and others. 

14. http://www.pogil.org/info/grants.php 

15. http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=06258A2580257B 

16. Application Module refers to a hardware development tool 

17. http://www.pogil.org/effectiveness/ 

P
age 13.1014.8



 

 

Appendix I 

 

Module Name Microcontroller Title 
LABS12CINTRO01 Any The Microcontroller - General Principles 

LABS12CINTRO02 Any General Principles of Software Development 

LABS12CINTRO03 
HCS12 

Introduction to CodeWarrior – Simulating the Microcontroller in 

Assembly Language 

LABS12CINTRO04 
HCS12 

Introduction to CodeWarrior - Running Assembly Programs on the 

Microcontroller 

LABS12CINTRO05 HCS12 The Assembler 

LABS12CINTRO06 HCS12 Exploring Embedded C Programming 

LABS12CINTRO07 HCS12 Introduction to CodeWarrior™ – Simulating the Microcontroller in C 

LABS12CINTRO08 HCS12 Introduction to Your Microcontroller Hardware 

LABS12CINTRO09 HCS12 The Microcontroller Instruction Set I 

LABS12CINTRO10 HCS12 The Microcontroller Instruction Set II 

LABS12CINTRO11 HCS12 The Timer – Introduction to Timer Overflows With C 

LABS12CINTRO12 HCS12 Digital Input and Output 

LABS12CINTRO13 HCS12 Digital Input and Output With C 

LABS12CINTRO14. HCS12 I/O Software Synchronization 

LABS12CINTRO15. HCS12 Introduction to Interrupts Using C 

LABS12CINTRO16 HCS12 Introduction to Interrupts 

LABS12CINTRO17 HCS12 The Timer – Introduction to Timer Overflows 

LABS12CINTRO18 HCS12 The Timer – Timer Overflow Interrupts 

LABS12CINTRO19 HCS12 The Timer – Output Compare  

LABS12CINTRO20 HCS12 The Timer – Input Capture 

LABS12CINTRO21 HCS12 The Timer – Pulse Accumulator 

LABS12CINTRO22 HCS12 Analog Input 

LABS12CINTRO23 HCS12 Sampling and Resolution for Analog Input 

LABS12CINTRO23 HCS12 Sampling and Resolution for Analog Input 

LABS12CINTRO24 HCS12 HCS12 A/D Digital I/O 

LABS12CINTRO25 HCS12 Register Listing HCS12C Family 

LABS12CINTRO26 HCS12 Analog Input in C 

LABS12CINTRO27 HCS12 The bouncing Switch in Assembly 

LABS12CINTRO28 HCS12 The Bouncing Switch in C 

LABS12CINTRO29 HCS12 Serial I/O – SCI 

LABS12CINTRO30 HCS12 Serial I/O Interfaces – RS-232-C 

LABS12CINTRO31 HCS12 Serial I/O – The Serial Peripheral Interface 

LABS12CINTRO32 HCS12 Sources of Multiple Interrupts 

LABS12CINTRO33 HCS12 Computer Operating Properly – The COP 

QEACADLABS1 Flexis Family DEMOQE128 – Getting Acquainted 

QEACADLABS4 Flexis Family Introduction to the Flexis Microcontroller Hardware 

QEACADLABS2 
MC9S08 

Introduction to CodeWarrior™ – Simulating the MC9S08 

Microcontroller in C 

QEACADLABS3 
MC9S08 

Introduction to CodeWarrior™ – Running the MC9S08 

Microcontroller in C 

QEACADLAB19 
MCF51 

Introduction to CodeWarrior™ – Running the ColdFire 

Microcontroller in C 

QEACADLABS5 MC9S08 Exploring Embedded C Programming for the MC9S08 

QEACADLABS20 MCF51 Exploring Embedded C Programming for the MCF51 

QEACADLABS6 Flexis Family Digital Input and Output With C 

QEACADLABS11 MC9S08 Introduction to MC9S08 Resets and Interrupts 

P
age 13.1014.9



QEACADLABS12 MCF51 Introduction to MCF51 Resets and Interrupts 

QEACADLABS13 Flexis Family The Timer – Introduction to Timer Overflows 

QEACADLABS14 Flexis Family The Timer – Introduction to Timer Overflow Interrupts 

QEACADLABS8 Flexis Family The Timer – Output Compare 

QEACADLABS7 Flexis Family The Timer – Input Capture 

QEACADLABS10 Flexis Family Multiple Interrupt Sources 

QEACADLABS9 Flexis Family The Bouncing Switch 

QEACADLABS15 Flexis Family Serial I/O – SCI 

QEACADLABS18 Flexis Family Serial I/O – The Serial Peripheral Interface 

QEACADLABS16 Flexis Family Analog-to-Digital Conversion 

QEACADLABS17 Flexis Family Computer Operating Properly 

 

P
age 13.1014.10



Appendix II  Sample POGIL Module 

 

Instructor's Version. A student version will not have the rightmost column or the Instructor's 

Notes. 

 

Digital Input and Output 

Overview 

A microcontroller must be connected to external devices to be able to do any useful 

work. A typical embedded application would have the microcontroller receiving 

information (inputting) from an input device, modifying or making decisions based 

on the information and the task at hand, and outputting some control action or 

information to an output device.  

Lesson Planning:  

This module starts the 

student using the I/O 

capabilities of the 

microcontroller. It does 

not use interrupts. 

Learning Objectives 

This module will help you learn about the parallel input and output capabilities of 

your microcontroller.  

 

Success Criteria 

When you have completed this module you will be able to demonstrate that you can 

retrieve information from an input device and output to an output device. 

 

Prerequisites 

You must be able to write assembly or C programs for your microcontroller and be 

able to test and run programs on a student learning kit in the laboratory. 

 

More Resources and Further Information 

Cady, Fredrick M., Software and Hardware Engineering: Assembly and C 

Programming for the Freescale HCS12 Microcontroller, 2
nd

 edition. (New York: 

Oxford University Press, Inc., 2008), Chapter 11 HCS12 Parallel I/O 

MC9S12C Family, MC9S12GC Family Reference Manual HCS12 

Microcontrollers, Freescale Semiconductor, Austin, Texas, December 2006 

(mc9s12c128v1.pdf) 

 

I/O Ports 

All microcontrollers have ports that may be used to input or output digital (binary) 

information. In some cases a port may be restricted to be either an input or output 

port exclusively. For most ports in modern microcontrollers you may choose the 

direction of information flow and program the port to operate in either mode. In 

some cases, this choice can be made for individual bits within the port, giving us the 

capability of having both input and output bits on the same port.  

When the microcontroller is reset, all bidirectional ports are initialized to be in the 

input mode. After reset your program must choose the operating mode for the ports. 

 

Explore 1.   

1. Make a table listing the ports, the port address, and whether or not the port can 

be bidirectional. (Make a table with six columns to add other information in 

later explorations.) 

Answers:  

See Instructor's Notes 

below. 

Stimulate 1.  
Answer:  

P
age 13.1014.11



1. Why do microcontroller bidirectional ports operate as input ports when the 

microcontroller is reset, even though they may be connected to output 

hardware? 

1) This is the safe 

hardware mode. If the 

port is initially an output 

and it is connected to 

input hardware, then two 

outputs are connected 

together. Depending on 

the relative source 

impedances the devices 

may be damaged. 

Bidirectional Control 

Ports with the capability of being either input or output use a control register called 

the data direction control register. Bits in this register are programmed to control 

the direction of each bit in the data port.  

 

Explore 2.   

1. Add the name and the address for the data direction register of each 

bidirectional port in the table started in Explore 1. 

2. How must the data direction control bit in the data direction register be 

initialized so that the bit is an output? An input? 

Answers: 

2) 1 = output, 0 = input. 

Explore 3.  

Your laboratory student learning kit hardware contains input devices, such as 

pushbutton, or dual in-line package (DIP) switches, and output devices such as 

LEDs. Inspect your hardware documentation and add to the table started in Explore 

1 information showing what hardware is connected to which microcontroller port. 

You may need to specify the function of individual bits within the port. 

Teach:  

This table will give the 

student a resource to be 

used in future labs. 

Stimulate 2.   

Demonstrate that you understand the principles of digital I/O by designing and 

writing an I/O program. Do this in the following sequence of steps: 

1. Write a software requirements specification that states what the program is to 

do.  

2. Write a software design that shows exactly what the program must do to 

accomplish the written specification. The design should be written as comments 

to be included as part of your program. Follow top down design principles and 

make sure you have a fully designed program before inserting instructions 

beneath each design statement. 

Example: 

; Initialize port_x, bits xyz to be input and port_y, bits pqr to be output 

; Input switch positions from port_x 

; Output data to port_y 

; etc. 

3. Insert microcontroller instructions that will accomplish the design step beneath 

each design comment. As you proceed you may find that other design 

comments and code must be included to make your program work. That is OK. 

Add anything to the design you need and then add the instructions. 

Teach:  

You may wish to guide 

the students to help them 

with a requirements 

specification. Example: 

This program is to input 

the current configuration 

of the switches and to 

display that configuration 

on the LEDs. 

P
age 13.1014.12



4. Demonstrate that your program works as designed and meets the requirements. 

Communication – Inter-Group 

Compare your solution to Stimulate 2 with another laboratory group's solution. Have 

they chosen a different way to demonstrate their understanding of parallel I/O? Can 

you understand their program by reading the design comments and the inserted 

code?  

 

Reflection on Learning 

Did your program work perfectly the first time you tried to run it on the student 

learning kit? If not, did you have to add design features you didn't think of, or did 

problems arise because you did not use the correct instructions to implement the 

design? Could you have foreseen the problems and included the fix in the design 

phase? If so, what would you have had to know to be able to do this? 

 

Communication – Reporting 

Prepare a memo report for the laboratory instructor. Include comments gained 

during your Inter-Group Communication and Reflection on Learning. Include 

listings of your and the other group's programs. How does each solution compare in 

terms of meeting the requirements specification, design comments, and use of 

instructions to implement the design. Did you learn anything from seeing the other 

group's solution? 

 

P
age 13.1014.13



 

Instructor's Notes 

Explore 1 Answers 

(Answer deleted.) 

Stimulate 2 Sample Program 

(Sample program deleted.) 

 

P
age 13.1014.14


