
Paper ID #11804

Quantifying Student Progress through Bloom’s Taxonomy Cognitive Cate-
gories in Computer Programming Courses

Dr. Candido Cabo, New York City College of Technology/City University of New York

Candido Cabo is a Professor in the Department of Computer Systems Technology at New York City Col-
lege of Technology, City University of New York (CUNY). He earned the degree of Ingeniero Superior de
Telecomunicacion from the Universidad Politecnica de Madrid (Spain) in 1982, and a Ph.D. in Biomedi-
cal Engineering from Duke University (Durham, NC) in 1992. He was a post-doctoral fellow at Upstate
Medical Center, State University of New York (Syracuse, NY), and a research scientist in the Department
of Pharmacology at the College of Physicians and Surgeons of Columbia University (New York, NY).
Since 2005, he has been a member of the doctoral faculty at the CUNY Graduate Center. His research
interests include computer science and engineering education and the use of computational models to
understand and solve problems in biology.

c©American Society for Engineering Education, 2015

P
age 26.1295.1

Quantifying Student Progress through Bloom’s Taxonomy
Cognitive Categories in Computer Programming Courses

Abstract

Computer programming courses are gateway courses with low passing grades, which may result
in student attrition and transfers out of engineering and computer science degrees. Progress in
student learning can be conceptualized by the different cognitive levels or categories described in
Bloom’s taxonomy, which, from the lowest to the highest order processes, include: knowledge,
comprehension, application, analysis, evaluation, and synthesis. The purpose of this study is to
gain insight into how students transfer their conceptual knowledge and comprehension of
computer programming concepts (knowledge and comprehension categories in Bloom’s
taxonomy) into their ability to write computer programs (application category in Bloom’s
taxonomy), using Bloom’s taxonomy as a framework.

A total of 62 students who took a first computer programming course using Java participated in
this study from spring 2013 to spring 2014. Novice computer programming students face two
barriers in their progress to become proficient programmers: a good understanding of
programming concepts (first two categories in Bloom’s taxonomy) and the ability to apply those
concepts (third category in Bloom’s taxonomy) to write viable computer programs. About 35%
of students had an acceptable performance in both conceptual understanding of programming
concepts and ability to write viable programs. About 44% of students had an inadequate
performance in both concepts and programming skills. 16% of students had an adequate
understanding of computer concepts but were unable to transfer that understanding into writing
viable computer programs. Finally, 5% of students were able to produce viable computer
programs without an adequate conceptual understanding. Of the students who had adequate
understanding of computer concepts, 69% were able to write viable computer programs. Linear
regression modeling suggests that conceptual understanding is a good predictor (r2 = 74%) of the
ability to apply that knowledge to write computer programs. Factor analysis identified two
factors grouping the interdependencies and correlations between programming concept
categories: the first factor included repetition and classes; the second factor included syntax,
assignment, methods and arrays. Multiple regression analysis shows that a subset of conceptual
assessments consisting of repetition, classes, assignment operations and Java syntax is sufficient
to predict students’ ability to write viable programs (r2 = 0.78).

In conclusion: 1) Adequate average performance in programming concepts is necessary but not
sufficient for students to write viable computer programs; 2) Adequate performance in all
individual conceptual categories, and not just adequate average performance, is necessary to be
able to write viable computer programs; 3) Given the correlations between performance in
different conceptual categories, a subset of conceptual assessments consisting of repetition,
classes, assignment operations and Java syntax is sufficient to predict students’ ability to write
viable programs; 4) Low values of r2 may indicate that concepts taught and expected practical
skills are not properly aligned. Thus regression analysis can be used to improve the alignment
between concepts and skills facilitating student progress through the different cognitive levels in
Bloom’s taxonomy.

P
age 26.1295.2

1. Introduction
Computer programming courses are gateway courses with low passing grades, which may result
in student attrition and transfers out of engineering and computer science degrees. Progress in
student learning can be conceptualized by the different cognitive levels or categories described in
Bloom’s taxonomy 1, which, from the lowest to the highest order processes, include: knowledge,
comprehension, application, analysis, evaluation, and synthesis. Bloom’s taxonomy is a
conceptualization of learning objectives that helps educators assess student progress through
different cognitive levels in a given discipline 1. Krathwohl’s 13 revision of Bloom’s taxonomy
can be applied to the learning of computer programming. It emphasizes remembering knowledge
(can the learner recall or remember information, i.e. computer programming concepts?),
comprehending that knowledge (can the learner explain programming concepts?), applying (can
the learner use the concepts in a new way to solve problems, i.e. to write viable computer
programs?), analyzing (can the learner distinguish among the different parts of a problem; can
the learner use this skill to debug and troubleshoot a computer program?), evaluating (can the
learner justify a stand, decision or solution to a given problem?), and, finally, creating (can the
learner plan and generate a novel product, point of view or solution to a problem?).

In an earlier study 3 we found that there are two barriers for student success in computer
programming courses: a good understanding of programming concepts and the ability to apply
those concepts to write viable computer programs. Factor analysis showed that student
understanding of computer programming concepts falls in two meta-conceptual groups: an
“algorithmic” (repetition, selection and classes) and a “structural” (methods, arrays and
assignment) factor. Moreover students had a better understanding of concepts that relate to the
“algorithmic” factor than of concepts that relate to the “structural” factor. Student performance in
the “structural” conceptual component was predictive of the student’s ability to solve practical
computer programming problems. To improve student performance we suggested that strong
emphasis in the “structural” components of computer programming (assignment, methods and
arrays) is necessary for a successful transition from concepts to skills in computer programming
courses. Overall, that study suggested that student knowledge and comprehension in seemly
independent computer programming concepts show hidden correlations and interdependencies,
and that some programming concepts are more important than others in predicting students’
ability to write viable computer programs than others.

The purpose of this study is to gain further insight, in a larger group of students, into how
students transfer their knowledge and comprehension of computer programming concepts
(knowledge and comprehension categories in Bloom’s taxonomy) into their ability to write
viable computer programs (application category in Bloom’s taxonomy), using Bloom’s
taxonomy as a framework. The following research questions were addressed in this study: 1) Is
adequate performance in conceptual understanding sufficient for a student to write viable
computer programs? 2) How big is the gap between conceptual understanding of programming
concepts and the ability to apply those concepts to write viable computer programs? 3) Are some
concepts more important than others in determining students’ ability to write viable programs?

2. Background and Related Work

P
age 26.1295.3

A number of challenges faced by novice programmers have been identified over the years by the
computer science education community. It has been shown that an understanding of the problem
domain to be solved by implementing a computer program should be a prerequisite for writing
the computer program itself 2, 6, 18, 29. Students’ inability to create a mental model 11 of a given
problem domain hinders their ability to develop problem-solving skills and write computer
programs.

Another difficulty encountered by novice programmers is the syntax of computer programming
languages, which is often overwhelming to students who get distracted from solving problems by
the obscurity of the statements and program organization. This difficulty was recognized early in
computer programming education, and different strategies including graphical languages and
animations of program states were developed 21. One approach to increase success in first-year
programming courses is a shift from teaching programming to teaching problem-solving skills 7,

8, 12. This approach has been successful and avoids some of the problems that hinder progress in
the development of thinking skills that are important for computer programming. However, this
approach has also been criticized because the translation of a problem solution to a computer
program is not obvious 18, 22. The challenges faced by students and educators in learning and
teaching computer programming have been summarized in a recent review 19.

Following earlier findings in computer education research we require our students to take a
problem-solving course before their first programming course. It has been shown that introducing
narrative elements in pre-programming problem-solving courses (a pedagogical approach that has
been called programming narratives) is more effective than traditional approaches using a full-
fledge programming language as a tool to help students develop computer programming problem-
solving skills 4, 14, 15. To facilitate the implementation of programming narratives we currently use
Alice (www.alice.org), a programming environment that allows learners to create interactive
animations while learning computer programming concepts. However, despite the benefit of
using programming narratives to help students develop problem-solving skills, the transition
from pre-programming problem-solving courses to courses where students should master a full-
fledge programming language remains a challenge 18, 22.

3. Methods

3.1 Study Context and Participants

Our institution is one of the most racially, ethnically, and culturally diverse institutions of higher
education in the northeast United States: 31% of our students are African American, 35.6% are
Hispanic, 20.6% are Asian or Pacific Islanders, 11.6% are Caucasian, 0.5% are Native
Americans, and 1.2% Other. The College’s fall 2014 enrollment was 17,374.

We report data from performance assessments from 62 students who took a Programming
Fundamentals course from spring 2013 to spring 2014. In this course, students use Java as the
programming language of choice to help develop their conceptual and practical programming
skills. For all students, this is the first programming course in their curriculum. However, before
this course, all students had taken a problem-solving course in which they used pseudocode,

P
age 26.1295.4

flowcharting and Alice (www.alice.org) to learn basic procedural and object-oriented
programming concepts. The goal of the problem-solving course is to teach programming
concepts without the burden of learning a full-fledge programing language. Basic Java
programming is introduced in the last three weeks of the problem-solving course to facilitate the
transition to the Programming Fundamentals course.

3.2 Exploratory Factor Analysis

Computer programming concepts assessments were grouped into seven different categories:
assignment, repetition (for/while structures), selection (if/else structures), methods, arrays,
classes and general syntax. Student performance in concepts and skills (i.e. ability to write viable
computer programs) was assessed at three different times during the semester.

Exploratory factor analysis is a data reduction technique that aims at finding hidden correlations
and interdependencies between different variables and grouping them in a number of overarching
factors or components. Estimating the number of factors is tricky, and therefore to estimate the
number of factors in the factor analysis we used different criteria. We used SPSS to extract the
number of factors using the Kaiser-Guttman 9 (number of eigenvalues greater than one) and
Cattell’s scree test 5. We also used FACTOR 16 to estimate the number of factors using Horn’s
parallel analysis 10. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.674, above
the suggested minimum of 0.5. Interpretation of the extracted factors can be made easier by
orthogonal factor rotation. We used the varimax rotation method with Kaiser normalization.

3.3 Multiple Regression

To analyze the predictive value of student performance in computer programming concepts (the
predictors or independent variables) on their ability to write viable computer programs (the
dependent variable or the variable we want to predict) we performed multiple regression analysis
using SPSS. Multiple regression analysis provides a model quantifying the relative contribution
of each of the predictors towards explaining the total variance of the dependent variable. An
independent variable coefficient was considered statistically significant and therefore
contributing significantly to the prediction if p < 0.05.

4. Results

4.1 Student Performance in Computer Programming Concepts

Figure 1 shows average student performance in the seven types of programming concept
assessments which were aimed at estimating student cognitive level in the first two categories of
Bloom’s taxonomy: knowledge and comprehension. Average performance ranges from about 8.2
in syntax related assessments to about 5.5 in assessments testing the understanding of the
assignment operator. In all categories except for the use of repetition loops (for and while) and
syntax, average performance is below 7, a level that could be used as marking the level of
adequate performance (equivalent to a passing grade or C).

P
age 26.1295.5

Figure 1
assessme
level of a

Figure 2
grade, 70

. Average st
ents (first tw
acceptable pe

2. Percent of
0% or C) in t

tudent perfor
o categories
erformance.

students per
the seven dif

rmance (0-1
 in Bloom’s

rforming ade
fferent progr

0) in seven t
taxonomy).

equately (>=
ramming con

types of prog
 n = 62. Das

= 7 which is
nceptual cate

gramming co
shed horizon

equivalent to
egories.

oncept

ntal line mark

o a passing

ks a

P
age 26.1295.6

Average
performa
obtained
illustrate
most con

4.2 Explo

To furthe
and the h
different

We group
different
analysis i
between
orthogon
categorie

Figure 3
factors. T
0.60). Th
(correlati
factor 2.

values can b
ance of other
>= 7 in the
s why comp

nceptual cate

oratory Facto

er understand
hidden correl

categories, w

ped student
categories:
identified tw
programmin

nally rotated
es with a giv

3. Factor plo
The categori
he categorie
ion > 0.60).

be distorted b
rs. Figure 2 s
assessments
uter program

egories less t

or Analysis

d the nature
lations and i
we performe

performance
assignment,

wo factors or
ng concept c
space, which
en factor or

ot illustratin
ies repetition

es methods,
The correla

by very good
shows the pe
s) in the diffe
mming cours
than 50% of

of students’
nterdepende
ed explorato

e in compute
repetition, s

r component
ategories. Fi
h illustrate t
component.

ng the correl
n and classe
arrays, synt

ation of the

d performan
ercent of stu
erent program
ses are gatew
students per

 understandi
encies betwe
ry factor ana

er programm
selection, me
s grouping th
igure 3 show
he percent o

lations of th
es are mostly
tax, assignm
selection ca

nce of some s
udents who p
mming conc

way courses
rformed at an

ing of comp
een programm
alysis.

ming concept
ethods, array
the interdepe
ws a plot of t
of correlation

he seven con
y correlated

ment are mo
ategory is <

students and
performed w
cept assessm
with low pa

an adequate l

uter program
ming concep

ts assessmen
ys, classes an
endencies an
the factor loa
n of the diffe

nceptual cat
d with factor
stly correlat

< 0.60 with e

d/or very bad
ell (i.e. who

ments. The fig
assing grades
level.

mming conce
pts in those s

nts in seven
nd syntax. F

nd correlation
adings in the
erent concep

egories with
r 2 (correlati
ted with fac
either factor

d

gure
s: in

epts,
seven

actor
ns
e
ptual

h two
ion >

ctor 1
r 1 or P

age 26.1295.7

Factor lo
(compon
classes h
< 0.4). O
correlatio
strongly
different
or poorly

4.3 Relat

Students
ability to
Performa
structure
levels thr

Figure 4
lines mar
(70%). T

oadings are th
nents), and th
ad a higher c

On the other
on with facto
correlated w
programmin

y in groups o

tionship Betw

perform bet
o apply those
ance in conc
(knowledge

ree and four

4. Average st
rk an accepta

The solid line

he correlatio
herefore their
correlation w
hand, the ca

or 1 (> .60) t
with either fa
ng concept c
of concept ca

ween Perform

tter in concep
e concepts to
epts can be m

e and compre
(application

tudent perfor
able perform
e is the regre

ons between
r value is be
with factor 2
ategories met
than with fac

actor 1 or 2. T
categories is
ategories.

mance in Pr

ptual assessm
o write viable
mapped to th
ehension lev
n and analysi

rmance in pr
mance in com
ession line (S

the different
etween +1 an
2 (correlation
thods, arrays
ctor 2 (< 0.4
These result
not totally in

ogramming

ments (6.8±
e computer p
he first two l
vel), and perf
is level).

rogramming
mputer progr
Skills = 1.26

t categories
nd -1. The ca
n > 0.60) tha
s, syntax and

40). The cate
ts suggest tha
ndependent,

Concepts an

1.8) than in
programs (6
levels of Blo
formance in

g concepts an
ramming con
65 *Concepts

and the extr
ategories rep
an with facto
d assignmen

egory selectio
at student pe
, and student

nd Skills

assessments
.2±2.6; p < 0
oom’s taxon
 skills can b

nd skills (n =
ncepts and sk
s – 2.64, wit

racted factor
petition and
or 1 (correlat
nt had a high
on was not
erformance i
ts tend to do

s testing thei
0.05).
omy learnin
e mapped to

= 62). Dashe
kills assessm
th r2 = 0.74).

s

tion
her

in the
o well

r

ng
o

ed
ments
.

P
age 26.1295.8

Figure 4 shows the individual performance of students in concepts and skills assessments (range
0-10). As before, we considered 70% (equivalent to a C grade) an acceptable (“passing”)
performance in the assessments (vertical and horizontal dashed lines in Figure 4). About 35% of
students had an acceptable performance in both conceptual understanding of programming
concepts and ability to write viable programs. About 44% of students had an inadequate
performance in both concepts and programming skills. 16% of students had an adequate
understanding of computer concepts but were unable to transfer that understanding into writing
viable computer programs. Finally, 5% of students were able to produce viable computer
programs without an adequate conceptual understanding. Of the students who had adequate
understanding of computer concepts, 69% were able to write viable computer programs.

The results in Figure 4 show that novice computer programming students face two barriers in
their progress to become proficient programmers: a good understanding of programming
concepts (first two categories in Bloom’s taxonomy) and the ability to apply those concepts
(third and fourth category in Bloom’s taxonomy) to write viable computer programs.

Our analysis of Figure 4 relies in a somehow arbitrary threshold that marks the difference
between satisfactory and poor performance in concepts and skills (70%, dashed lines in Figure
4). However, an analysis of the regression line (which is not dependent in arbitrary thresholds)
leads us to similar conclusions. Linear regression (solid line in Figure 4, r2 = 0.74) indicates that
performance in programming concepts is highly correlated with performance in practical
programming skills and that conceptual understanding is a good predictor of the ability to apply
that knowledge to write computer programs.

Figure 4 shows that performance in concepts correlates with performance in skills. Only ~5% of
students had an acceptable performance in skills but poor performance in concepts. This suggests
that without a good grounding in the understanding of the concepts, it is very unlikely to develop
acceptable practical programming skills. To further understand the role of understanding
programming concepts in the ability to write viable computer programs, we compared
performance in the different conceptual assessments in three different groups of students (Figure
4): students with adequate performance in concepts and skills (CS), students with adequate
performance in concepts but not in skills (CNS), and students with poor performance in both
concepts and skills (NCNS). The results are shown in Figure 5.

Comparison between the CS and CNS groups (Figure 5, white and light gray bars respectively)
shows that their performance in the classes, syntax, methods and arrays categories is similar (<
10% difference); however, performance differences in selection, repetition and assignment are
much larger (~15-20%). In fact average performance for the CNS group for categories selection,
repetition and assignments is below or barely adequate (<= 7). Average performance for the CS
group is well-above adequate (>= 8) for each individual conceptual category. This result seems
to suggest that a minimum level of understanding of each individual concept (not just their
average) is important to develop the ability to write viable computer programs. This is somehow
expected because, in general, writing computer programs requires knowledge and
comprehension of several programming concepts.

P
age 26.1295.9

Figure 5
for: stude
with an a
poor perf

Multiple
of the av
Student p
significan
selection
Therefor
programm

5. Discu

We have
or catego
first two
programm
students’
reach an

5. Average pe
ents with acc
acceptable pe
formance in

regression a
erage perfor
performance
ntly to the pr

n, methods or
e, the results
ming skills t

ussion

analyzed pr
ories describ
levels (know
ming concep
 ability to w
adequate lev

erformance (
ceptable perf
erformance i
both concep

analysis indi
rmance in pr
e in repetition
rediction of
r arrays asse
s show that p
than others.

rogress in stu
ed in Bloom
wledge and c
pts, and the t

write viable c
vel of concep

(range 0-10)
formance in
in concepts b
pts and skills

cates that pe
ractical asses
n, classes, Ja
performance

essments did
performance

udent compu
m’s taxonomy
comprehensi
third and fou
computer pro
ptual knowle

) in compute
both concep

but not in sk
s (NCNS, da

erformance i
ssments (F(7
ava syntax an
e in practica
not contribu

es in some co

uter program
y 1,13. In the
ion) can be q
urth levels (a
ograms. We
edge and com

er programm
pts and skills
kills (CNS, li
ark gray bar)

in programm
7, 95) = 27.4
nd assignme

al skills (p <
ute significa
oncepts are b

mming learni
context of c

quantified fr
application a
found that 4
mprehension

ming concept
s (CS, white
ight gray bar
).

ming concept
48, p < 0.05 a
ent assessme
0.05). Perfo

antly to the p
better predic

ing using the
computer pro
rom perform
and analysis)
44% of stude
n of compute

ts assessmen
e bar); studen
r); students w

ts are predict
and r2 = 0.78
ents contribu
ormance in
prediction.
ctors of

e cognitive le
ogramming,

mance in com
) from the
ents are unab
er programm

nts
nts
with

tive
8).
uted

evels
the

mputer

ble to
ming

P
age 26.1295.10

concepts, and, as a consequence, they cannot progress to write viable computer programs. 35%
of students showed adequate performance in conceptual knowledge and were able to write viable
computer programs. Multiple regression analysis shows that performance in conceptual
knowledge is a good predictor of students’ skills in practical assessments (78%). Therefore,
adequate performance in programming concepts is necessary for students to write viable
computer programs.

However, adequate average performance in programming concepts may not sufficient to write
viable programs. 16% of the students cannot transfer conceptual knowledge and comprehension
into viable computer programs (the application and analysis levels in Bloom’s taxonomy),
suggesting that other factors may also contribute to their ability to write computer programs. For
example the ability to understand a problem, by being able to translate a word problem into an
algorithm, is likely to contribute to students’ performance in writing computer programs. Others
have shown that an understanding of the problem domain to be solved is a prerequisite for
writing a viable computer program 2, 6, 18, 29. Even though the average of performance in
programming concepts of students who cannot transfer to practical skills is adequate (Figure 4),
in some individual categories their performance is below proficiency (selection and assignment,
light gray bar in figure 5). This suggests that to be able to write computer programs, students will
have to be proficient in several if not all conceptual categories.

Figure 4 shows that ~5% of the students (n = 3) are able to produce viable computer programs
without an adequate understanding of concepts. A closer examination of Figure 4 indicates that
the concept vs. skills performance of students in this group is close to the border with other
performance regions (i.e. it is close to the dashed lines in Figure 4). For example, the
performance of the two students with the lower performance in concepts (5.31 and 5.75) was
marginally above adequacy in skills (between 7.1 and 7.3), which means that those two students
could have been in the group of students with poor performance in concepts and skills. The third
student, who had a higher performance in skills than the other two (7.6), performed just below
adequacy in conceptual assessments (6.9), which means that this student could have been in the
group of students with adequate performance in concepts and skills. So, it is possible that
different assessments could have classified those students in different performance groups. An
earlier study4 on student performance on problem-solving also showed that 5-7% of students can
have an adequate performance in problem-solving skills without an adequate performance in
problem-solving concepts. Even though the small number of students in this group prevents us
from extracting general conclusions, we have observed that some students lack metacognition
skills and, as a consequence, they are not aware of their own knowledge. For example, some
students may not be able to produce a valid answer to the question, “How would you declare a
variable that could contain a number in Java?,” but they may be able to declare and use a
numeric variable in a viable Java computer program. The role of metacognition skills in
students’ understanding of programming concepts and in their ability to write viable computer
programs deserves further study.

In an earlier study 3, we identified two factors grouping the interdependencies and correlations in
student understanding of programming concept categories. The first component correlated with
the repetition and selection categories, and could be referred to as the “algorithmic” component.
The second component correlated with the methods, arrays and assignment categories, and could

P
age 26.1295.11

be referred as the “structural” component. The results shown here for a larger student population
are consistent with those earlier results. Those two factors may correspond to problem-solving
skills and programming skills, which according to others 7, 8, 12 correspond to two different sets of
cognitive skills.

Our students take a pre-programming course before they take their first programming course (see
Methods/Participants) to develop problem-solving skills. Still, to be able to write viable
computer programs, students need both problem-solving and programming skills. Despite the
benefits of an approach teaching problem-solving skills first, the transition from pre-
programming problem-solving courses to courses in which students should master a full-fledge
programming language remains a challenge 18, 22. This is reflected in the number of students
(44%) who did not have an acceptable performance in either concepts or skills (Figures 4 and 5).
Even though those students had passed a previous problem solving course, they find the
transition to a learning environment that uses a full-fledge programming language like Java
difficult.

According to Mayer 17, in addition to the cognitive and metacognitive aspects of problem
solving, other aspects like motivation and engagement are also important determinants of student
success in problem solving. Therefore, it is likely that pedagogical approaches that motivate and
engage students will also facilitate their transition from concepts to practical skills in
programming courses, with the concomitant effect on student success.

6. Conclusions

In conclusion: 1) Average student performance in programming concepts is a good predictor of
their average ability to apply that knowledge to write computer programs (r2 = 0.74) indicating
that adequate performance (70%) in programming concepts is necessary for students to write
viable computer programs; 2) Some students (16%) cannot transfer conceptual knowledge and
understanding into viable computer programs indicating that average adequate performance
(70%) in programming concepts is not sufficient for students to write viable computer programs;
3) Adequate performance in all individual conceptual categories, and not just adequate average
performance, is necessary to be able to write viable computer programs; 4) Given the
correlations between performance in different conceptual categories, a subset of conceptual
assessments consisting of repetition, classes, assignment operations and Java syntax is sufficient
to predict students’ ability to write viable programs (r2 = 0.78); 5) Low values of r2 may indicate
that concepts taught and expected practical skills are not properly aligned. Thus regression
analysis can be used to improve the alignment between concepts and skills facilitating student
progress through the different cognitive levels in Bloom’s taxonomy.

References

[1] Bloom, Benjamin S., Max B. Englehart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl. (1956)

Taxonomy of Educational Objectives, the Classification of Educational Goals, Handbook I: Cognitive Domain,
edited by Benjamin S. Bloom. New York: McKay.

P
age 26.1295.12

[2] Brooks, R.E. (1997). Towards a theory of the cognitive processes in computer programming. International
Journal of Man-Machine Studies 9, 737–751. doi:10.1016/S0020-7373(77)80039-4

[3] Cabo, C. (2014). Transition from concepts to practical skills in computer programming courses: factor and
cluster analysis. In Proceedings of the 121st ASEE Annual Conference. Washington, DC: ASEE.

[4] Cabo, C., and Lansiquot, R. D. (2014). Synergies between writing stories and writing programs in problem-
solving courses. In Proceedings of the 2014 IEEE Frontiers in Education Conference (pp. 888-896). New York:
IEEE.

[5] Cattell, R.B. (1966). The scree test for the number of factors. Multivariate Behavioral Research 1, 245-276.
[6] Davies, S.P. (1993). Models and theories of programming strategy. International Journal of Man-Machine

Studies 39(2), 237–267. doi:10.1006/imms.1993.1061
[7] Deek, F. P., Kimmel, H., and McHugh, J. A. (1998). Pedagogical changes in the delivery of the first-course in

computer science: Problem solving, then programming. Journal of Engineering Education 87(3), 313–320.
[8] Fincher, S. (1999). What are we doing when we teach programming? In Proceedings of IEEE Frontiers in

Education Conference, (pp. 12A4/1-12A4/5). IEEE Press.
[9] Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika 19, 149-161.
[10] Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika 30, 179-185.
[11] Johnson-Laird, P. N. (1983). Mental models. Cambridge, UK: Cambridge University Press.
[12] Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J., & Crawford, K. (2000). Problem-based

learning for foundation computer science courses. Computer Science Education 10(2), 109–128.
doi:10.1076/0899-3408(200008)10:2;1-C;FT109

[13] Krathwohl, David R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory into Practice 41, no. 4:
212-18.

[14] Lansiquot, R. D., and Cabo, C. (2010). The narrative of computing. In Proceedings of World Conference on
Educational Multimedia, Hypermedia and Telecommunications (Toronto, Canada, June 28-July 01, 2010). ED-
MEDIA 2010. AACE, Chesapeake, VA, 3655-3660.

[15] Lansiquot, R. D., and Cabo, C. (2011). Alice’s Adventures in Programming Narratives. In C. Wankel and R.
Hinrichs (Eds.), Cutting-edge Technologies in Higher Education, Vol. 4: Transforming Virtual Learning. Emerald,
Bingley, UK, 311-331. DOI: http://dx.doi.org/10.1108/S2044-9968(2011)0000004016.

[16] Lorenzo-Seva, U. and Ferrando, P.J. (2006). FACTOR: A computer program to fit the exploratory factor
analysis model. Behavior Research Methods 38, 88-91.

[17] Mayer, R.E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional
Science 26, 49-63.

[18] Rist, R. S. (1995). Program structure and design. Cognitive Science 19, 507–562.
doi:10.1207/s15516709cog1904_3

[19] Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching programming. Computer Science
Education 13, 2, 137-172.

[20] Spohrer, J. C., Soloway, E., and Pope, E. (1989). A goal/plan analysis of buggy Pascal programs. In Soloway,
E., & Spohrer, J. C. (Eds.), Studying the Novice Programmer (pp. 355–399). Hillsdale, NJ: Lawrence Erlbaum.
doi:10.1207/s15327051hci0102_4

[21] Soloway, E., and Spohrer, J. C. (Eds.). (1989). Studying the novice programmer. Hillsdale, NJ: Lawrence
Erlbaum.

[22] Winslow, L. E. (1996). Programming pedagogy–A psychological overview. SIGCSE Bulletin 28(3), 17–22.
doi:10.1145/234867.234872

P
age 26.1295.13

