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Quantifying Student Progress through Bloom’s Taxonomy 
Cognitive Categories in Computer Programming Courses 

 
Abstract 
 
Computer programming courses are gateway courses with low passing grades, which may result 
in student attrition and transfers out of engineering and computer science degrees. Progress in 
student learning can be conceptualized by the different cognitive levels or categories described in 
Bloom’s taxonomy, which, from the lowest to the highest order processes, include: knowledge, 
comprehension, application, analysis, evaluation, and synthesis. The purpose of this study is to 
gain insight into how students transfer their conceptual knowledge and comprehension of 
computer programming concepts (knowledge and comprehension categories in Bloom’s 
taxonomy) into their ability to write computer programs (application category in Bloom’s 
taxonomy), using Bloom’s taxonomy as a framework. 
 
A total of 62 students who took a first computer programming course using Java participated in 
this study from spring 2013 to spring 2014. Novice computer programming students face two 
barriers in their progress to become proficient programmers: a good understanding of 
programming concepts (first two categories in Bloom’s taxonomy) and the ability to apply those 
concepts (third category in Bloom’s taxonomy) to write viable computer programs. About 35% 
of students had an acceptable performance in both conceptual understanding of programming 
concepts and ability to write viable programs. About 44% of students had an inadequate 
performance in both concepts and programming skills. 16% of students had an adequate 
understanding of computer concepts but were unable to transfer that understanding into writing 
viable computer programs. Finally, 5% of students were able to produce viable computer 
programs without an adequate conceptual understanding. Of the students who had adequate 
understanding of computer concepts, 69% were able to write viable computer programs. Linear 
regression modeling suggests that conceptual understanding is a good predictor (r2 = 74%) of the 
ability to apply that knowledge to write computer programs. Factor analysis identified two 
factors grouping the interdependencies and correlations between programming concept 
categories: the first factor included repetition and classes; the second factor included syntax, 
assignment, methods and arrays. Multiple regression analysis shows that a subset of conceptual 
assessments consisting of repetition, classes, assignment operations and Java syntax is sufficient 
to predict students’ ability to write viable programs (r2 = 0.78).  
 
In conclusion: 1) Adequate average performance in programming concepts is necessary but not 
sufficient for students to write viable computer programs; 2) Adequate performance in all 
individual conceptual categories, and not just adequate average performance, is necessary to be 
able to write viable computer programs; 3) Given the correlations between performance in 
different conceptual categories, a subset of conceptual assessments consisting of repetition, 
classes, assignment operations and Java syntax is sufficient to predict students’ ability to write 
viable programs; 4) Low values of r2 may indicate that concepts taught and expected practical 
skills are not properly aligned. Thus regression analysis can be used to improve the alignment 
between concepts and skills facilitating student progress through the different cognitive levels in 
Bloom’s taxonomy.  
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1. Introduction 
Computer programming courses are gateway courses with low passing grades, which may result 
in student attrition and transfers out of engineering and computer science degrees. Progress in 
student learning can be conceptualized by the different cognitive levels or categories described in 
Bloom’s taxonomy 1, which, from the lowest to the highest order processes, include: knowledge, 
comprehension, application, analysis, evaluation, and synthesis.  Bloom’s taxonomy is a 
conceptualization of learning objectives that helps educators assess student progress through 
different cognitive levels in a given discipline 1. Krathwohl’s 13 revision of Bloom’s taxonomy 
can be applied to the learning of computer programming. It emphasizes remembering knowledge 
(can the learner recall or remember information, i.e. computer programming concepts?), 
comprehending that knowledge (can the learner explain programming concepts?), applying (can 
the learner use the concepts in a new way to solve problems, i.e. to write viable computer 
programs?), analyzing (can the learner distinguish among the different parts of a problem; can 
the learner use this skill to debug and troubleshoot a computer program?), evaluating (can the 
learner justify a stand, decision or solution to a given problem?), and, finally, creating (can the 
learner plan and generate a novel product, point of view or solution to a problem?). 

In an earlier study 3 we found that there are two barriers for student success in computer 
programming courses: a good understanding of programming concepts and the ability to apply 
those concepts to write viable computer programs. Factor analysis showed that student 
understanding of computer programming concepts falls in two meta-conceptual groups: an 
“algorithmic” (repetition, selection and classes) and a “structural” (methods, arrays and 
assignment) factor. Moreover students had a better understanding of concepts that relate to the 
“algorithmic” factor than of concepts that relate to the “structural” factor. Student performance in 
the “structural” conceptual component was predictive of the student’s ability to solve practical 
computer programming problems. To improve student performance we suggested that strong 
emphasis in the “structural” components of computer programming (assignment, methods and 
arrays) is necessary for a successful transition from concepts to skills in computer programming 
courses. Overall, that study suggested that student knowledge and comprehension in seemly 
independent computer programming concepts show hidden correlations and interdependencies, 
and that some programming concepts are more important than others in predicting students’ 
ability to write viable computer programs than others. 

The purpose of this study is to gain further insight, in a larger group of students, into how 
students transfer their knowledge and comprehension of computer programming concepts 
(knowledge and comprehension categories in Bloom’s taxonomy) into their ability to write 
viable computer programs (application category in Bloom’s taxonomy), using Bloom’s 
taxonomy as a framework. The following research questions were addressed in this study: 1) Is 
adequate performance in conceptual understanding sufficient for a student to write viable 
computer programs? 2) How big is the gap between conceptual understanding of programming 
concepts and the ability to apply those concepts to write viable computer programs? 3) Are some 
concepts more important than others in determining students’ ability to write viable programs? 
  
 
2. Background and Related Work 
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A number of challenges faced by novice programmers have been identified over the years by the 
computer science education community. It has been shown that an understanding of the problem 
domain to be solved by implementing a computer program should be a prerequisite for writing 
the computer program itself 2, 6, 18, 29. Students’ inability to create a mental model 11 of a given 
problem domain hinders their ability to develop problem-solving skills and write computer 
programs.  
 
Another difficulty encountered by novice programmers is the syntax of computer programming 
languages, which is often overwhelming to students who get distracted from solving problems by 
the obscurity of the statements and program organization. This difficulty was recognized early in 
computer programming education, and different strategies including graphical languages and 
animations of program states were developed 21. One approach to increase success in first-year 
programming courses is a shift from teaching programming to teaching problem-solving skills 7, 

8, 12. This approach has been successful and avoids some of the problems that hinder progress in 
the development of thinking skills that are important for computer programming. However, this 
approach has also been criticized because the translation of a problem solution to a computer 
program is not obvious 18, 22. The challenges faced by students and educators in learning and 
teaching computer programming have been summarized in a recent review 19. 
 
Following earlier findings in computer education research we require our students to take a 
problem-solving course before their first programming course. It has been shown that introducing 
narrative elements in pre-programming problem-solving courses (a pedagogical approach that has 
been called programming narratives) is more effective than traditional approaches using a full-
fledge programming language as a tool to help students develop computer programming problem-
solving skills 4, 14, 15. To facilitate the implementation of programming narratives we currently use 
Alice (www.alice.org), a programming environment that allows learners to create interactive 
animations while learning computer programming concepts. However, despite the benefit of 
using programming narratives to help students develop problem-solving skills, the transition 
from pre-programming problem-solving courses to courses where students should master a full-
fledge programming language remains a challenge 18, 22.  
 

 
3. Methods 

 
3.1 Study Context and Participants 
 
Our institution is one of the most racially, ethnically, and culturally diverse institutions of higher 
education in the northeast United States: 31% of our students are African American, 35.6% are 
Hispanic, 20.6% are Asian or Pacific Islanders, 11.6% are Caucasian, 0.5% are Native 
Americans, and 1.2% Other. The College’s fall 2014 enrollment was 17,374.  
 
We report data from performance assessments from 62 students who took a Programming 
Fundamentals course from spring 2013 to spring 2014. In this course, students use Java as the 
programming language of choice to help develop their conceptual and practical programming 
skills. For all students, this is the first programming course in their curriculum. However, before 
this course, all students had taken a problem-solving course in which they used pseudocode, 
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flowcharting and Alice (www.alice.org) to learn basic procedural and object-oriented 
programming concepts. The goal of the problem-solving course is to teach programming 
concepts without the burden of learning a full-fledge programing language. Basic Java 
programming is introduced in the last three weeks of the problem-solving course to facilitate the 
transition to the Programming Fundamentals course.  
 

3.2 Exploratory Factor Analysis 
 
Computer programming concepts assessments were grouped into seven different categories: 
assignment, repetition (for/while structures), selection (if/else structures), methods, arrays, 
classes and general syntax. Student performance in concepts and skills (i.e. ability to write viable 
computer programs) was assessed at three different times during the semester.  

Exploratory factor analysis is a data reduction technique that aims at finding hidden correlations 
and interdependencies between different variables and grouping them in a number of overarching 
factors or components. Estimating the number of factors is tricky, and therefore to estimate the 
number of factors in the factor analysis we used different criteria. We used SPSS to extract the 
number of factors using the Kaiser-Guttman 9 (number of eigenvalues greater than one) and 
Cattell’s scree test 5. We also used FACTOR 16 to estimate the number of factors using Horn’s 
parallel analysis 10. The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.674, above 
the suggested minimum of 0.5. Interpretation of the extracted factors can be made easier by 
orthogonal factor rotation. We used the varimax rotation method with Kaiser normalization. 
 

3.3 Multiple Regression 
 
To analyze the predictive value of student performance in computer programming concepts (the 
predictors or independent variables) on their ability to write viable computer programs (the 
dependent variable or the variable we want to predict) we performed multiple regression analysis 
using SPSS. Multiple regression analysis provides a model quantifying the relative contribution 
of each of the predictors towards explaining the total variance of the dependent variable. An 
independent variable coefficient was considered statistically significant and therefore 
contributing significantly to the prediction if p < 0.05.   

 
4. Results 

 
4.1 Student Performance in Computer Programming Concepts 

Figure 1 shows average student performance in the seven types of programming concept 
assessments which were aimed at estimating student cognitive level in the first two categories of 
Bloom’s taxonomy: knowledge and comprehension. Average performance ranges from about 8.2 
in syntax related assessments to about 5.5 in assessments testing the understanding of the 
assignment operator. In all categories except for the use of repetition loops (for and while) and 
syntax, average performance is below 7, a level that could be used as marking the level of 
adequate performance (equivalent to a passing grade or C).   
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Figure 4 shows the individual performance of students in concepts and skills assessments (range 
0-10). As before, we considered 70% (equivalent to a C grade) an acceptable (“passing”) 
performance in the assessments (vertical and horizontal dashed lines in Figure 4). About 35% of 
students had an acceptable performance in both conceptual understanding of programming 
concepts and ability to write viable programs. About 44% of students had an inadequate 
performance in both concepts and programming skills. 16% of students had an adequate 
understanding of computer concepts but were unable to transfer that understanding into writing 
viable computer programs. Finally, 5% of students were able to produce viable computer 
programs without an adequate conceptual understanding. Of the students who had adequate 
understanding of computer concepts, 69% were able to write viable computer programs. 
 
The results in Figure 4 show that novice computer programming students face two barriers in 
their progress to become proficient programmers: a good understanding of programming 
concepts (first two categories in Bloom’s taxonomy) and the ability to apply those concepts 
(third and fourth category in Bloom’s taxonomy) to write viable computer programs. 
 
Our analysis of Figure 4 relies in a somehow arbitrary threshold that marks the difference 
between satisfactory and poor performance in concepts and skills (70%, dashed lines in Figure 
4).  However, an analysis of the regression line (which is not dependent in arbitrary thresholds) 
leads us to similar conclusions. Linear regression (solid line in Figure 4, r2 = 0.74) indicates that 
performance in programming concepts is highly correlated with performance in practical 
programming skills and that conceptual understanding is a good predictor of the ability to apply 
that knowledge to write computer programs.  
 
Figure 4 shows that performance in concepts correlates with performance in skills. Only ~5% of 
students had an acceptable performance in skills but poor performance in concepts. This suggests 
that without a good grounding in the understanding of the concepts, it is very unlikely to develop 
acceptable practical programming skills. To further understand the role of understanding 
programming concepts in the ability to write viable computer programs, we compared 
performance in the different conceptual assessments in three different groups of students (Figure 
4): students with adequate performance in concepts and skills (CS), students with adequate 
performance in concepts but not in skills (CNS), and students with poor performance in both 
concepts and skills (NCNS). The results are shown in Figure 5. 
 
Comparison between the CS and CNS groups (Figure 5, white and light gray bars respectively) 
shows that their performance in the classes, syntax, methods and arrays categories is similar (< 
10% difference); however, performance differences in selection, repetition and assignment are 
much larger (~15-20%). In fact average performance for the CNS group for categories selection, 
repetition and assignments is below or barely adequate (<= 7). Average performance for the CS 
group is well-above adequate (>= 8) for each individual conceptual category. This result seems 
to suggest that a minimum level of understanding of each individual concept (not just their 
average) is important to develop the ability to write viable computer programs. This is somehow 
expected because, in general, writing computer programs requires knowledge and 
comprehension of several programming concepts.  
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concepts, and, as a consequence, they cannot progress to write viable computer programs. 35% 
of students showed adequate performance in conceptual knowledge and were able to write viable 
computer programs. Multiple regression analysis shows that performance in conceptual 
knowledge is a good predictor of students’ skills in practical assessments (78%). Therefore, 
adequate performance in programming concepts is necessary for students to write viable 
computer programs.  
 
However, adequate average performance in programming concepts may not sufficient to write 
viable programs. 16% of the students cannot transfer conceptual knowledge and comprehension 
into viable computer programs (the application and analysis levels in Bloom’s taxonomy), 
suggesting that other factors may also contribute to their ability to write computer programs. For 
example the ability to understand a problem, by being able to translate a word problem into an 
algorithm, is likely to contribute to students’ performance in writing computer programs. Others 
have shown that an understanding of the problem domain to be solved is a prerequisite for 
writing a viable computer program 2, 6, 18, 29. Even though the average of performance in 
programming concepts of students who cannot transfer to practical skills is adequate (Figure 4), 
in some individual categories their performance is below proficiency (selection and assignment, 
light gray bar in figure 5). This suggests that to be able to write computer programs, students will 
have to be proficient in several if not all conceptual categories. 
 
Figure 4 shows that ~5% of the students (n = 3) are able to produce viable computer programs 
without an adequate understanding of concepts. A closer examination of Figure 4 indicates that 
the concept vs. skills performance of students in this group is close to the border with other 
performance regions (i.e. it is close to the dashed lines in Figure 4). For example, the 
performance of the two students with the lower performance in concepts (5.31 and 5.75) was 
marginally above adequacy in skills (between 7.1 and 7.3), which means that those two students 
could have been in the group of students with poor performance in concepts and skills. The third 
student, who had a higher performance in skills than the other two (7.6), performed just below 
adequacy in conceptual assessments (6.9), which means that this student could have been in the 
group of students with adequate performance in concepts and skills. So, it is possible that 
different assessments could have classified those students in different performance groups. An 
earlier study4 on student performance on problem-solving also showed that 5-7% of students can 
have an adequate performance in problem-solving skills without an adequate performance in 
problem-solving concepts. Even though the small number of students in this group prevents us 
from extracting general conclusions, we have observed that some students lack metacognition 
skills and, as a consequence, they are not aware of their own knowledge. For example, some 
students may not be able to produce a valid answer to the question, “How would you declare a 
variable that could contain a number in Java?,” but they may be able to declare and use a 
numeric variable in a viable Java computer program. The role of metacognition skills in 
students’ understanding of programming concepts and in their ability to write viable computer 
programs deserves further study.      
 
In an earlier study 3, we identified two factors grouping the interdependencies and correlations in 
student understanding of programming concept categories. The first component correlated with 
the repetition and selection categories, and could be referred to as the “algorithmic” component. 
The second component correlated with the methods, arrays and assignment categories, and could 
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be referred as the “structural” component. The results shown here for a larger student population 
are consistent with those earlier results. Those two factors may correspond to problem-solving 
skills and programming skills, which according to others 7, 8, 12 correspond to two different sets of 
cognitive skills.  
 
Our students take a pre-programming course before they take their first programming course (see 
Methods/Participants) to develop problem-solving skills. Still, to be able to write viable 
computer programs, students need both problem-solving and programming skills. Despite the 
benefits of an approach teaching problem-solving skills first, the transition from pre-
programming problem-solving courses to courses in which students should master a full-fledge 
programming language remains a challenge 18, 22. This is reflected in the number of students 
(44%) who did not have an acceptable performance in either concepts or skills (Figures 4 and 5). 
Even though those students had passed a previous problem solving course, they find the 
transition to a learning environment that uses a full-fledge programming language like Java 
difficult. 
 
According to Mayer 17, in addition to the cognitive and metacognitive aspects of problem 
solving, other aspects like motivation and engagement are also important determinants of student 
success in problem solving. Therefore, it is likely that pedagogical approaches that motivate and 
engage students will also facilitate their transition from concepts to practical skills in 
programming courses, with the concomitant effect on student success. 

 
 
6. Conclusions 
 
In conclusion: 1) Average student performance in programming concepts is a good predictor of 
their average ability to apply that knowledge to write computer programs (r2 = 0.74) indicating 
that  adequate performance (70%) in programming concepts is necessary for students to write 
viable computer programs; 2) Some students (16%) cannot transfer conceptual knowledge and 
understanding into viable computer programs indicating that average adequate performance 
(70%) in programming concepts is not sufficient for students to write viable computer programs; 
3) Adequate performance in all individual conceptual categories, and not just adequate average 
performance, is necessary to be able to write viable computer programs; 4) Given the 
correlations between performance in different conceptual categories, a subset of conceptual 
assessments consisting of repetition, classes, assignment operations and Java syntax is sufficient 
to predict students’ ability to write viable programs (r2 = 0.78); 5) Low values of r2 may indicate 
that concepts taught and expected practical skills are not properly aligned. Thus regression 
analysis can be used to improve the alignment between concepts and skills facilitating student 
progress through the different cognitive levels in Bloom’s taxonomy.  
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