
Paper ID #7141

RAPTOR - A Vehicle to Enhance Logical Thinking

Dr. Nikunja Swain P.E., South Carolina State University

Dr. Swain is currently a Professor at the South Carolina State University. Dr. Swain has 25+ years of
experience as an engineer and educator. He has more than 50 publications in journals and conference
proceedings, has procured research and development grants from the NSF, NASA, DOT, DOD, and DOE
and reviewed number of books on computer related areas. He is also a reviewer for ACM Computing
Reviews, IJAMT, CIT, ASEE, and other conferences and journals. He is a registered Professional Engineer
in South Carolina and ETAC of ABET reviewer for Electrical Engineering Technology and Computer
Engineering Technology.

Ms. Wanda Moses, South Carolina State University
Dr. James Allen Anderson P.E., South Carolina State University
Ms. Cynthia T Davis, SC State University

EDUCATION 1979 B. S. Magna Cum Laude, Mathematics Education Benedict College, Columbia, South
Carolina

1982 M. S. Computer Science Atlanta University, Atlanta Georgia

1992 - 1996 Additional Study, Mathematics University of South Carolina, Columbia, South Carolina
South Carolina State University, Orangeburg, South Carolina

PROFESSIONAL EXPERIENCE 1990 – Present Instructor of Computer Science South Carolina State
University Orangeburg, South Carolina

1987 - 1990 Assistant Professor of Computer Information Science Morris College Sumter, South Carolina

1986 - 1987 Instructor of Computer Science Benedict College Columbia, South Carolina

1982 - 1986 Instructor of Computer Science Atlanta Junior College Atlanta, Georgia

PUBLICATIONS King, V. J., Davis, C., 2007. A Case Study of Urban Heat Islands in the Carolinas.
Journal of Environmental Hazards, volume 7 (4), 353-359.

PROFESSIONAL ASSOCIATIONS Recording Secretary, Kappa Mu Epsilon Mathematics Honor Soci-
ety

Member, Association of Computing Machinery (ACM)

c©American Society for Engineering Education, 2013

P
age 23.1018.1

RAPTOR – A Vehicle to Enhance Logical Thinking

Abstract

Research shows that logical and critical thinking are very important for writing efficient programs but
unfortunately many of our students lack these skills. This in turn affects our ability to produce graduates
to meet the needs of increasingly computer dependent industries and to maintain our nation’s position as
the global leader of high technology arena. The educators and administrators are challenged to find ways
to engage and promote success and retention of students while maintaining standards in introductory
computing courses. We believe that this problem can be effectively addressed by enhancing students’
logical and critical thinking through the use of visual programming tools such as RAPTOR in
introductory computing courses. RAPTOR is a visual programming development environment based on
flowcharts. Students can build simple procedural programs without learning the details of a language.
These features of RAPTOR has helped us in providing an Interdisciplinary Integrated Teaching and
Learning experiences that integrates team-oriented, hands-on learning experiences throughout the
engineering technology and sciences curriculum and engages students in the design and analysis process
beginning with their first year. The objective of this paper is to discuss our experiences with the use of
RAPTOR in various science and technology courses.

Introduction

Automation is becoming part and parcel of every industry, and industries need a trained workforce to
manage this new development. Engineering and technology graduates must have a comprehensive
background covering a wider range of technical subjects. The graduates must be proficient in the use of
computers, engineering and scientific equipment, conducting experiments, collecting data, and
effectively presenting the results 1, 2, 3, 4. In addition to having a good training in their respective
disciplines, all graduates must be well-trained in courses and laboratories dealing with computer
programming; computer aided design; computer organization and architecture; and others. Unfortunately
most of our graduates do not perform well in required introductory computing courses due to lack of
logical and critical thinking skills, leading to poor performance in subsequent courses. This affects their
ability to be competitive in the global economy. We are challenged to find ways to address this problem.

One cost-effective way of achieving this is through the use of visual programming tools and a number of
such tools are available for this purpose. These visual programming tools play an important role in
education and are used to enhance logical and critical thinking skills. In his doctoral dissertation, titled
“Using Flowcharts, Code and Animation for Improved Comprehension and Ability in Novice
Programming”5, Dr. Andrew Scott discussed in detail the nature of the difficulties and skill deficiencies
novices have when learning programming and the potential of visualization and how the use of dynamic
structured flowcharts may be effective in aiding the conceptual understanding and problem solving skills
of novice programmers. According to Dr. Scott, “In comparison to other subjects (studied currently and
previously) the novice programmer will encounter an unusually large number of errors and impasses.
The large number of errors encountered can lead to de-motivation and anxiety which will inevitably
have an impact on a beginner’s self- confidence and efficacy in programming. This is another major

P
age 23.1018.2

factor contributing to the proportionally high dropout rates. This is another major factor contributing to
the proportionally high dropout rates.” Out of the three types of errors (syntax error, run time error and
logical error), syntax error is the most frequently error encountered by a programmer and this is true for
the novice programmer.

The fundamental building blocks of any program are variables, sequence (input, output, assignment),
selection (case, condition/boolean, if-then-else), iteration (for, while, do while), arrays, file I/O, and
functional decomposition (functions, procedures) and a novice programmer must have some
understanding of few of these concepts. The visual programming tools can be effective and helpful tools
to aid the novice programmers to learn these concepts.

Majority of the visualization tools are based on flowcharts because flowcharts use a graphical
representation to describe the detailed logic of a process or set of rules. Flowcharts can be easily
understood with little or no prior training. This small learning curve is due in part to the simplicity of
their notation; any program can be expressed using only five basic flowcharting symbols as shown in
Figure 1 below:

 Start/End Input/Output Decision Process/Assignment

Figure 1 – Basic Flowchart Symbols

Flowcharts are ideal for modeling and visualization of small programs usually encountered by novice
programmers. It allows the novice to envisage the flow of execution, the semantics of the conditional
structures (i.e. if, if else, while, for etc) and how the individual pieces of a program interact to form
higher level concepts, whilst limiting the syntactic overheads of a programming language. Dynamic
flowcharts are used to animate the dynamic nature of a computer program, its flow of execution, the
changing state of program variables and the interactivity between program components. A dynamic
flowchart also has better cognitive efficiency, as the viewer does not need to manually keep track of the
state of program data, thus minimizing the amount of information the learner has to hold in working
memory or write down. By obeying the key rule of structured programming, that every structure has
only one entry and exit point, flowcharts can easily communicate a well-defined and structured program.
Subsequently, the transition from flowchart to structured code will be more apparent, requiring less
reinterpretation. This should make the novice’s transition from problem specification through to
resultant structured code much simpler and more cognitively efficient.

There are number of visualization tools that use flowcharts. Dr. Scott in his dissertation compared
fourteen of these visualization tools starting from 1992. He also summarized his findings in a Table as
shown in Figure 2.

P
age 23.1018.3

Figure 2 – Comparison of few of the existing visualization tools

We decided to use RAPTOR because of the following:

 it is available over internet without any cost
 Size of RAPTOR is small and takes little time to download
 It is easy to install
 Good documentation and user guide is available in RAPTOR website
 Textbook dealing with RAPTOR is available to be used as supplementary text
 The website is frequently updated

P
age 23.1018.4

 The RAPTOR program is easy to use
 Raptor provided capability of generating JAVA, C++, C and Ada

RAPTOR is designed and required to be successful in programming courses6.We will be discussing
some of the features RAPTOR visual programming tool and the instructional modules developed using
RAPTOR below:

Features of RAPTOR Visual Programming Tool

Features of RAPTOR 6,7,8

RAPTOR is a free visual programming tool developed by computer science faculty at the United States
Air Force Academy. It is developed using C and Ada and freely available. Some of the features of
RAPTOR are the following:

Some of the features of RAPTOR are [6]:

 The RAPTOR development environment minimizes the amount of syntax the student must learn
to write correct program instructions.

 The RAPTOR development environment is visual. RAPTOR programs are diagrams (directed
graphs) that can be executed one symbol at a time. This will help students to follow the flow of
instruction execution in RAPTOR programs.

 RAPTOR error messages are designed to be more readily understandable by beginning
programmers.

When students are learning to develop algorithms, they very often spend more time dealing with issues
of syntax rather than solving the problem. Additionally, the textual nature of most programming
environments works against the learning style of the majority of students. RAPTOR is a visual
programming environment, designed specifically to help students envision their algorithms and avoid
syntactic baggage. RAPTOR programs are created visually and can be executed visually by tracing the
execution through the program. Required syntax is kept to a minimum. Students preferred expressing
their algorithms visually, and were more successful creating algorithms using RAPTOR than using a
traditional language or writing flowcharts. RAPTOR has 6 basic statements: Input, Output, Assignment,
Call, Selection, and Loop. Each of these statements is indicated by a different symbol in RAPTOR as
shown below in Figure 3.

Figure 3 – Symbols in RAPTOR

P
age 23.1018.5

Examples of RAPTOR Visual Programming Exercises 7, 8

Introductory Computer Science Course CS 151
We use number of different exercises to introduce our Freshman STEM students to programming
concepts in our introductory computer science course. Concepts such as variables, inputs, outputs,
processes, loops, and arrays are introduced without relying on any specific programming language. The
students used RAPTOR programming to achieve these objectives. Examples of few of these exercises
are presented below:

Example 1 - Write a program to determine the real roots of a Quadratic Equation (we will discuss
complex roots in another program): ax2 + bx + c = 0. User Inputs: a, b, and c; Program Outputs: Root1

and Root2; Equation to be used: . Program addresses division by zero and tested

with a=1, b = 3, c=1. For a = 1, b = 3, c = 1, the roots are Root 1 = - 0.3812 and Root 2 = -2.618. Figure
4 below shows the C programming language solution and Figure 4 shows solution using RAPTOR.

Figure 4 – Solution with C Programming Language (Program outputs are from CODEBLOCK C
Compiler)

P
age 23.1018.6

Figure 5 – Solution using RAPTOR Graphical Programming Language

As seen from figures 4, the C programming language solution requires understanding of the syntax and
requires a good understanding of variables, loops, input/output and processes. This may be time
consuming for many students and may be intimidating. On the other hand, the RAPTOR solution is
independent of syntax and does not require detailed understanding of loops, input/output and processes.
It takes less time to understand the concept since only 6 symbols are used to solve the problems.
RAPTOR lacks the flexibility and veracity of programming languages like C, C++, and JAVA and
suitable for teaching introductory programming.

P
age 23.1018.7

Example 2 - Review the Flow Chart shown below in Figure 6 and show count and sum for each pass
through the loop in the table provided.

Figure 6 – Flow chart for Example 2

SOLUTION

COUNT SUM COUNT SUM

1 0 12 42

2 2 13 42

3 2 14 56

4 6 15 56

5 6 16 72

6 12 17 72

7 12 18 90

8 20 19 90

9 20 20 110

10 30

11 30

P
age 23.1018.8

Example 3 - For the algorithm given below, determine the sum if the values are: 0, 5, 9, 7, 25, 30 using
RAPTOR.

1. Start; 2. Sum = 0; 3. Get a value; 4. sum = sum + value; 5. Go to step 3 to get next Value
6. Output the sum; 7. Stop

RAPTOR PROGRAM USING CENTENNIAL and OUTPUT – The program asks the user to enter the
numbers. Program stops when user enters the centennial value of -999 and displays the sum. Solution
using RAPTOR is shown in Figure 7.

Figure 7 – RAPTOR Solution for Example 3

RAPTOR PROGRAM USING COUNTER and LOOP – Example 3 is repeated with a counter. In this
case the number of inputs is known in advance. A counter is set with this value. As user enters the
number, the counter is decremented by one. Sum is updated. This process is repeated until counter is
zero. The program stops when the counter is zero and the Sum is displayed. The sum of 0, 5, 9, 7, 25,
and 30 is equal to 76 and RAPTOR solution calculated 76 as shown in Figure 7. A C programming
solution for this example is shown in Figure 8. Figure 9 shows the corresponding RAPTOR solution. As
mentioned earlier, the RAPTOR program is found to be free of syntax and easy to implement. Students
completed the assignment easily RAPTOR. Many students encountered problems in comprehending the
FOR Loop in the C programming solution.

P
age 23.1018.9

Figure 8 – C Programming solution

Figure 9 – RAPTOR Solution

P
age 23.1018.10

Third Year Computer Science Course CS 300 – Digital Logic
We also used RAPTOR in our CS 300 course. The course prerequisite for this course is JAVA
programming, the first programming course in our curriculum. The students are required to complete a
programming project dealing with number system conversion and they use JAVA programming to
achieve this objective. Some of the students have difficulty in completing the JAVA programs and last
semester we asked all students to use, both RAPTOR and JAVA for this objective. Our objective was to
understand student perceptions about RAPTOR. The problem statement and corresponding RAPTOR
program is shown below in Example 4 and Figure 10.

Example 4 – Design a program to convert Binary number to equivalent Decimal number.
Solution – For binary value of 1011, Decimal value is equal to 11.

Figure 10 – Raptor Solution to Example 4

P
age 23.1018.11

Summary and Conclusions

The sample modules presented above are user friendly and performed satisfactorily under various input
conditions. These and other modules helped the students to understand the concepts in more detail. The
students were able to compare their theoretical calculation with the RAPTOR output. RAPTOR program
helped the students to enhance their logical and critical thinking skills. RAPTOR can be used in
conjunction with other teaching aids to enhance student learning in various courses and will provide a
truly modern environment in which students and faculty members can study engineering, technology,
and sciences at a level of detail.

In the CS 151 course, 63 students used RAPTOR during 2012 (Spring, Summer, and Fall). 80% of the
students were satisfied with the easy to use nature of the program. 70% of the students completed all
assignments without any help and they answered questions related to variables, processes and
assignments, selections and iterations clearly. We plan to monitor these students in subsequent
programming courses for their performance and present the findings in another paper. In the CS 300
course, we used RAPTOR in 2012 Fall semester. There were 12 students and most of them (90%) liked
RAPTOR for small problems (small flowcharts). Since the flowchart for their number system converter
was large and required a deeper understanding some of the features of RAPTOR, only 25% of the
students thought RAPTOR is helpful for solving complex problems. Since the students in this group
have prior JAVA and/or C coding experience, majority of the students in this group thought that
programs like JAVA and/or C are much easier for complex problems. We plan to extend the use of
RAPTOR in other courses such as Numerical Analysis (M 410) and Computer Applications in
Mechanical Engineering Technology (MET 425). These students have very limited experience in
programming using high level programming languages such as C, C++, FORTRAN, and JAVA. Since
RAPTOR is free from syntax and easy to use, the RAPTOR programming environment may be suitable
for these students.

References

1. Swain, N. K., Korrapati, R., Anderson, J. A. (1999) “Revitalizing Undergraduate Engineering,
Technology, and Science Education Through Virtual Instrumentation”, NI Week Conference, Austin,
TX..
2. Elaine L., Mack, Lynn G. (2001), “Developing and Implementing an Integrated Problem-based
Engineering Technology Curriculum in an American Technical College System” Community College
Journal of Research and Practice, Vol. 25, No. 5-6, pp. 425-439.
3. Buniyamin, N, Mohamad, Z., 2000 “Engineering Curriculum Development: Balancing Employer
Needs and National Interest--A Case Study” – Retrieved from ERIC database.
4. Kellie, Andrew C., And Others. (1984), “Experience with Computer-Assisted Instruction in
Engineering Technology”, Engineering Education, Vol. 74, No. 8, pp712-715.
5. Scott, A, 2010. “Using Flowcharts, Code and Animation for Improved Comprehension and Ability in
Novice Programming” - University of Glamorgan, UK.
6. RAPTOR – Retrieved from http://raptor.martincarlisle.com/
7. W. Brown, “Introduction to Programming with RAPTOR,” Retrieved from
http://www.scribd.com/doc/13826372/Introduction-to-Programming-With-RAPTOR
8. Venit, S and Drake, E. (2011) – Prelude to Programming – Concepts and Design, 5th Edition,
Addison-Wesley.

P
age 23.1018.12

