
“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

2004-569

Real-Time Operating Systems: A Visual Simulator

Steven F. Barrett1, Daniel J. Pack2, Charles Straley1,

Lew Sircin1, George Janack1

1Department of Electrical and Computer Engineering

University of Wyoming

2Department of Electrical Engineering
United States Air Force Academy, Colorado

Abstract

A Real-Time Operating System, or RTOS, is an operating environment where

multiple events called tasks compete for precious processor operating time of a single
processor. The processor must prioritize tasks depending on system requirements to
ensure that all tasks complete their required activities. Due to its complex nature, a

RTOS is a difficult subject to teach in undergraduate institutions. Often it is difficult for
the students to visualize the intricacies and inter-relationships between component parts

of the system To help students to ‘see’ the operations, we have developed a visual
hardware simulator that interfaces to an embedded controller. In our application, we use
the popular Motorola HCS12 microprocessor as the simulator’s host system. The

simulator can be easily interfaced with other processor families. The simulator provides
a visual display of the status of up to 16 competing tasks. The simulator also provides a

keypad for the user to interject new status and a LCD display to illustrate key RTOS
activities.

Overview

The subject of Real-Time Operating Systems (RTOS) and their associated

concepts are difficult for students to learn. The concepts are quite complex and involve
multiple abstract data types such as multiple stacks and linked lists dynamically handing
off information to one another in a quickly changing scenario. We developed a visual

simulator to help the student view these rapidly changing events. The simulator consists
of a hardware board that displays the status of up to 16 different tasks in a RTOS

environment. The board was designed to be used with a HCS12-based evaluation board
readily available from a number of manufacturers. In this paper we begin with a review
of some basic RTOS concepts followed by the inherent complexities involved in

effectively teaching these concepts. We then describe in detail the board developed to
teach these concepts in a visual environment and suggest scenarios that may be used to

illustrate RTOS concepts.

P
age 9.1042.1

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Background

What is a RTOS? A RTOS is a computer operating system hosted on a single
processor. Since only a single, sequential processor is employed in such applications, the

operating system must respond to multiple events or tasks and ensure that all tasks are
given sufficient, precious processing time to complete their required actions [1]. To

accommodate multiple tasks, the tasks may be categorized into priorities (high, medium,
and low). In general, higher priority tasks should be executed by the processor first;
however, the processor must ensure that eventually all tasks are allowed to complete their

required actions [2-4].

An effective RTOS system will respond to all tasks competing for the same
precious processor time in such a manner that multiple tasks appear to be handled
simultaneously. How can a single processor do this? The processor typically uses

various scheduling algorithms to allow the highest priority task to execute for some
amount of time. The processor will then temporarily suspend the executing task, store

details about its current executing environment (its context) [2-5], and then allow a
different task to operate for some length of time. An effective scheduling algorithm will
appear as if all tasks are operating simultaneously while seamlessly handing off processor

execution time from task-to-task.

Figure 1. Task state transition diagram [adapted from 8].

To keep track of the progress being made for each task, a set of task states are
used. The different possible task states are illustrated in Figure 1. Tasks transition from

one state to another in response to external events or operating system updates. A task
may be in only a single state at a given time. A task will be in one of the following states
[2-5]:

P
age 9.1042.2

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

• Dormant (D) - In the dormant state, the task has no need for computer time. It is

considered a non-active task. It transitions into the ready state when so directed

by the operating system.
• Ready (R) - In the ready state, a task is fully capable of entering the active or

running state; however, another task is currently using the processor. A task may
enter the ready state from either the dormant state or from the active state.

• Executing/Active/Running (A) - A task in the active state is executing its

associated activities on the processor. Since our system only contains a single
processor, only one task may be in the active state at any given time.

• Waiting (W) - In the wait state a task has been delayed from execution. It

remains in the waiting state for a designated amount of time and then transitions

back to the ready state to await processor time. A task is placed in the wait state
temporarily to allow lower priority tasks an opportunity to execute.

• Suspended (S) - In the suspended state the task is waiting for some resource.

Once the resource is available the task transitions to the ready state and awaits

processor time.
• Rescheduling (X) - The rescheduling state is entered whenever a task runs to

completion but does not need to be repeated and enter the ready state right away.

A scheduling algorithm is used to determine how tasks are prioritized to obtain
processor execution time. A single type of scheduling algorithm does not fit all

applications. In fact, there are multiple types of scheduling algorithms briefly described
below. A particular scheduling algorithm is employed for a specific application [4-6].

• Polled Loop System – In a polled loop system, the scheduling algorithm

sequentially polls various system tasks. A task that is ready is executed until
completion. Once task related actions are complete, the scheduling algorithm
continues to poll for other ready system tasks. This type of scheduling algorithm

is an effective method of completing equal priority tasks that are not likely to
occur simultaneously.

• Polled Loop System with priority interrupts – This algorithm is similar to the

polled loop system described above. However, a limited number of higher
priority tasks are allowed to interrupt the normal sequence of polled tasks. When

higher priority tasks become ready to execute, they are allowed to seize control of
the processor and execute their tasks related activities until completion. When

the interrupt has been properly serviced, the scheduling algorithm returns to its
normal polling activities.

• Round-robin Systems – A round-robin system gives each task an equal slice of

processor execution time. The scheduling algorithm sequences from one equal
priority task to another.

• Hybrid Systems - The round-robin system may also be equipped with a limited

number of higher priority interrupt driven tasks. This is referred to as a hybrid

system.
• Interrupt Driven Systems - In an interrupt driven system, the processor is placed

in a continuous loop. As interrupt tasks become ready, they are executed. If two

P
age 9.1042.3

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

tasks become ready at the same time, the task with the highest priority is allowed

to execute first.
• Cooperative Multitasking – In this type of scheduling algorithm, a ready task

executes for a prescribed amount of time. The task then relinquishes processor
control to another ready task.

• Pre-emptive Priority Multitasking System – A pre-emptive priority system is very
similar to the Cooperative Multitasking system. However, the scheduling
algorithm determines when a task should relinquish control of the processor rather

than the task relinquishing control to another task.

How does the processor/algorithm keep track of all this dynamically changing

status? A RTOS system uses various abstract data types such as linked lists, records,
stacks, and queues to keep track of system status [7]. Linked lists are used to track tasks

that are in various states [4]. For example, a separate linked list is used to track which
tasks are ready to execute, tasks that are dormant, etc. Reference Figure 2.

Figure 2. Multiple linked list of tasks. A separate linked list is used to track which tasks
are ready to execute, tasks that are dormant, etc. [adapted from 1].

A task is implemented with a record. A record is a collection of different data types

providing related information about a given entity [7]. The task record contains the task
name, the current task state (ready, dormant, etc.), the task priority, the task stack pointer
to keep track of current task status, the task program counter, and a link to the next task in

a given task list [5]. The task’s context is stored in a stack, another abstract data type.

P
age 9.1042.4

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

The stack may be implemented using a fixed array or it can be implemented with another

linked list. Other data types such as a circular queue can be used to implement specific
scheduling algorithms such as the round-robin scheduling algorithm.

Due to the dynamic nature of abstract data types, a processor with an adequate sized
Random Access Memory (RAM) component is required. The RAM is used to implement

the heap where the data structures are dynamically allocated and de-allocated during
program execution [7, 9].

Why are RTOS concepts difficult to teach? By nature the material is quite complex.
Often it is difficult for the students to visualize the intricacies and inter-relationships

between component parts of the system Also, the activities are quite dynamic. For
example, tasks are constantly changing states and also the multiple linked lists used to
track system status are constantly being updated during system operation. For a student

to fully understand the concept of RTOS and all of its intricacies, we believe a visual
picture of the system is required. To that end, we have developed a visual hardware

simulator that interfaces to an embedded controller.

Proposed Solution

Figure 3. Overview of the RTOS Visual Simulator

As shown in Figure 3, the system consists of a host PC, an embedded controller

evaluation board (EVB) and the RTOS Visual Simulator. The host PC contains the
system compiler. The compiler is used to program a specific RTOS algorithm. It also
hosts the programming pod used to download the RTOS operating system to the target

embedded controller. The embedded controller is hosted on an EVB. The RTOS
actually executes from the embedded controller. This requires an embedded controller

with enough RAM space adequate for the anticipated overhead of multiple, large linked
lists with record size elements. The embedded control system also responds to external
input and issues output to the RTOS Visual Simulator during RTOS program execution.

A logic analyzer may also be used to observe any desired system timing status.

P
age 9.1042.5

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Figure 4 illustrates the RTOS Visual Simulator layout. The RTOS Visual
Simulator interfaces to the embedded controller via an edge connector. This allows

exchange of data between the embedded controller and the simulator. We have used a
Motorola HCS12-based evaluation board with a DP256 processor due to its large RAM
component. Also, since this is used in a teaching environment, all code is downloaded

and tested in RAM. The RAM is also needed for the heap employed in dynamic memory
allocation of the data structures.

The simulator implements sixteen different tasks (0-F). A specific task is
activated using a hardware 1:16 decoder (74HC154). The decoder ensures that only a

single task is in communication with an embedded controller at a given time. All tasks
share a common six-line data bus. The current state (Ready, Dormant, etc.) of a specific

task is indicated with an illuminated light emitting diode (LED). The user may interject
status via a hexadecimal keypad. The keypad is depressed twice to initiate a specific
action. The first switch activation selects the task while the second switch activation

controls the activity associated with the task. The task and its associated activity is
displayed on the liquid crystal display (LCD).

Figure 5 illustrates the schematic of the task circuit. Each task is implemented
with an octal latch (74HC573). A specific latch is enabled using the 74HC154 decoder

previously described. This allows task data residing on the task data bus to be latched
into the task. The latch will hold the task status until updated. The latch outputs are fed
to a LED to indicate the task state. The 7404 hex inverter, 330 ohm series resistor, and

the LED form a “logic probe” circuit to indicate the status of the task. The 7404 standard
TTL inverter output logic low sink current capability is sufficient for illuminating the

LEDs. The full-up hardware system just prior to final fabrication is illustrated in Figure 6.

The Software System

To aid in student understanding of Real Time Operating Systems, a highly
volatile, rapidly changing scenario may be used to illustrate RTOS concepts. A scenario
may be chosen that is easy to visualize by the students. For example, a used car

dealership scenario, a waitron handling multiple customers in a restaurant, or even the
security system in a large hotel can be used as an overlay example to illustrate RTOS

concepts. Different scenarios may be used to illustrate the different scheduling
algorithms.

For example, a used car (task) can have its inherent context such as year, make,
model, vehicle identification number (VIN), and odometer reading. The car (task) can be

in a variety of states similar to the task states of ready, dormant, etc. In the case of a used
car, it may be ready for sale (ready), out for a test drive (active), unavailable due to

P
age 9.1042.6

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Figure 4. RTOS Visual Simulator Layout

P
age 9.1042.7

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Figure 5. Task Circuit. LEDs illuminate when the corresponding latch output qn is low.

Figure 6. The RTOS Visual Simulator prior to final assembly. The upper PCB contains

the “Task Farm” while the PCB on the bottom left is a Minidragon HCS12 DP256 based
evaluation board (Wytec, Inc.). The PCB on the lower right hosts the hexadecimal

keypad and LCD. (Task Farm and keypad PCBs were designed and fabricated by Lew
Sircin and George Janack.)

P
age 9.1042.8

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Figure 7. Structure Chart of Car Lot RTOS System.

 maintenance (waiting), dormant (sold), etc. The status of up to sixteen cars (tasks) may
be displayed on the RTOS Visual Simulator. New scenario status may be injected by an

user with the hexadecimal keypad. The new status may be shown on the LCD and the
contents of the linked lists in response to the status changes may be displayed on the PC

screen.

The structure chart for the Car Lot RTOS System is provided in Figure 7. It

provides the basic features required to operate the car lot scenario. The basic software
system consists of functions to initialize the system and to perform basic linked list

processing such as print a linked list, insert a new item to the linked list, delete a
specified item from the linked list, and search for a specific item in a linked list. This
code could be provided to the students to become familiar with basic linked list

operations. As a homework or laboratory assignment, students could add the necessary
software for the following activities:

• The control and data signals to activate status changes on the RTOS Visual

Simulator,

• The software interface for the hexadecimal keypad,

• The software interface for the Liquid Crystal Display, and

• Additional scenario features.

P
age 9.1042.9

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Summary/Conclusions

Real Time Operating Systems (RTOS) and their associated concepts are difficult

to teach. The concepts are quite complex and involve multiple abstract data types such as
multiple stacks and linked lists dynamically handing off information to one another in a
quickly changing scenario. We have developed a visual simulator to help the student

view these rapidly changing events. The simulator consists of a hardware board that
displays the status of up to sixteen different tasks in an RTOS environment. The board

was designed to be used with a HCS12-based evaluation board readily available from a
number of manufacturers.

The system may be used with a variety of overlay scenarios so the student may
become familiar with the complex operation of a RTOS. Once students are comfortable

with the basic RTOS concepts, the simulator may be used to evolve into a stand alone
RTOS system. Other complex RTOS attributes such as interacting tasks, sharing
resources, intertask communications, concurrency, and re-entrancy issues may also be

added [5]. If you are interested in any of the items discussed in this paper, please contact
us at steveb@uwyo.edu.

References

1. M. Podanoffsky, “Building a Real-Time Multitasking Executive,” Circuit Cellar
Ink, The Computer Applications Journal, No. 27, June/July 1992, pp. 14-21.

2. J. Ganssle, “Writing a Real-Time Operating System - Part I A Multitasking Event
Scheduler for the HD64180,” Jan/Feb 1989, Circuit Cellar Ink, pp. 45-51.

3. J. Ganssle, “Writing a Real-Time Operating System - Part II Memory

Management and Applications for the HD64180,” Mar/Apr 1989, Circuit Cellar
Ink, pp. 30-33.

4. P. Laplante, “Real-Time Systems Design and Analysis An Engineer's Handbook,”
IEEE Computer Society Press, 1993.

5. G.H. Miller, “Microcomputer Engineering,” second edition, Pearson Education,

1998.
6. J. Ganssle, “An OS in a CAN,” Embedded Systems Programming, Jan 1994.

7. J.F. Korsch and L.J. Garrett, “Data Structures, Algorithms, and Program Style
Using C,” PWS-Kent Publishing Company, 1988.

8. S.F. Barrett and D.J. Pack, “68HC12 Microcontroller: Embedded Systems Design

and Applications,” Prentice-Hall Inc, 2004.
9. “ICC12, ImageCraft C Compiler and Development Environment for Motorola

HC12,” Image Craft Creations, Inc., 2001.

P
age 9.1042.10

“Proceedings of the 2004 American Society for Engineering Education Annual

Conference and Exposition Copyright 2004, American Society for Engineering Education”

Steven F. Barrett received the BS Electronic Engineering Technology from the University of Nebraska at

Omaha in 1979, the M.E.E.E. from the University of Idaho at Moscow in 1986, and the Ph.D. from The

University of Texas at Austin in 1993. He was formally with the United States Air Force Academy,

Colorado and is now an Assistant Professor of Electrical and Computer Engineering, University of

Wyoming. He is a member of IEEE (senior), Tau Beta Pi (faculty advisor), and serves as the President,

Rocky Mountain Bioengineering Symposium, Inc. His research interests include digital and analog image

processing, computer-assisted laser surgery, and embedded controller systems. He is a registered

Professional Engineer in Wyoming and Colorado. He co-wrote with Dr. Daniel Pack “68HC12

Microprocessor: Theory and Application,” Prentice-Hall, 2002 and “Embedded Systems Design and

Applications with the 68HC12 and HS12,” Prentice-Hall, 2004.

Daniel J. Pack is a Professor in the Department of Electrical Engineering at the United States Air Force

Academy, CO. He received the Bachelor of Science degree in Electrical Engineering in 1988, the Master

of Science degree in Engineering Sciences in 1990, and the Ph.D. degree in Electrical Engineering in 1995

from Arizona State University, Harvard University, and Purdue University, respectively. He was a visiting

scholar at Massachusetts Institute of Technology-Lincoln Laboratory. He is a member of Eta Kappa Nu,

Tau Beta Pi (faculty advisor), IEEE (senior), and ASEE. He is a registered Professional Engineer in

Colorado. His research interests include intelligent control, automatic target recognition, and robotics.

Email: daniel.pack@usafa.edu

Charles Straley received the AS Engineering from the Western Wyoming Community College in 2000, and

the BS Electrical Engineering from the University of Wyoming in 2004. He is a member of IEEE, ISA, Tau

Beta Pi, and Phi Theta Kappa.

P
age 9.1042.11

